
METHODS
published: 06 October 2020

doi: 10.3389/fgene.2020.00786

Frontiers in Genetics | www.frontiersin.org 1 October 2020 | Volume 11 | Article 786

Edited by:

Xianwen Ren,

Peking University, China

Reviewed by:

Jin Gu,

Tsinghua University, China

Yongcui Wang,

Northwest Institute of Plateau Biology

(CAS), China

*Correspondence:

Liang Ma

maliang@ioz.ac.cn

Lin Wan

lwan@amss.ac.cn

Specialty section:

This article was submitted to

Genomic Assay Technology,

a section of the journal

Frontiers in Genetics

Received: 30 April 2020

Accepted: 01 July 2020

Published: 06 October 2020

Citation:

Xiong J, Gong F, Wan L and Ma L

(2020) NeuralEE: A GPU-Accelerated

Elastic Embedding Dimensionality

Reduction Method for Visualizing

Large-Scale scRNA-Seq Data.

Front. Genet. 11:786.

doi: 10.3389/fgene.2020.00786

NeuralEE: A GPU-Accelerated Elastic
Embedding Dimensionality
Reduction Method for Visualizing
Large-Scale scRNA-Seq Data

Jiankang Xiong 1,2, Fuzhou Gong 1,2, Lin Wan 1,2* and Liang Ma 3*

1National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese

Academy of Sciences (CAS), Beijing, China, 2 School of Mathematical Sciences, University of Chinese Academy of Sciences,

Beijing, China, 3 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences

(CAS), Beijing, China

The dramatic increase in amount and size of single-cell RNA sequencing data calls

for more efficient and scalable dimensional reduction and visualization tools. Here, we

design a GPU-accelerated method, NeuralEE, which aggregates the advantages of

elastic embedding and neural network. We show that NeuralEE is both scalable and

generalizable in dimensional reduction and visualization of large-scale scRNA-seq data.

In addition, the GPU-based implementation of NeuralEE makes it applicable to limited

computational resources while maintains high performance, as it takes only half an hour

to visualize 1.3 million mice brain cells, and NeuralEE has generalizability for integrating

newly generated data.

Keywords: single-cell RNA sequencing, elastic embedding, neural networks, large-scale, stochastic optimization,

parametric models, generalizable models

1. INTRODUCTION

Dimensionality reduction is one of the basic steps in machine learning algorithms and big-data
analyses, especially in the analysis of high-throughput single cell RNA sequencing data (scRNA-seq
data). scRNA-seq enables us to simultaneously profile thousands of genetic markers at single-
cell resolution, which makes it an ideal tool to study the cell-cell heterogeneity in developmental
biology, oncology, and immunology. Visualization of scRNA-seq data in a manageable dimension
often plays as a pivotal first step prior to other downstream analyses such as cell type identification
or cell developmental trajectory reconstruction.

Among the numerous dimensionality reduction and visualization methods, t-distributed
stochastic neighbor embedding (t-SNE) (van der Maaten and Hinton, 2008) is most widely used in
the single-cell community to visualize data structures. While t-SNE emphasizes the neighborhood
information, which keeps the local affinity of the data, it tends to shatter the global structures
(Becht et al., 2018). As an extension of stochastic neighbor embedding (SNE), elastic embedding
(EE) algorithm penalizes, placing far apart latent points from similar data points and placing close
together latent points from dissimilar data points (Carreira-Perpinán, 2010), thereby preserving
the intrinsic data structure both locally and globally (Hie et al., 2020). EE has been recently proved
to be well-performed in visualization and in reconstruction of the embedded structure of the cell
developmental process (An et al., 2019; Chen et al., 2019).

Recent advances in automatic cell isolation and multiplex sequencing have led to an exponential
growth in the number of cells (may reach the order of millions) sequenced for individual studies

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00786
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00786&domain=pdf&date_stamp=2020-10-06
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maliang@ioz.ac.cn
mailto:lwan@amss.ac.cn
https://doi.org/10.3389/fgene.2020.00786
https://www.frontiersin.org/articles/10.3389/fgene.2020.00786/full

Xiong et al. NeuralEE

(Svensson et al., 2018). Many modified version of dimensionality
reduction and visualization methods, such as net-SNE (Cho
et al., 2018), FIt-SNE (Linderman et al., 2019), and UMAP
(Becht et al., 2018), have been introduced to deal with data
in large scale. Net-SNE in particular optimizes the original t-
SNE under a neural network (NN) framework. In addition,
methods based on autoencode, which is in form of a specialized
NN framework, have been proposed to deal with scRNA-seq
data for dimensionality reduction. To list a few, scScope (Deng
et al., 2019) reconstructs scRNA-seq data by a deep recurrent
autoencoder. DCA (Eraslan et al., 2019) models scRNA-seq for
count data by a deep count autoencoder. scVI (Lopez et al.,
2018), based on a variational autoencoder (Kingma and Welling,
2014), also models count data and incorporates batch correction
in addition to dimensionality reduction. Many other methods
are also constructed under the deep learning framework (Ding
et al., 2018; Wang and Gu, 2018) that take advantage of parallel
and scalable features in deep neural networks (Lin et al., 2020).
EE optimization procedures still lack sufficient scalability to
mega-scale datasets.

Here, we develop neural elastic embedding termed NeuralEE,
a scalable and generalizable method that trains a NN with
a mini-batch trick, mapping from high-dimensional single-
cell gene-expression profiles to a low-dimensional visualization.
NeuralEE visualizes large-scale scRNA-seq data very efficiently
and accurately on a conventional workstation with GPU-
installed, making it applicable to biological labs with limited
computational resources. We also validate the accuracies of
visualization by NeuralEE on four benchmark datasets and a
simulated dataset. Furthermore, NeuralEE has no computational
restrictions on embedding dimensions, making it viable as a
general purpose dimension reduction technique.

2. MATERIALS AND METHODS

2.1. EE
Given YD×N = (y1, . . . , yN) the D × N matrix of the scRNA-
seq dataset with N cells in R

D, where D is typically on the order
of tens of thousands (number of genes), EE seeks to find the low-
dimensional embedding onRd,Xd×N = (x1, . . . , xN), with d≪D.
Formally, EE solves the following optimization problem:

min
X

E(X) = min
X

∑

n6=m

w+
nm||xn − xm||

2

+λ
∑

n6=m

w−
nm exp(−||xn − xm||

2), (1)

where the attractive weights W+
N×N = (w+

nm) and the repulsive

weights W−
N×N = (w−

nm) are both N × N symmetric and non-
negative matrices, which are derived from Y . The parameter
λ trades off between the attractive and repulsive terms. The
W+ can be defined as Gaussian affinities (Hinton and Roweis,
2003) or entropic affinities (Vladymyrov and Carreira-Perpinan,
2013), and the W− can be simply defined as Euclidean distance.
The objective function E(X) is normally solved by fixed-point
iteration (Carreira-Perpinán, 2010) or partial-Hessian strategies

(Vladymyrov and Carreira-Perpinan, 2012). However, when N is
large, the optimization can be computationally expensive.

2.2. NeuralEE
The original EE is not generalizable: it is unable to project new
samples to existing embedding. A basic approach is to use a
mapping F belonging to a parametric familyF of mappings, then
involve F in the learning from the beginning, by replacing xn with
F(yn) in the embedding objective function and optimizing it over
the parameters of F.

An NN with sufficient hidden layers (with non-linear
activation functions) is capable of approximate functions with
arbitrary complexity (Leshno et al., 1991). We can thus choose
to use a standard feedforward NN as the parametric family F

of mappings for EE. Standard feedforward NN architecture is a
multilayer stack of simple modules that maps a fixed-size input
(for example, a cell represented with D genes expression) to a
fixed-size output (for example, coordinate in embedded space).
To go from one layer to the next, a set of units (neurons) compute
weighted sums of inputs from their previous layer and pass the
results to the next layer through a non-linear function. Units
that are not in the input (the first) or output (the last) layers are
conventionally called hidden units. The hidden layers can be seen
as distorting the input in a non-linear way so that coordinates
in embedded space become linearly separable by the last layer.
Multilayer architectures can also be trained by simple stochastic
gradient descent. As long as the modules are relatively smooth
functions of their inputs and of their internal weights, one can
compute gradients using the backpropagation procedure (Lecun
et al., 2015).

We propose NeuralEE, which applies the NN framework with
mini-batch trick to mitigate the high computational intensity
when dealing with large-scale datasets. NeuralEE defines a NN
that maps data from the original space to the embedded space.
The embedding represents as the function of the original data
is fed into Equation (1) with attractive weight and the repulsive
weight matrices which are calculated offline. By use of the
backpropagation algorithm (Lecun et al., 1990), the parameters
in the NN are optimized, and the mapping of the embedding is
thus learned.

In detail, with arbitrary parametric mapping Netθ :R
D → Rd

defined by NN, the objective E(X) in Equation (1) can be written
as E(Netθ (Y)), where Netθ (Y) = (Netθ (y1), . . . ,Netθ (yN)) (the
specific structure of NN is detailed at Supplementary Materials).

The parameters θ can thus be optimized via gradient descent
algorithm by applying the chain rule as follows:

∂E(Netθ)

∂θ
=

N∑

n=1

(
∂E(X)

∂xn
)T

∂Netθ (yn)

∂θ
, (2)

where ∂E(X)
∂xn

has close-form expression.

∂E(X)

∂xn
= 4

∑

m 6=n

(w+
nm−λw−

nm exp(−||xn−xm||
2))(xn−xm). (3)

And
∂Netθ (yn)

∂θ
can be acquired by backpropagation algorithm.

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 786

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Xiong et al. NeuralEE

2.3. Stochastic Optimization
In cases where N is large, the calculation of ∂E(X)

∂xn
can be time-

consuming. Additionally, it will be memory-costly to store the
attractive and the repulsive weight matrices.We therefore further
propose a stochastic optimization version of NeuralEE, termed
NeuralEE-SO, by applying the mini-batch trick. It first randomly
partitions the full matrix into several batches B = {bi ⊂

{1, . . . ,N}} before it then calculates the attractive weight and the
repulsive weight matrices for each batch. At each iteration of
backpropagation, the gradients of NN parameters are calculated
on each batch and averaged over all batches:

∂E(Netθ)

∂θ
≈ γ

1

|B|

|B|∑

i=1

∑

n∈bi

(
∂E(Xi)

∂xn
)T

∂Netθ (yn)

∂θ
, (4)

where γ is an offset constant, which is finally integrated into the
learning rate of the gradient descent algorithm. The flowchart of
NeuralEE is shown at Figure 1A, and we give the pseudocode of
NeuralEE at Supplementary Algorithm 1.

2.4. Data
We test NeuralEE on five scRNA-seq datasets, including 3,005
mouse cortex cells (Zeisel et al., 2015) (hereinafter denoted
as CORTEX), 4,016 hematopoietic stem and progenitor cells.
Tusi et al. (2018) (hereinafter denoted as HEMATO), 12,039
human peripheral blood mononuclear cells (Zheng et al., 2017)
(hereinafter denoted as PBMC), 27,499 mouse retinal bipolar
neuron cells (Shekhar et al., 2016) (hereinafter denoted as
RETINA), 1.3 million mouse brain cells (10x Genomics, 2017)
(hereinafter denoted as BRAIN-LARGE), and also a simulated
complex trajectory of embedded data from Moon et al. (2019)
(hereinafter denoted as ArtificialTree) (data information is
detailed at Supplementary Materials). The pre-filtering of cells
and the labeling of cells follow the procedures in Lopez et al.
(2018) for the first four data. We further filter and normalize the
genes in following steps. First we apply log(1+ x) transformation
to each element of the cell-gene expression matrix. Then we
exclude genes with low expression variance, and in most datasets
retain the top 500 genes are ordered by variance (558 genes for
CORTEX). Finally, we normalize the expression of each gene
by subtracting its mean and dividing its standard deviation. We
preprocess BRAIN-LARGE data following the procedures in
Zheng et al. (2017) and, as Cho et al. (2018) does, retain the top 50
principal components (PCs) as features. For ArtificialTree data,
we take the raw data as input.

2.5. Quantitative Evaluation
We quantitatively evaluate NeuralEE with other methods
on simulation data by comparing their generalization error
measured on K-nearest neighbor classifier. First, we apply
different dimensionality reduction methods on the entire
ArtificialTree dataset, where the ground-truth labels of the
cells are known. We then conduct a 10-fold cross-validation
procedure on the full dataset, and the cross-validation errors for
different settings of K (1 ≤ K ≤ 40) are calculated for each
dimensional reduction methods. The minimum cross validation

errors of each methods are chosen as the corresponding
generalization errors. Selected hyperparameters of NeuralEE and
other methods are listed at Supplementary Table 2.

2.6. Implementation
NeuralEE is implemented in Python. It integrates the EE
optimization protocol of Vladymyrov and Carreira-Perpinan
(2012) and the NN framework based on the PyTorch (Paszke
et al., 2019) module, which exploits parallel computation of
GPU to accelerate the optimization. We provide freely available
codes and detailed guidance on our Github site https://github.
com/HiBearME/NeuralEE/tree/v0.1.6. In this study, NeuralEE
is performed on a 64G computer memory workstation, with a
NVIDIA GPU (GCeForce GTX 1080 Ti, 11G video RAM).

3. RESULTS

3.1. NeuralEE Preserves the Properties of
EE
We first compare NeuralEE to EE and other common dimension
reduction methods on ArtificialTree data, which contains 1,440
single cells and 60 genes. The ArtificialTree data have an
embedded continuous tree structure with 10 branches. Each
branch constitute of about 140 cells that have exclusive expression
on a subset of genes, where the progression along the branch
is modeled by gradually increase the expression of these genes
(Figure 2A). The two versions of NeuralEEs together with EE
resemble each other in results with EE results being more neatly
presented (Figures 2B–D). NeuralEE inherits the merits of EE,
which can preserve both global and local structure of data. The
state-of-the-art methods, t-SNE and UMAP, are also good at
keeping the local affinity; however, compared to other methods,
they both tend to shatter the global structures (Figures 2E,F).
PHATE (Moon et al., 2019) tends to stretch the branches,
while PCA fails to resolve all the branches (Figures 2G,H). We
further quantitatively compare the performance of NeuralEE to
other methods on these simulation data. By performing the K-
nearest neighbors classifiers on each embedded space, and with K
varying from 1 to 40, we calculate their minimum generalization
error (Supplementary Table 1). Except for PCA, the minimum
generalization errors for other methods are all less than 0.1.
NeuralEE, NeuralEE-SO, and EE exhibited the best performance
with NeuralEE and EE ties at the top.

We also apply NeuralEE together with other
dimension reduction methods on real biological data
(Supplementary Figure 1). As expected, both versions of
NeuralEE give very similar visualization structures on these
datasets as EE. However, when the size of dataset is large, EE
suffers from computation problems. For instance, it fails to run
the RETINA dataset. NeuralEE, and especially NeuralEE-SO, on
the other hand, overcome this issue and are able to carry forward
the characteristics of EE on larger datasets. The parameter
λ in EE (and thus in NeuralEE) trades off between the local
affinity and the global structure (Carreira-Perpinán, 2010; Hie
et al., 2020). Normally, the results of EE are relatively robust
with the setting of λ within a certain range (Carreira-Perpinán,
2010; An et al., 2019; Chen et al., 2019). We use 1 as the

Frontiers in Genetics | www.frontiersin.org 3 October 2020 | Volume 11 | Article 786

https://github.com/HiBearME/NeuralEE/tree/v0.1.6
https://github.com/HiBearME/NeuralEE/tree/v0.1.6
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Xiong et al. NeuralEE

FIGURE 1 | (A) The flow chart of NeuralEE. In brief, NeuralEE constructs an NN that defines a parametric mapping from the original space to the embedded space.

The full dataset is first randomly partitioned into several batches (only one batch is also acceptable, which means not applied with mini-batch trick or stochastic

optimization). On each batch the attractive weight and the repulsive weight matrices are calculated and fed into the loss function of EE, which is represented as a

composite function of the original data. By backpropagation algorithm, the parameters in the NN are optimized, and the mapping of the embedding is thus learned.

(B) Visualization results of 1.3 million mouse brain cells by NeuralEE-SO.

FIGURE 2 | Comparison of NeuralEE to other visualization methods on ArtificialTree data. (A) True embedding. (B) EE. (C) NeuralEE. (D) NeuralEE-SO. (E) t-SNE.

(F) UMAP. (G) PHATE. (H) PCA. Different color corresponds different branch of artificial tree.

default setting of λ in this study; however, there should be little
influence in the resulting visualization with λ ranging from 1
to 10 (Supplementary Figure 2). We have used the top 500
variable genes in the above visualizations of real datasets. We
also demonstrate that when enough variation retained, rising
the number of initializing gene do not alter the main structure
of the visualization (Supplementary Figure 3). In practice, one
may also choose to use another dimensional reduction method
to extract the main features in advance to visualization (Lin
et al., 2020; Wu and Zhang, 2020). The dimensionality reduction
method can be in linear form such as PCA (Kobak and Berens,

2019) or in non-linear form such as scVI (Lopez et al., 2018; Wu
and Zhang, 2020). We compare the visualization performance
of NeuralEE with FIt-SNE and UMAP based on 50 PCs or
latent variables learned by scVI, and we show that NeuralEE
still preserves global structure better than t-SNE and UMAP
(Supplementary Figure 4).

3.2. NeuralEE Is Generalizable to Newly
Generated Data
Another important feature of NeuralEE, owing to the parametric
framework, is its generalizability, i.e., ability of mapping

Frontiers in Genetics | www.frontiersin.org 4 October 2020 | Volume 11 | Article 786

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Xiong et al. NeuralEE

FIGURE 3 | (A) NeuralEE or (B) net-SNE on the full ArtificialTree data. Their embeddings with stochastic optimization are showed at Supplementary Figure 6. (C)

The top line panel is the NeuralEE based on the sub-samples with a sub-sampling scale as the index scale, and the bottom line panel is the mapping of all samples to

the embedded space based on the NN trained on the top panel. (D) net-SNE under the similar experiments as (C). (E) From left to right is the NeuralEE on the entire

CORTEX data, NeuralEE based on the sub-samples with a sub-sampling scale of 25%, and the mapping of all samples to the embedded space based on the NN

trained on sub-samples. (F) net-SNE under the similar experiments as (E).

FIGURE 4 | Embedding results on 1.3 million mouse brain cells dataset. (A) NeuralEE-SO with batch size as 5,000. (B) FIt-SNE. (C) UMAP. Labels represent different

clusters of Louvain community detection algorithm (Blondel et al., 2008). As NeuralEE belongs to parametric methods, when applied on million-size data, it could

return several outliers on the embedded space, we manually delete them to make layout tighter. The raw embedding is showed at Supplementary Figure 7.

newly observed points from the original expression space
to the embedded space (Cho et al., 2018). To validate the
generalizability, we compare NeuralEE with net-SNE. We first

apply and train NeuralEE on a subset of samples (a quarter
sample in size). With the trained NN, we then directly map
the left-out samples onto the embedded space and compare the

Frontiers in Genetics | www.frontiersin.org 5 October 2020 | Volume 11 | Article 786

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Xiong et al. NeuralEE

visualizations.We test on three scales of sub-sampling using 10%,
25%, and 50% of the original sample size. Figures 3A,B shows the
embedding trained on the full dataset with NeuralEE and net-
SNE. The top line panels of Figures 3C,D are the visualization
of the embeddings based on the sub-samples. The bottom line
panels of Figures 3C,D are the mapping of all samples to the
embedded space based on the trained NN that corresponds top
panels. We see that even when training on 10% of samples and
with the subsample visualization shattered into broken clusters,
the mapping visualization of NeuralEE (the right column in
Figure 3C) is still rather robust and consistent with the result
at Figure 3A. In contrast, the mapping visualization of net-
SNE is only comparable to its full sample visualization on a
50% scale. Explicit distortions to the true structure are observed
with mappings based on 10% and 25% subsample trainings
(Figure 3D). We also test the generalizability on real biological
data by setting the sub-sampling scale to 25%. On HEMATO,
PBMC, and RETINA datasets, both NeuralEE and net-SNE
show consistent results of mapping visualization to full sample
embedding (Supplementary Figure 5). On the CORTEX data,
NeuralEE performs well; however, net-SNE has a poor subsample
embedding and, thus, an unsatisfactory mapping visualization
(Figures 3E,F).

3.3. NeuralEE Is Scalable and Efficient
Next, we demonstrate the scalability of NeuralEE, which is
another desired property with ever-growing data size nowadays.
We apply NeuralEE, UMAP, and FIt-SNE to the BRAIN-LARGE
dataset. Since there are over 25,000 genes in the BRAIN-LARGE
dataset, we apply PCA initialization to the data; that is, we retain
the top 50 PCs for further analysis. As the data is huge, we will
apply NeuralEE-SO instead to reduce memory consumption. In
this case, we set the batch size to 5,000 cells.

Figure 4 shows comparable results among the three methods.
The colors are annotated according to Wolf et al. (2018). All
methods visualize clusters clearly, with the clusters arranged
by NeuralEE-SO in more connected manner, while in more
separate and shatter layout manner by FIt-SNE. Besides the
visualization, NeuralEE-SO also performs more efficiently, which
only takes 29 min to visualize these 1.3 million mice brain cells,
and the running times for FIt-SNE and UMAP are 67 and 70
min, respectively.

4. DISCUSSION

We develop NeuralEE, a GPU-accelerated dimensionality
reductionmethod for visualization of large-scale scRNA-seq data.

NeuralEE applies a NN framework to parameterize the
embedding, where the coordinate of data point in the original
space is mapped to the embedded space. The mapping function
thus trained allows NeuralEE to be generalizable, where the
newly observed data can be directly mapped to the embedded
manifold based on its features in the original space. After
training NerualEE on a small set of sub-samples, the mapping
visualization of remaining samples is comparable to the result of
display based on full sample optimization.

We also provide a version of NeuralEE with application
of the mini-batch trick. This is especially useful when dealing
with large-scale dataset since a significant portion of cells
are redundant in large-scale scRNA-seq data as experimentally
demonstrated by Cho et al. (2018). In this way, the attractive and
repulsive weights in the loss function of NeuralEE are optimized
within each random batch which will greatly reduce the memory
consumption and make NeuralEE scalable to datasets with
millions of samples. Although we show that the batch size has
minor effect on the resulting embedding, theoretically however,
mini-batch trick applied on NeuralEE cannot guarantee the
performance of the embedding, specifically on data with median
or small size. As a result, we recommend using the mini-batch
trick only when necessary, while in situations with small- or
moderate-scale working with NeuraEE instead of NeuralEE-SO
might be more robust. We also offer the option of online learning
in NeuralEE-SO, where, by forming the newly observed data as
new batches, the trained NeuralEE model can be updated.

The deep-learning-based design has been more popularly
introduced in dimensionality reduction methods for scRNA-seq
data owning to its scalable property. The variational autoencoder
proposes a distinct family of generative process where the
high-dimensional observed data can be generated from the
low-dimensional latent space. For instance, scVI follows Zero-
Inflated Negative Binomial for generative process (Risso et al.,
2018) and assumes a decomposable form for approximated
posterior inference. The posterior distributions parameters of
low-dimensional latent variables are inferred by the learned
parametric mapping from NN. These methods are powerful and
work well when data approximately fits the model assumptions
(Wu and Zhang, 2020). NeuralEE, on the other hand, focuses
on preserving the intrinsic structure both locally and globally of
the data, by simply utilizing the EE objective function and taking
the advantage of scalability and parametric property of NN. We
believe that such designmay extend the capacity of applying EE to
larger scale data, well preserving good properties for embedding
and visualization.

NeuralEE also takes the advantage of utilizing GPU to
accelerate the optimization. The optimization of NeuralEE
mainly consists of matrix computation, and it can therefore be
dramatically accelerated if its computation can be parallelizable.
Although some of these methods leverage the merits of parallel
computation, however, the optimizers for t-SNE and most
of its variant methods, including EE, are only applicable on
CPU. The number of CPU cores on a personal computer
or even on a computation server is limited and normally
incomparable to that of a GPU chip. By applying a GPU-
based code design, NeuralEE can be easily implemented
on a workstation or personal computer equipped with a
regular NVIDIA GPU chip. In our experiment, it takes only
half an hour to visualize 1.3 million mice brain cells on
a NVIDIA GeForce GTX 1080 Ti GPU device and 64G
computer memory (Memory consumption is illustrated at
Supplementary Table 3).

In summary, NeuralEE is a scalable, generalizable, and, more
importantly, GPU-accelerated dimensionality reduction method
for visualization of scRNA-seq data.

Frontiers in Genetics | www.frontiersin.org 6 October 2020 | Volume 11 | Article 786

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Xiong et al. NeuralEE

DATA AVAILABILITY STATEMENT

NeuralEE is freely available at https://github.com/HiBearME/
NeuralEE and its corresponding documentation is available
at https://neuralee.readthedocs.io. All datasets analyzed
in this paper are public. CORTEX, HEMATO, PBMC,
RETINA and BRAIN-LARGE can be referenced at
https://github.com/romain-lopez/scVI-reproducibility, and
ArtificialTree can be referenced at https://github.com/
KrishnaswamyLab/PHATE.

AUTHOR CONTRIBUTIONS

LM, LW, and FG conceived the NeuralEE models. JX, LM, and
LWdesigned theNeuralEEmodels and performed the simulation
study and real data set analysis. JX programmed the NeuralEE

package. LM, LW, and JX wrote the whole manuscript. All
authors read and approved the final manuscript.

FUNDING

This work was supported by the National Key R&D Program of
China under Grant 2019YFA0709501, 2018YFB0704304, NSFC
grants (Nos. 81673833, 11971459, and 12071466), NCMIS of
CAS, LSC of CAS, and the Youth Innovation Promotion
Association of CAS.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00786/full#supplementary-material

REFERENCES

10x Genomics (2017). Support: Single Cell Gene Expression Datasets. 10x

Genomics.

An, S., Ma, L., andWan, L. (2019). TSEE: an elastic embedding method to visualize

the dynamic gene expression patterns of time series single-cell RNA sequencing

data. BMC Genomics 20:224. doi: 10.1186/s12864-019-5477-8

Becht, E., McInnes, L., Healy, J., Dutertre, C.-A., Kwok, I. W. H., Ng, L. G., et al.

(2018). Dimensionality reduction for visualizing single-cell data using UMAP.

Nat. Biotechnol. 37, 38–44. doi: 10.1038/nbt.4314

Blondel, V. D., Guillaume, J. L., Lambiotte, R., and Lefebvre, E. (2008). Fast

unfolding of communities in large networks. J. Stat. Mech. 2008, 155–168.

doi: 10.1088/1742-5468/2008/10/P10008

Carreira-Perpinán, M. A. (2010). “The elastic embedding algorithm for

dimensionality reduction,” in 27th International Conference on Machine

Learning (Haifa), Vol. 10, 167–174. Available online at: https://icml.cc/

Conferences/2010/papers/123.pdf

Chen, Z., An, S., Bai, X., Gong, F., Ma, L., and Wan, L. (2019). DensityPath:

an algorithm to visualize and reconstruct cell state-transition path on density

landscape for single-cell RNA sequencing data. Bioinformatics 35, 2593-2601.

doi: 10.1093/bioinformatics/bty1009

Cho, H., Berger, B., and Peng, J. (2018). Generalizable and scalable

visualization of single-cell data using neural networks. Cell Syst. 7, 185–191.

doi: 10.1016/j.cels.2018.05.017

Deng, Y., Bao, F., Dai, Q., Wu, L. F., and Altschuler, S. J. (2019). Scalable analysis

of cell-type composition from single-cell transcriptomics using deep recurrent

learning. Nat. Methods 16, 311–314. doi: 10.1038/s41592-019-0353-7

Ding, J., Condon, A., and Shah, S. P. (2018). Interpretable dimensionality reduction

of single cell transcriptome data with deep generative models. Nat. Commun.

9:2002. doi: 10.1038/s41467-018-04368-5

Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S., and Theis, F. J. (2019). Single-

cell RNA-seq denoising using a deep count autoencoder.Nat. Commun. 10:390.

doi: 10.1038/s41467-018-07931-2

Hie, B., Peters, J., Nyquist, S. K., Shalek, A. K., Berger, B., and Bryson, B. D. (2020).

Computational methods for single-cell RNA sequencing. Annu. Rev. Biomed.

Data Sci. 3, 339–364. doi: 10.1146/annurev-biodatasci-012220-100601

Hinton, G., and Roweis, S. (2003). Stochastic neighbor embedding. Adv. Neural

Inform. Process. Syst. 15, 857–864.

Kingma, D. P., and Welling, M. (2014). “Auto-encoding variational bayes,” in

2nd International Conference on Learning Representations, ICLR, Conference

Track Proceedings, eds Y. Bengio, and Y LeCun (Banff, AB). Available online

at: https://dblp.org/db/conf/iclr/iclr2014.html

Kobak, D., and Berens, P. (2019). The art of using T-SNE for single-cell

transcriptomics. Nat. Commun. 10:5416. doi: 10.1038/s41467-019-13056-x

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521:436.

doi: 10.1038/nature14539

Lecun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

et al. (1990). Handwritten digit recognition with a back-propagation network.

Adv. Neural Inform. Process. Syst. 2, 396–404.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1991). Multilayer feedforward

networks with a nonpolynomial activation function can approximate any

function. Neural Netw. 6, 861–867. doi: 10.1016/S0893-6080(05)80131-5

Lin, E., Mukherjee, S., and Kannan, S. (2020). A deep adversarial variational

autoencoder model for dimensionality reduction in single-cell RNA sequencing

analysis. BMC Bioinformatics 21:64. doi: 10.1186/s12859-020-3401-5

Linderman, G. C., Rachh, M., Hoskins, J. G., Steinerberger, S., and Kluger, Y.

(2019). Fast interpolation-based T-SNE for improved visualization of single-cell

RNA-seq data. Nat. Methods 16, 243–245. doi: 10.1038/s41592-018-0308-4

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N.

(2018). Deep generative modeling for single-cell transcriptomics.

Nat. Methods 15, 1053–1058. doi: 10.1038/s41592-018-0

229-2

Moon, K. R., van Dijk, D., Wang, Z., Gigante, S., Burkhardt, D. B.,

Chen, W. S., et al. (2019). Visualizing structure and transitions in

high-dimensional biological data. Nat. Biotechnol. 37, 1482–1492.

doi: 10.1038/s41587-019-0336-3

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,

et al. (2019). “PyTorch: an imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems

32, eds H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.

Fox, and R. Garnett (Curran Associates, Inc.), 8026–8037. Available

online at: http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf

Risso, D., Perraudeau, F., Gribkova, S., Dudoit, S., and Vert, J.-P. (2018). A general

and flexible method for signal extraction from single-cell RNA-seq data. Nat.

Commun. 9:284. doi: 10.1038/s41467-017-02554-5

Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk,

M., et al. (2016). Comprehensive classification of retinal bipolar neurons by

single-cell transcriptomics. Cell 166, 1308–1323. doi: 10.1016/j.cell.2016.07.054

Svensson, V., Vento-Tormo, R., and Teichmann, S. A. (2018). Exponential

scaling of single-cell RNA-seq in the past decade. Nat. Protoc. 13, 599–604.

doi: 10.1038/nprot.2017.149

Tusi, B. K., Wolock, S. L., Weinreb, C., Hwang, Y., Hidalgo, D., Zilionis, R.,

et al. (2018). Population snapshots predict early haematopoietic and erythroid

hierarchies. Nature 555, 54–60. doi: 10.1038/nature25741

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

Vladymyrov, M., and Carreira-Perpinan, M. (2012). “Partial-hessian strategies

for fast learning of nonlinear embeddings,” in Proceedings of the 29th

International Conference on Machine Learning (ICML-12), eds J. Langford, and

J. Pineau (Edinburgh: Omnipress), 345–352, Available online at: https://icml.

cc/Conferences/2012/papers/199.pdf

Frontiers in Genetics | www.frontiersin.org 7 October 2020 | Volume 11 | Article 786

https://github.com/HiBearME/NeuralEE
https://github.com/HiBearME/NeuralEE
https://neuralee.readthedocs.io
https://github.com/romain-lopez/scVI-reproducibility
https://github.com/KrishnaswamyLab/PHATE
https://github.com/KrishnaswamyLab/PHATE
https://www.frontiersin.org/articles/10.3389/fgene.2020.00786/full#supplementary-material
https://doi.org/10.1186/s12864-019-5477-8
https://doi.org/10.1038/nbt.4314
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://icml.cc/Conferences/2010/papers/123.pdf
https://icml.cc/Conferences/2010/papers/123.pdf
https://doi.org/10.1093/bioinformatics/bty1009
https://doi.org/10.1016/j.cels.2018.05.017
https://doi.org/10.1038/s41592-019-0353-7
https://doi.org/10.1038/s41467-018-04368-5
https://doi.org/10.1038/s41467-018-07931-2
https://doi.org/10.1146/annurev-biodatasci-012220-100601
https://dblp.org/db/conf/iclr/iclr2014.html
https://doi.org/10.1038/s41467-019-13056-x
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S0893-6080(05)80131-5
https://doi.org/10.1186/s12859-020-3401-5
https://doi.org/10.1038/s41592-018-0308-4
https://doi.org/10.1038/s41592-018-0229-2
https://doi.org/10.1038/s41587-019-0336-3
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1016/j.cell.2016.07.054
https://doi.org/10.1038/nprot.2017.149
https://doi.org/10.1038/nature25741
https://icml.cc/Conferences/2012/papers/199.pdf
https://icml.cc/Conferences/2012/papers/199.pdf
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Xiong et al. NeuralEE

Vladymyrov, M., and Carreira-Perpinan, M. (2013). “Entropic affinities: properties

and efficient numerical computation,” in 30th International Conference

on Machine Learning (Atlanta, GA), 477–485. Available online at: http://

proceedings.mlr.press/v28/vladymyrov13.pdf

Wang, D., and Gu, J. (2018). VASC: Dimension reduction and visualization

of single-cell RNA-seq data by deep variational autoencoder. Genomics

Proteomics Bioinformatics 16, 320–33. doi: 10.1016/j.gpb.2018.

08.003

Wolf, F. A., Angerer, P., and Theis, F. J. (2018). SCANPY: large-scale single-cell

gene expression data analysis. Genome Biol. 19:15. doi: 10.1186/s13059-017-

1382-0

Wu, Y., and Zhang, K. (2020). Tools for the analysis of

high-dimensional single-cell RNA sequencing data. Nat.

Rev. Nephrol. 16, 408–421. doi: 10.1038/s41581-020-

0262-0

Zeisel, A., Munozmanchado, A. B., Codeluppi, S., Lonnerberg, P., La Manno,

G., Jureus, A., et al. (2015). Cell types in the mouse cortex and

hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142.

doi: 10.1126/science.aaa1934

Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R.,

et al. (2017). Massively parallel digital transcriptional profiling of single cells.

Nat. Commun. 8:14049. doi: 10.1038/ncomms14049

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Xiong, Gong, Wan and Ma. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 8 October 2020 | Volume 11 | Article 786

http://proceedings.mlr.press/v28/vladymyrov13.pdf
http://proceedings.mlr.press/v28/vladymyrov13.pdf
https://doi.org/10.1016/j.gpb.2018.08.003
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41581-020-0262-0
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1038/ncomms14049
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	NeuralEE: A GPU-Accelerated Elastic Embedding Dimensionality Reduction Method for Visualizing Large-Scale scRNA-Seq Data
	1. Introduction
	2. Materials and Methods
	2.1. EE
	2.2. NeuralEE
	2.3. Stochastic Optimization
	2.4. Data
	2.5. Quantitative Evaluation
	2.6. Implementation

	3. Results
	3.1. NeuralEE Preserves the Properties of EE
	3.2. NeuralEE Is Generalizable to Newly Generated Data
	3.3. NeuralEE Is Scalable and Efficient

	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

