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Plant-specific WOX transcription factors have important regulatory functions in plant
development and response to abiotic stress. However, the identification and functional
analysis of members of the WOX family have rarely been reported in the physic
nut plant until now. Our research identified 12 WOX genes (JcWOXs) in physic nut,
and these genes were divided into three groups corresponding to the ancient clade,
WUS clade, and intermediate clade. Expression analysis based on RNA-seq and qRT-
PCR showed that most of the JcWOX genes were expressed in at least one of
the tissues tested, whereas five genes were identified as being highly responsive to
drought and salt stresses. Subcellular localization analysis in Arabidopsis protoplast cells
showed that JcWOX5 encoded a nuclear-localized protein. JcWOX5-overexpression
plants increased sensitivity to drought stress, and transgenic plants suggested a lower
proline content and CAT activity, higher relative electrolyte leakage, higher MDA content,
and higher rate of water loss under drought conditions. Expression of some stress-
related genes was obviously lower in the transformed rice lines as compared to their
expression in wild-type rice lines under drought stress. Further data on JcWOX5-
overexpressing plants reducing drought tolerance verified the potential role of JcWOX
genes in responsive to abiotic stress. Collectively, the study provides a foundation for
further functional analysis of JcWOX genes and the improvement of physic nut crops.

Keywords: WOX gene family, physic nut, expression profile, JcWOX5, transgenic rice

INTRODUCTION

Environmental factors, particularly salt and drought stress, severely limit the production and
distribution of many important agronomic crops worldwide. To survive external extreme
environment stress, plants have evolved multiple mechanisms as a defense strategy against external
signals by modulating the expression of genes. Among these genes, transcription factors, such as
HD-Zip, WOX, ERF, WRKY, NAC, and MYB, have clearly played a key role in regulating plant
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response to drought or salt stress (Butt et al., 2017; Jiang et al.,
2017; Tang et al., 2019b; Xie et al., 2019; Yuan et al., 2019).

Members of the WOX gene family encode proteins that
are unique to plants, and belongs to the subclades of the
homeobox (HB) superfamily. WOX transcription factors have
been shown to usually contain a highly conserved homeodomain
(HD) domain responsible for binding to specific DNA, and the
HD domain contains an HLHTH (helix-loop-helix-turn-helix)
structure of about 60–66 amino acid residues (Yang et al., 2017).
In addition, the HLHTH structure is essential for the HD to
perform its function, and the role played by the domain is
extremely important (van der Graaff et al., 2009). Based on
the conserved domain and similarity of full-length amino acid
sequence, the researchers divided the WOX proteins into three
groups, namely intermediate clade, ancient clade, and WUS clade
(van der Graaff et al., 2009).

Members of the WOX gene family have been comprehensively
identified or predicted in many plants, such as Arabidopsis,
maize, soybean, rice etc. (van der Graaff et al., 2009; Zhang
et al., 2010; Hao et al., 2019). Plant WOX genes have been
found to be involved in diverse biological and physiological
processes in regulating plant development (Ueda et al., 2011;
Costanzo et al., 2014). For example, STF (a WOX family
transcription factor) overexpressing switchgrass plants exhibit
an increased biomass yield and sugar release (Wang et al.,
2017). In poplar, PeWOX11a and PeWOX11b are found to
have important roles in regulating root, axillary bud, and leaf
development (Xu et al., 2015). In rice, overexpression of NAL2/3
results in wider leaves in transgenic plants (Ishiwata et al., 2013).
RcWOX1-overexpressing Arabidopsis plants enhance lateral root
density by regulating the expression of PIN1 and PIN7 genes
(Gao et al., 2014). In cotton, WOX13 is determined to be
an essential regulator in fiber development (He et al., 2019).
PpWOX13L has been confirmed to function as a regulator during
the initiation of stem cell growth (Sakakibara et al., 2014).
WOX8 and WOX9 have key regulatory roles in the embryo
axis formation (Ueda et al., 2011), and the role played by
WOX13 mainly involves the development of Arabidopsis replum
(Romera-Branchat et al., 2013). In Arabidopsis, AtWOX6/PSF2
has a key regulatory role in ovule development by medicating
cell proliferation (Park et al., 2005), while the role played
by WOX5 is to participate in the regulation of a correct
root-formation pattern (Gonzali et al., 2005). In addition,
evidence is accumulating to suggest that WOX genes also
participate in the regulation of abiotic stress resistance. For
example, in rice, overexpression of OsWOX13 under the rab21
promoter increases drought stress tolerance (Minh-Thu et al.,
2018). In Arabidopsis, HOS9 demonstrates that it can regulate
cold stress tolerance (Zhu et al., 2004). However, although
various members of the WOX family have been cloned and
functionally studied, little is known about the members of
this family and their roles in many taxa, or even plants from
the Euphorbiaceae.

Jatropha curcas is one of the most important non-edible
Euphorbiaceae crop, used for biofuel, feed, and a range of
industrial applications worldwide owing to its high seed oil
content, rapid growth, ease of propagation, and extensive

adaptability (Openshaw, 2000). Therefore, WOX genes have been
identified as potential targets for better, faster, and more stress-
resistant growth of physic nut due to the key regulatory role
played by these genes in growth and development. Based on
this, we firstly searched for and identified 12 WOX genes in
J. curcas (hereafter JcWOX genes). Next, we provided a detailed
analysis of the phylogenetic, gene structure, conserved motifs,
and expression profile of the identified JcWOX genes. Finally,
we detected the function of a drought stress-responsive gene
JcWOX5 in rice. Our research will provide a good foundation
for further research on the potential function of JcWOX genes
involved in the regulation of physic nut growth and development,
and abiotic stress.

MATERIALS AND METHODS

Plant Materials
The material used in our research was inbred cultivar GZQX0401
from J. curcas, because the genome sequencing of the tree
species has been completed and released (Wu et al., 2015), while
the other material was the japonica rice (Oryza sativa L.) cv.
Zhonghua 11 (ZH11).

Identification of JcWOX Genes in Physic
Nut
The HMM profile of the HD domain (PF00046) was used to
do a BLASTP search in the physic nut genome database with
an e-value cut-off of 0.01. In addition, all WOX proteins from
Arabidopsis were used as query to perform BLASTP against
the genome database from physic nut. All putative JcWOX
sequences were collected and the redundant sequences were
manually removed; the remaining candidate JcWOX proteins
were submitted to a SMART (ID was SM000389), Pfam (ID was
PF00046), and NCBI Conserved Domain Database (CDD) (ID
was PF00046) search to confirm the existence of the HD domain.
At this time, we removed these sequences that did not contain the
HD conserved domain.

Phylogenetic and Gene Structure
Analysis of WOX Genes
The Arabidopsis genome sequence database1 was employed to
download Arabidopsis WOX protein, and for rice WOX proteins,
the Phytozome2 was used to download these proteins. Sequences
for poplar, soybean, and J. curcas were from the GenBank
database3. Multiple alignments were analyzed using the Clustal
X software (1.83). Phylogenetic trees were built according to
the following parameters: NJ (neighbor-joining) method, 1000
bootstraps, and the software was MEGA 6. We hired GSDS4 to
analyze gene structure.

1http://www.Arabidopsis.org/
2http://www.phytozome.net/
3http://www.ncbi.nlm.nih.gov/
4http://gsds.cbi.pku.edu.cn/
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Conserved Motif, Amino Acid Sequence,
and Chromosome Location Analysis of
JcWOX Genes
MEME (Version 5.1.0) was used to analysis the conserved motif
of JcWOX proteins. MEME was run online with the following
requirements: site distribution (zero or one occurrence per
sequence), motif width (between 6 wide and 100 wide), an order-
0 background, and motif count (15 motifs). DNAMAN software
was used for amino acid sequencing of JcWOX proteins analysis.
Data about the chromosome locations of JcWOX genes in physic
nut genomes was retrieved from the physic nut database, and
MapChart software was used to draft their positions to LGs.

Expression Profile Analysis of JcWOX
Genes
Our research used the roots, stem cortexes, leaves, and seeds from
days 14 and 35 of 21-day-old J. curcas seedlings for RNA-seq
analysis. Regarding salt stress, 21-day-old J. curcas seedlings were
directly watered with nutrient solution (Hoagland) containing
100 mM NaCl, however, regarding drought stress, watering was
stopped directly. And then roots 2, 4, and 7 days after drought
stress, and 2 h, 2, and 4 days after salt stress were collected
and used for RNA-seq analysis. Regarding qRT-PCR, for drought
stress, 3-week-old J. curcas seedlings were directly watered with
nutrient solution (Hoagland) containing 20% PEG6000, and then
roots at 0, 3, 6, and 12 h after drought and salt stress were
used for qRT-PCR analysis. The available number of drought
stress raw data for the SRV (sequence read archive) at NCBI was
PRJNA257901, whereas salt stress was PRJNA244896.

Subcellular Localization of JcWOX5
Gene
The full length CDS sequence (without stop codon) of JcWOX5
was obtained via RT-PCR. The PCR product was ligated to
the pSAT6-eYFP-N1 plasmid by T4 DNA ligase, and then a
fusion expression vector from 35S:JcWOX5-YFP was generated.
Subsequently, we transferred the 35S:JcWOX5-YFP and 35S:YFP
plasmids into protoplast cells from Arabidopsis by PEG-mediate
method. Finally, we observed the YFP fluorescence under
the fluorescence confocal microscope equipped with LSM
Image Browser software. Arabidopsis protoplasts were prepared
following Abel and Theologis (1998).

Gene Cloning and Plant Transformation
RT-PCR was used to clone the coding region sequence of JcWOX5
gene using the total RNA of physic nut roots as template. After
recovering the amplified sequence of the JcWOX5 gene, the
gene to the pMD18-T vector was connected. After confirmation
of its identity by DNA sequencing, the target sequence was
excised from the pMD18-T vector after digestion with KpnI
and XbaI. Next, the gene was connected to the plant expression
vector pCAMBIA1301 by T4 DNA ligase to construct a plant
expression vector in which the CaMV 35S promoter controlled
the expression of the JcWOX5 gene.

The constructed JcWOX5 expression vector was transferred
into the EHA105 strain via the freeze–thaw procedure.

Subsequently, the transformation solution containing the
EHA105 strain was used to transform and produce rice
transgenic plants, as described by Tang et al. (2019b).

Stress Treatment and the Rate of Water
Loss Analysis
For drought stress, seedlings of approximately 3 cm wild-type
and JcWOX5 overexpressing plants with a uniform growth
were selected and planted in round pots containing nutrient
soil and vermiculite (1:3) at 28◦C (day/night) with a 12 h
photoperiod, during which time they were uniformly watered
with rice nutrient solution. After 2 weeks, watering was stopped
for drought stress treatment for 20 days. The seedlings were
then immediately rehydrated for 5 days. The experiment
contained three biological replicates, and each replicate had
similar results.

To examine the rate of water loss in response to drought
stress, the leaves of 21-day-old WT (wild-type) and JcWOX5-
overexpressing plants were cut off, and then weighed immediately
as the initial weight under normal growth conditions. These
isolated leaf samples were placed on the platform of the growth
chamber at 28◦C and weighed every hour. According to the leave’s
first weight, the water loss rate was statistically analyzed.

Physiological Indices Analysis
The leaves treated with drought stress for 12 days were used
to detect relative electrolyte leakage (REL), proline and MDA
contents, and CAT activity. For REL detection, the leaves were
first cut into a 0.5 cm shape, then washed 6 times with deionized
water, and then put into a test tube containing 10 mL of deionized
water. Next, the test tube was continuously shaken on the
oscillator for 3 h, at which time the conductivity (C1) of the
solution was measured with a conductivity meter. Subsequently,
the test tube was placed in the boiler for 20 min, and after
waiting for it to cool to room temperature, the conductivity
(C2) was detected again through the conductivity meter. The
relative conductivity was calculated by the following formula:
REL (%) = C1/C2× 100.

For MDA measurement, the leaves were first put in the
mortar and 5% (w/v) trichloroacetic acid was added, followed by
continuous grinding for 3 min. Then 0.67% (w/v) thiobarbituric
acid was added, and reacted for 30 min. After cooling to room
temperature, three different wavelengths (532, 600, and 450) were
selected, and the OD value of the supernatant was measured
at these three wavelengths. Finally, the content of MDA was
calculated by the following formula: 6.45 × (OD532 – OD600) –
0.559× OD450.

For proline content and CAT activity, the method in our
previously reported paper was used to detect the activity of CAT
and the content of proline (Tang et al., 2019a).

RNA Isolation and qRT-PCR Analysis
The method of RNA extraction in this study was as follows.
The extraction of total RNA from all materials was carried out
by Megan’s plant RNA extraction kit. For specific operations,
refer to the kit instructions. The cDNA was synthesized
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using the PrimeScript IV 1st strand cDNA Synthesis Mix
(TAKARA, Beijing, China). qRT-PCR was performed strictly
by the Mini Option real-time PCR system (LightCycler 480)
under the following conditions: 95◦C at 30 s was followed
by 95◦C at 5 s, then 60◦C at 20 s, and then 72◦C at 20 s.
The reaction was carried out for 40 cycles. To determine
relative expression level, we used the 2−11CT method, and
rice OsUbiquitin gene and physic nut JcActin gene were
used for normalization. The primers used can be found in
Supplementary Table S1.

Statistical Analysis
Three biological replicates were performed in our experiments.
With reference to the statistical experiment of Duncan, we
conducted a statistical analysis of the data designed by the
experiment in our study (Duncan, 1955).

RESULTS

Identification and Characterization of
JcWOX Genes
To identify the putative JcWOX genes in physic nut, a
profile hidden Markov model (HMM) search against physic
nut genome protein sequences was carried out using the
HD domain (PF00046). In addition, protein sequences of all
WOX family members of Arabidopsis were also used as search
sequences against the physic nut genome database through
the online BLASTP program. In total, 12 JcWOX proteins
were eventually confirmed in physic nut, by confirming the
existence of the HD domain based on CDD, PFam, and
SMART database searches. According to their chromosome
locations, we named 12 JcWOX genes as JcWOX1 to JcWOX12.
The CDS sequence of the 12 JcWOX genes ranged from
573 bp (JcWOX11) to 1233 bp (JcWOX4). The deduced
JcWOX proteins ranged in length from 190 to 410, while
molecular weight varied from 21.7 to 45.2 kDa, and the
isoelectric points of these genes ranged from 5.15 to 9.51
(Supplementary Table S2).

Conserved Amino Acid Sequences
Within the Homeodomain Domain
To study the sequence of the conserved HD domains in physic
nut, we performed a multi-sequence protein alignment analysis
on the amino acid sequences of 12 JcWOX proteins. The
detailed sequence analysis suggested that the HD domain of all
JcWOX proteins contained three conserved structures, which
were loop (1), turn (1), and helix (3), and these structures
consisted of 57 amino acids (Supplementary Figure S1). The
results also suggested that the amino acids in the loop and
turn structures were more variable than those in the helix
structure, and helix3 was the most conservative of the three helix
structures. In Helix3, seven highly conserved amino acids were
found, and they were N, V, W, F, Q, N, and R (Supplementary
Figure S1). In conclusion, the HD domain of WOX transcription

factor was also very conserved among members of the physic
nut JcWOX family.

Phylogenetic Analysis of WOX Genes
To study the evolutionary relationship of WOX proteins in
different species, we constructed a rootless phylogenetic tree with
92 WOX proteins using the neighbor-joining method (of the
92 WOX proteins, as shown in Supplementary Table S3, 15
belonged to Arabidopsis, 14 belonged to rice, 12 belonged to
physic nut, 33 belonged to soybean, and 18 belonged to poplar).
Our results indicated that WOX proteins were dispatched
into three groups/clades corresponding to the ancient clade,
intermediate clade, and WUS clade (Figure 1). The phylogenetic
also showed that the number of WOX transcription factors in the
WUS clade (55) was the largest, which was significantly higher
than the total number of the intermediate clade (22) and ancient
clade (15). Obviously, the WUS clade had the largest number of
WOX proteins in these five species.

To further confirm the results of the phylogenetic
classification of the WOX protein above, another unrooted
phylogenetic tree was constructed using WOX proteins from
physic nut and Arabidopsis. The results suggested that 27
WOX proteins were classified into three groups: ancient clade,
intermediate clade, and WUS clade (Supplementary Figure S2).
These results further support the classification of WOX proteins.

Gene Structure and Conserved Motif
Analysis of JcWOX Genes
To clarify the evolution of the WOX family in physic nut, we
examined the exon-intron structure of all the identified JcWOX
genes by comparing the corresponding genomic DNA sequences.
These results showed that all of the coding sequences of the
JcWOX genes were disrupted by different numbers of introns
(Figure 2). For example, JcWOX2 and 11 only contained one
intron, while JcWOX3 and 12 contained the largest number of
introns (3). The remaining JcWOX genes contained two introns.

We further analyzed conserved motifs of all JcWOX
proteins using the MEME motif analysis website. As shown in
Supplementary Figure S3, 15 conserved motifs were found in
12 JcWOX proteins, which were designated as motifs 1 to 15.
Our results showed that all predicted JcWOX proteins contained
motifs 1 and 2 (corresponding to HD domain). It was clear
that JcWOX members from the same clades were commonly
observed to harbor a similar conserved motif (Supplementary
Figure S3). For instance, motifs 5 and 13 were unique to the
ancient clade, whereas motif 12 was specific to the intermediate
clade. Motifs 3, 6, 7, 9, 10, and 14 were only found in the WUS
clade. The similar motif arrangements shared by proteins in the
same clade indicated that the structure of these proteins in the
same clade was very conservative. Except for the HB domain,
the function of most of these conserved motifs was unclear and
remain to be elucidated. In short, the conserved motifs and
similar exon-intron structures of the JcWOX members from
the same clade, together with the phylogenetic analysis results,
could provide strong evidence for the reliability of phylogenetic
tree classification.
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FIGURE 1 | Neighbor-joining unrooted tree of WOX proteins from physic nut, poplar, soybean, and Arabidopsis. Bootstrap values were calculated for 1000
replicates, and values are indicated at the corresponding nodes. Different clade genes were marked and grouped in different colors (ancient clade, intermediate
clade, and WUS clade was labeled in orange, green, and purple, respectively).

FIGURE 2 | Phylogenetic relationships and gene structure in WOX genes from physic nut. Exons and introns are shown as light blue boxes and thin lines,
respectively. The unrooted tree was constructed, using the MEGA6.0 program, by the neighbor-joining method. Gene classes are indicated with different colors.
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FIGURE 3 | Schematic representations for the chromosomal distribution of physic nut WOX genes. The scale is in centiMorgans (cM).

Chromosomal Localization of JcWOX
Genes
We mapped 12 JcWOX genes mapped to LGs using previously
published information (Wu et al., 2015). Results suggested that
12 JcWOX genes could be located on 7 out of 11 LGs, except
for LGs 1, 5, 7, 8, with an obviously non-uniform distribution
(Figure 3). LG9 contained the largest number of JcWOX genes (3
members). In addition, two JcWOX genes were present on LGs
2, 3, and 4, one on LGs 6, 10, and 11. Chromosomal regions are
separated by <4 non-homologous spacer or are located within
50 kb from other genes which were defined as tandem duplication
events (Cannon et al., 2004). Our results indicated that tandem
duplication was found among these members of the JcWOX gene
family. This tandem repeats gene pair was named T1 (JcWOX9
and 10) in the chromosome map.

Expression Profile of JcWOX Genes
Expression pattern analysis can provide valuable information
for the prediction of gene function. Thus, we examined the
expression levels of the 12 JcWOX genes based on RNA
sequencing data from five samples (roots, stem cortex, leaves,
seed 1, and seed 2) (Figure 4 and Supplementary Table S4).
The abundance of their transcription was displayed in a heat
map. Results suggested that the transcripts of the JcWOX2 gene
were not detected in all organs examined, whereas JcWOX6
and 8 were expressed in all organs tested. JcWOX3 and 12
in seed and JcWOX1 and 5 in root showed the highest
transcription abundance.

In addition, as shown in Figure 4, JcWOX3, 6, 8, and 12 genes
had higher transcriptional abundance in the seeds 14 days after
pollination (named S1 stage) compared to the transcription of
these genes in the seeds 41 days after pollination (named S2
stage). However, JcWOX7 was found with high expression in the
S2 stage, but no expression was detected in the S1 stage. Taken
together, the results showed diverse expression levels of JcWOX
genes in different organs, suggesting that the JcWOX genes had
multiple functions during physic nut growth and development.

Expression Profile of JcWOX Genes in
Abiotic Stress
To gain further insight into the potential roles of physic nut
JcWOX genes in drought and salinity stresses, we analyzed the
transcriptional abundance of JcWOX genes in roots in response
to salt and drought stresses based on these data from RNA seq.
As shown in Figure 5A, 5 JcWOX genes suggested differential
transcription abundance when faced with at least one abiotic
stress treatment from at least one time point. Out of these
five detected differential expression JcWOX genes, three genes
(JcWOX1, 5, and 6) had undergone an obvious induction or
suppression of expression when they encountered drought and
salt stresses; two genes (JcWOX1 and 8) responded only to salinity
stress. We selected an abiotic stress responsive gene (JcWOX5) for
further analysis.

To confirm the reliability of the RNA-seq results, we further
analyzed the expression levels of the JcWOX genes in roots when
facing drought and salt stress via qRT-PCR (Figure 5B). In our
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FIGURE 4 | Expression profiles of JcWOX5. Patterns of expression of each JcWOX gene in physic nut roots, stem cortex, leaves, and seeds at an early
developmental stage (S1) and filling stage (S2), with a colored scale indicating expression levels shown on the right.

results, the differential expression of JcWOX genes tended to be
consistent with the data obtained by RNA-seq under drought
and salt stress conditions, indicating that our RNA-seq data
was very reliable.

Subcellular Localization of JcWOX5
Gene
To clarify the subcellular localization of the protein encoded
by the JcWOX5 gene, the sequence of the coding region of
the gene after the stop codon was removed was connected to
the 5′-terminus of the reporter gene YFP, and the expression
of this fusion protein (JcWOX5-YFP) was controlled by
the CaMV35S promoter. The constructed 35S:JcWOX5-YFP
and empty vector 35S:YFP were introduced into Arabidopsis
protoplast cells. Our results showed that the fluorescence
of JcWOX5-YFP was only detected in the nucleus, whereas
that of the control vector was found throughout the cell
(Figure 6). Collectively, we conclude that the JcWOX5 gene is
located in the nucleus.

Phenotypic Analysis of Transgenic Rice
Plants Expressing JcWOX5
To further elucidate the potential function of JcWOX5 in plant
development and response to abiotic stress, the JcWOX5 gene was
ectopically expressed in rice plants by Agrobacterium mediated
transformation method. Then, the transcript abundances of
JcWOX5 were detected by RT-PCR, and results showed that the
JcWOX5-overexpressing plants (OE1, OE2, and OE3) had higher
expression levels, but no expression was detected in WT (wild-
type) plants (Figure 7B). Our results exhibited that the growth
of transgenic crops overexpressing JcWOX5 was not significantly

different from those of WT crops (Figure 7A). Statistical analysis
indicated that there was no obvious difference in root and
shoot lengths in the transgenic plants compared to the WT
plants (Figures 7C,D). Taken together, these results led to the
conclusion that JcWOX5 did not have any obvious impact on the
growth of transgenic rice.

JcWOX5-Overexpressing Plants Confers
Reduced Drought Tolerance
As described above, JcWOX5 expression was strongly down-
regulated by drought stress, suggesting that JcWOX5 might
play significant roles in response to drought stress. Thus, we
investigated the effects of drought stress on wild type and
JcWOX5-overexpressing plants. Our results suggested that the
growth of wild-type and transgenic plants exposed to drought
stress for 20 days was inhibited, whereas no significant difference
in the growth of transgenic and wild-type plants was found under
normal conditions (Figure 8A). In addition, the leaf curl and
growth inhibition of transgenic plants was significantly higher
than that of wild-type (Figure 8A). Obviously, the leaves of
wild-type plants were greener than those of transgenic plants
after 20 days of drought stress. After 5 days of rehydration,
about 35% of the wild-type plants survived, but the leaves
of all the transgenic plants appeared curly, whitish, and dead
(Figures 8A,B). The water loss rate shared by detached leaves
can be used as an indicator to measure the drought resistance
of plants. We therefore tested the water loss rate of wild-
type and transgenic plants when they encountered drought
stress. Our results showed that JcWOX5-overexpressing plants
had a higher rate of water loss than that of wild type
plants (Figure 8C).
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FIGURE 5 | The transcription level of the JcWOX gene under drought and salt stress. (A) Roots of expression of the 12 JcWOX genes in physic nut exposed to
drought (D) and salinity (S) stresses: log2 ratios of signals from treated versus control leaves are presented as a heat map based on transcriptomic data, with the
color scale shown on the right. NA, not available. (B) Detection of JcWOX genes expression level by qRT-PCR in roots. The experiment contains three biological
replicates, and asterisks above the bars indicate significant differences from wild-type controls at p < 0.01 (**) or 0.01 < p < 0.05 (*).

Changes in the physiological indices were also evaluated.
When the plants were exposed to drought stress, the JcWOX5-
overexpressing plants suggested significantly higher relative
electrolyte leakage and MDA content (Figures 8D,G), but a
lower proline content and CAT activity as compared to wild-
type plants (Figures 8E,F). These results suggested that the
overexpression of JcWOX5 resulted in physiological changes
in transgenic rice, which in turn reduced the observed
drought resistance.

JcWOX5 Regulates the Expressions of
Stress-Responsive Genes Under
Drought Stress
To gain further insight into the molecular mechanism underlying
the enhanced drought sensitivity in transgenic rice, we tested
the level of stress-responsive gene expression in wild-type and
transgenic plants when these plants were exposed to drought and

non-stress conditions. Our results displayed that some stress-
responsive genes, such as OsLEA3, OsSNAC1, OsDREB2A, and
OsP5CS, had higher transcription abundance in wild-type plants
compared to transgenic plants when exposed to drought stress
conditions (Figure 8H). However, no obvious difference was
detected in wild-type and JcWOX5 overexpressing plants when
exposed to normal conditions (Figure 8H).

DISCUSSION

The members of the WOX gene family encode plant-specific
transcription factors that participated in various biological
processes in plants. Up to now, most of the studies on the
functions of the WOX genes have been focused on the model
plants rice and Arabidopsis (van der Graaff et al., 2009). The
molecular mechanisms involved in response to abiotic stress
in the biofuel plant physic nut, and more specifically the
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FIGURE 6 | Subcellular localization of JcWOX5. The recombinant vector 35S:JcWOX5-YFP and the vector control was individually infiltrated into Arabidopsis
protoplast cells. The fluorescence was observed under a laser scanning confocal microscopy. Scale bar: 10 µM.

FIGURE 7 | Characterization of JcWOX5 transgenic plants (OE1, OE2, and OE3) and their growth phenotypes. (A) Growth phenotype of 2-week-old wild-type and
JcWOX5 transgenic plants under normal growth conditions. (B) Levels of JcWOX5 transcript in wild-type and transgenic lines. (C) Root length in 2-week-old
wild-type and transgenic plants. (D) Shoot length in 2-week-old wild-type and transgenic plants. Data presented in (C) and (D) are the means of n = 30 ± SD from
three independent experiments.

identities, expression profiles, and functions of its WOX genes,
remain poorly understood. We therefore identified and detected
expression profiles of WOX genes in this species and chose one
(we named JcWOX5) that inhibited expression in drought stress
for further functional analysis by overexpressing it in rice.

In our study, we identified 12 JcWOX genes in physic nut.
Following the classification of WOX genes from Arabidopsis,
rice, and soybean (van der Graaff et al., 2009), JcWOX genes of
physic nut were classified into three clades, termed the WUS,
intermediate, and ancient clade (Figure 1). In addition, the WUS

clade had the largest members compared to other plants such
as rice (van der Graaff et al., 2009), Arabidopsis (van der Graaff
et al., 2009), poplar (Zhang et al., 2010), and cotton (He et al.,
2019). These results show that the WUS clade is highly conserved
in physic nut and other plants, confirming previous studies
(van der Graaff et al., 2009).

The exon-intron organization can be used as supporting
evidence to determine the evolutionary relationships among
genes or organisms. The exon-intron splicing arrangement and
intron numbers in the JcWOX genes were similar to those
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FIGURE 8 | Drought stress tolerance tests on JcWOX5 overexpressing rice plants. (A) Drought stress tolerance tests on JcWOX5 overexpressing rice lines.
Two-week-old seedlings were used for drought stress treatment for 20 days, then rehydrated for 5 days. (B) The survival rate of wild-type and transgenic plants after
rehydration. (C) The rate of water loss in transgenic and wild-type plants under drought stress. (D) Relative electrolyte leakage in wild-type and transgenic plants
under normal growth and drought stress conditions. (E) Proline content in wild-type and transgenic plants under normal growth and drought stress conditions. (F–G)
CAT activity (F) and MDA content (G) in leaves before and after drought treatment. Data in (B–G): means of n = 20 ± SD from three independent experiments,
asterisks above the bars indicate significant differences from wild-type controls at p < 0.01 according to Duncan’s multiple range test. (H) Relative expression levels
of stress-responsive genes, in an experiment with three biological replicates, each with two technical replicates (means of n = 6 ± SD, asterisks above the bars
indicate significant differences from wild-type controls at p < 0.01).

reported in Arabidopsis (van der Graaff et al., 2009), cotton (He
et al., 2019), and poplar (Zhang et al., 2010). For example, the
members of ancient clade had two introns (Figure 2); similar
results are also found in Arabidopsis and other plants (van der
Graaff et al., 2009). The motif analysis showed that motifs 1 and 2
were uniformly observed in all JcWOX proteins (Supplementary
Figure S3), similar to Arabidopsis (van der Graaff et al., 2009),
cotton (He et al., 2019), rape (Li et al., 2019), and poplar (Zhang
et al., 2010). This result indicated that the evolution of WOX
transcription factors was conserved in plant development. Taken
together, WOX proteins in the same group shared similar gene

structures and conserved motifs, showing that the classification
of these proteins involved in this study and the evolutionary
relationship between them were reliable.

The expression profile of genes is associated with their
functions. We therefore detected the transcript abundance of
12 JcWOX genes sequencing-based transcriptome data. The
results displayed that JcWOX5 was preferentially expressed in
roots (Figure 4), and its rice homolog OsWOX3A was found to
participate in the development of lateral roots (Cho et al., 2013),
displaying that the JcWOX5 gene may play an important role in
physic nut root development. JcWOX8 was detected to have high
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expression levels in all tissues tested (Figure 4), suggesting that
the JcWOX8 gene may be involved in the fundamental elements
of plant growth and development processes. JcWOX3, 7, and 12
had a high expression in seeds (Figure 4), indicating that these
genes may have a function in regulating seed development. In
addition, some JcWOX genes had weak or no expression in the
tissues tested (Figure 4). A likely explanation is that the WOX
genes are usually expressed at some specific locations, such as
embryos or quiescent centers in roots.

A growing body of research shows that WOX genes
participated in response to various abiotic stresses in different
plant species (Yang et al., 2017; Hao et al., 2019). For example,
in soybean, drought or salt stress can up-regulate or down-
regulate the transcriptional abundance of some WOX genes (Hao
et al., 2019). In cotton, some WOX genes can also be induced
or suppressed by abiotic stress such as drought (Yang et al.,
2017). In rice, OsWOX13-overexpressing plants have a higher
tolerance under drought stress (Minh-Thu et al., 2018). However,
no WOX genes that responded to drought and salinity have been
reported in physic nut. Thus, we tested the expression profiles
of JcWOX genes exposed to drought and salinity and identified
five JcWOX genes that were clearly involved in the response
to drought and salinity stress (Figure 5). For instance, salinity
stress induced JcWOX1 and 8 genes expression compared with
the control, while JcWOX5 and 6 were down-regulated under
drought stress treatment (Figure 5). In summary, our findings
suggest that WOX gene products may have important functions
in regulating physic nut in response to abiotic stress, and
provide important reference information for the development
and utilization of subsequent functional genes; their role requires
further genetic verification.

Drought severely limits crop growth and final yield, so we
urgently need to elucidate the molecular mechanism of plant
response to drought stress and identify ways to weaken this
damage. We noticed that JcWOX5, a member from the WOX
family, significantly down-regulated expression by drought stress,
and to explore its function, we detected the effect of this
gene in transgenic rice. JcWOX5-overexpressing plants increased
sensitivity to drought stress, exhibited a higher rate of water loss,
more severe leaf curl, and lower survival rate compared to WT
(wild-type) crops (Figures 8A–C). Overall, our data suggest that
JcWOX5 is involved in drought stress response in transgenic rice.

Relative conductivity can be used as a physiological factor to
measure the damage of abiotic stress to plant cell membranes.
Our data indicated that when subjected to drought stress,
WOX5-overexpressing plants had a higher relative conductivity
compared to wild-type plants (Figure 8D), indicating that
drought stress damaged the cell membrane of transgenic plants
more than wild-type. Proline is a common compatible osmolyte
that protects cell membrane systems from the detrimental
effects of drought and salinity stresses, and is commonly used
as a marker to assess the extent of drought damage to cell
membranes (Yuan et al., 2016). Proline content was increased
in wild-type and transgenic plants with JcWOX5 under drought
stress, but the accumulation was obviously higher in wild-type
plants than in JcWOX5-overexpressing plants (Figure 8E). The
finding displayed that drought stress had more damage to cell

members of transgenic plants than that of wild-type plants.
Additionally, drought stress causes massive accumulation of
MDA by promoting lipid peroxidation, so MDA can also be
used as an indicator of impairment caused by drought stress
(Sathiyaraj et al., 2011). In this study, transgenic plants with
JcWOX5 had a higher MDA content than wild-type plants
exposed to drought stress (Figure 8G), displaying that drought
stress had more damage to transgenic plants than wild-type
plants. Collectively, these results indicate that up-regulated
expression of the JcWOX5 gene can increase transgenic plants’
sensitivity to drought stress, and this biological function is
likely to be achieved by increasing the relative conductivity,
reducing the content of proline and CAT activity, and increasing
the content of MDA.

Various stresses, including drought and high salinity, can
give rise to the expression levels of abiotic-stress-related genes,
which further protect plants from abiotic stress (Nguyen et al.,
2018). OsLEA3 has been demonstrated to confer tolerance to
drought stress to transgenic rice (Hu, 2008). Previous research
has shown that increasing the expression of the OsP5CS gene
can accumulate more proline, and OsP5CS-overexpressing plants
have an enhanced tolerance to abiotic stress (Hien et al., 2003).
Abiotic stress can upregulate the transcription levels of OsSNAC1
and OsDREB2A genes, and overexpression of these genes in crops
increases the resistance of transgenic crops to drought stress (Cui
et al., 2011; Liu et al., 2014). In this study, expression of OsLEA3,
OsSNAC1, OsDREB2A, and OsP5CS was obviously lower in
JcWOX5-overexpressing plants than wild-type plants exposed to
drought stress. However, there was no significant difference in
the transcription levels of these genes when exposed to non-
stress conditions (Figure 8H), although the gene expression
was driven by a constitutive promoter. Similar results were
also found in nNOS-overexpressing plants (Cai et al., 2015).
A likely reason is that other regulators, which respond to stress,
are required to induce JcWOX5-dependent, stress-related genes
when exposed to drought stress. Our finding strongly suggests
that JcWOX5 negatively regulates drought response in transgenic
plants at least partly due to lower expression of these stress-
related genes.

CONCLUSION

In this study, we identified 12 WOX genes in physic nut genome.
Phylogenetic analysis identified three groups, named the WUS,
intermediate, and ancient clade, which was further supported
by their gene structures and conserved motifs. Transgenic
expression in rice of one of the genes (JcWOX5) increased
transgenic plants’ sensitivity to drought stress, supporting the
hypothesis that some members of the WOX family participated
in the regulation of physic nut response to abiotic stress. These
findings can provide some basis for the prediction of JcWOX
genes function in plant stress resistance and development,
and the results of a comprehensive analysis of the WOX
family will be useful in screening genes for further functional
studies and genetic improvement of important stress-resistant
varieties in physic nut.
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