
METHODS
published: 29 July 2020

doi: 10.3389/fgene.2020.00632

Frontiers in Genetics | www.frontiersin.org 1 July 2020 | Volume 11 | Article 632

Edited by:

Jianxin Wang,

Central South University, China

Reviewed by:

Liang Zhao,

Hubei University of Medicine, China

Arjun Arkal Rao,

University of California, Santa Cruz,

United States

*Correspondence:

Zhanqiang Huo

hzq@hpu.edu.cn

Specialty section:

This article was submitted to

Computational Genomics,

a section of the journal

Frontiers in Genetics

Received: 04 December 2019

Accepted: 26 May 2020

Published: 29 July 2020

Citation:

Luo J, Chen R, Zhang X, Wang Y,

Luo H, Yan C and Huo Z (2020) LROD:

An Overlap Detection Algorithm for

Long Reads Based on k-mer

Distribution. Front. Genet. 11:632.

doi: 10.3389/fgene.2020.00632

LROD: An Overlap Detection
Algorithm for Long Reads Based on
k-mer Distribution
Junwei Luo 1, Ranran Chen 1, Xiaohong Zhang 1, Yan Wang 2, Huimin Luo 2, Chaokun Yan 2

and Zhanqiang Huo 1*

1College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China, 2 School of Computer and

Information Engineering, Henan University, Kaifeng, China

Third-generation sequencing technologies can produce large numbers of long reads,

which have been widely used in many fields. When using long reads for genome

assembly, overlap detection between any pair of long reads is an important step.

However, the sequencing error rate of third-generation sequencing technologies is very

high, and obtaining accurate overlap detection results is still a challenging task. In this

study, we present a long-read overlap detection (LROD) algorithm that can improve the

accuracy of overlap detection results. To detect overlaps between two long reads, LROD

first retains only the solid common k-mers between them. These k-mers can simplify

the process of overlap detection. Second, LROD finds a chain (i.e., candidate overlap)

that includes the consistent common k-mers. In this step, LROD proposes a two-stage

strategy to evaluate whether two common k-mers are consistent. Finally, LROD uses a

novel strategy to determine whether the candidate overlaps are true and to revise them.

To verify the performance of LROD, three simulated and three real long-read datasets

are used in the experiments. Compared with two other popular methods (MHAP and

Minimap2), LROD can achieve good performance in terms of the F1-score, precision

and recall. LROD is available from https://github.com/luojunwei/LROD.

Keywords: overlap detection, alignment, long read, k-mer distribution, the third generation sequencing technology

INTRODUCTION

Sequencing technologies fragment the genome into a large number of reads, and the process of
recombining these reads into a complete DNA sequence is called genome assembly (Nagarajan
and Pop, 2013; Ding and Guo, 2018). Read sequencing from next-generation sequencing (NGS)
technology (Miller et al., 2010), is usually short, i.e., only a few hundred base pairs in length. Short
reads commonly cannot be used to solve problems caused by long repetitive regions (Liao et al.,
2020). In addition, NGS polymers commonly lead to someGC bias, which will affect the correctness
of the genome assembly (Farrer et al., 2009; Luo et al., 2012). Compared with NGS, third-generation
sequencing (TGS) technologies (Schadt et al., 2010), such as single-molecule real-time technology
(SMRT) (Levene et al., 2003) and Oxford Nanopore technology (ONT) (Stoddart et al., 2009), can
produce longer reads with an average length of 10 kb, with many exceeding 100 kb. This long-
read length is sufficient to span most repetitive areas. TGS does not require any polymerase chain
reaction process and therefore can avoid GC bias (Ross et al., 2013). It is worth noting that TGS has
a higher sequencing random error rate than that of NGS technology. For instance, the sequencing

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00632
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00632&domain=pdf&date_stamp=2020-07-29
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:hzq@hpu.edu.cn
https://doi.org/10.3389/fgene.2020.00632
https://www.frontiersin.org/articles/10.3389/fgene.2020.00632/full
http://loop.frontiersin.org/people/832518/overview
http://loop.frontiersin.org/people/855684/overview
http://loop.frontiersin.org/people/1034461/overview
http://loop.frontiersin.org/people/1034483/overview
http://loop.frontiersin.org/people/1034463/overview
http://loop.frontiersin.org/people/787100/overview
http://loop.frontiersin.org/people/1034473/overview
https://github.com/luojunwei/LROD

Luo et al. LROD

error rate of SMRT is ∼15%, and the sequencing error rate of
ONT can reach 20%. Fortunately, current studies have shown
that high sequencing coverage can correct these random errors.
Hence, these long reads are helpful for solving problems caused
by sequencing bias and repetitive regions (Ummat and Bashir,
2014; Luo et al., 2016). Currently, many assemblers using long
reads have been presented.

Overlap detection is usually the first step of assembly
algorithms (Pevzner et al., 2001). For two long reads, the purpose
of overlap detection is to determine whether overlap exists. If two
long reads have an overlap, overlap detection tools will highlight
the two regions from the two long reads separately, which can
then be overlapped (Luo et al., 2015a,b).

To identify the overlaps among long reads, two major
problems need to be addressed: (1) High sequencing error rate:
the long reads from TGS always have high sequencing error
rates. Therefore, it is difficult to obtain accurate overlap results.
(2) Repetitive regions: long repetitive regions complicate the
process of overlap detection. These two problems in the process
of overlap detection should attract more attention.

At present, many overlap detection tools that are capable of
detecting overlaps among error-prone long reads with different
accuracy levels have been developed (Luo et al., 2020).

BLASR (Chaisson and Tesler, 2012) is designed to align
long reads to a genome reference and can be used to detect
overlaps among long reads. The performance of BLASR depends
heavily on the parameter values. For instance, to achieve higher
sensitivity, BLASR first needs to know the coverage of the long
reads and then chooses the appropriate nBest and nCandidates
(n is 10 by default) values, which should not be less than
the coverage. The running time is also related to the two
parameters. BLASR adopts complete aligning and can necessitate
more computing resources than are required for downstream
processes. DALIGNER (Myers, 2014) is a tool especially designed
to detect overlaps among long reads. This method focuses on
optimizing the running efficiency in response to the relatively
poor running performance of constructing the FM-index suffix
array/tree data structure (Ferragina and Manzini, 2005). Its
implementation steps are as follows: (a) split long reads into
blocks; (b) sort the k-mers in each block; and (c) merge the
blocks. DALIGNER greatly improves the running efficiency. To
increase speed and reduce memory usage, DALIGNER filters out
some k-mers. MHAP (Berlin et al., 2015) is a MinHash algorithm
(Broder, 1997) that relies on k-mer similarity to implement
overlap detection for long reads. MHAP first indexes the k-mers
with multiple hash functions. For all k-mers in the two long
reads, MHAP builds a sketch list with the minimum value of the
hash function and then finds the location of the overlap. Next,
MHAP uses the shorter k-mers to repeat the previous steps to
discover a more accurate overlap. The number of hash functions

Abbreviations: A, adenine; T, thymine; C, cytosine; G, guanine; NGS, next
generation sequencing; PCR, polymerase chain re-action; SMRT, single molecule
sequencing; PB, pacific biosciences; SMRT, single molecule real time; ONT,
oxford nanopore technology; OLC, overlap-layout-consensus; MHAP, MinHash
alignment process; BLAST, basic local alignment search tool; BLAT, the BLAST
like alignment tool; BLASR, basic local alignment with successive refinement; SSE,
streaming SIMD extensions.

used by MHAP to build a sketch is always fixed. However, the
lengths of the long reads are not equal, and their sensitivity is
affected when the length of the reads varies widely. For shorter
reads, MHAP inevitably wastes some memory. For longer reads,
accurate overlap detection is difficult to achieve because too few
k-mers exist. Minimap2 (Li, 2016, 2018) is an overlap detection
tool, that applies the idea of the sketch from MHAP but uses
minimizers as a simplified representation instead. Similar to
MHAP, Minimap2 saves k-mers in a hash table. In addition,
Minimap2 adopts a sorting strategy inspired by DALIGNER to
improve the running efficiency.

In this paper, we develop an approach named long-read
overlap detection (LROD) to detect overlaps among long reads
based on the k-mer distribution. The main contributions of
LROD are the following. To address the problem caused by
sequencing errors and repetitive regions, for two long reads,
LROD first finds all solid common k-mers between them. Solid
k-mers might not include sequencing errors and may come
from repetitive regions, which helps to simplify the process of
overlap detection. Then, LROD employs a two-stage strategy
to determine whether two common k-mers are consistent,
i.e., whether the middle regions between them overlap. Then,
LROD finds a chain that comprises consistent common k-
mers, which indicates a candidate overlap. Finally, LROD
revises the candidate overlap and utilizes a new evaluation
method to determine whether the candidate overlap is true. The
experimental results demonstrate that LROD performs better
than MHAP and Minimap2 in terms of the F1-score.

MATERIALS AND METHODS

In this paper, LROD is used to detect the overlaps among long
reads based on the distribution of k-mers. One k-mer is a
substring with a length k in long reads. Suppose that the length
of a long read is L; then, the number of k-mers in the long read
is (L – k+ 1). LROD first identifies solid k-mers and keeps them,
removing all other k-mers. Then, LROD constructs a k-mer hash
table. For two long reads, LROD uses Algorithm 1 to detect any
overlap between them. As shown in Algorithm 1, LROD first
finds the common k-mer set (CKS) between two long reads R1
and R2. Second, based on the CKS, LROD attempts to search
a chain for consistent common k-mers, which correspond to a
candidate overlap. Third, LROD further evaluates the candidate
and determines the final overlap. In the following sections, we
describe each step in detail.

Selecting Solid k-mers
For two long reads, LROD utilizes the common k-mers between
them to determine whether they overlap. However, the high
sequencing error rate of TGS usually leads to negative common
k-mers, and repetitive regions can cause a position contradiction
among common k-mers. For a long-read dataset, one k-mer
with a small frequency commonly includes sequencing errors,
whereas, one k-mer with a large frequency usually originates
from a repetitive region (Liu et al., 2013). Hence, LROD selects
only k-mers whose frequencies are in the interval [fmin, fmax]
as solid k-mers, where fmin and fmax are two thresholds that

Frontiers in Genetics | www.frontiersin.org 2 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

are calculated by LROD. Using only solid k-mers allows LROD
to avoid some problems caused by sequencing errors and
repetitive regions.

Before calculating the values of fmin and fmax, LROD should
determine the value of k. A larger value of k helps to
resolve repetition-related problems, but decreases the number of
common k-mers between two long reads. A smaller value of kwill
introduce more negative common k-mers, and complicate the
process of overlap detection. LROD sets k to 15 by default. Next,
LROD uses the method described below to select solid k-mers.

For a long-read dataset, LROD first uses DSK (Rizk et al.,
2013), a k-mer counting program, to calculate the frequency of
each k-mer in the dataset. If the frequency of a k-mer is one, then
only one read contains this k-mer, which means that it is useless
for finding any overlap between two long reads. For LROD, the
minimum frequency of the k-mer is 2, that is, fmin = 2 by default.
This threshold can filter out a large number of k-mers that might
include sequencing errors.

The value of fmax should be determined based on the coverage
of the long-read set and the characteristics of the genome. If
fmax is high, some k-mers from repetitive regions may be kept
in the following steps. If fmax is low, some k-mers that do not
originate from repetitive regionsmay be ignored. LRODdevelops
a method to calculate fmax based on the frequency of k-mers. F(x)
refers to the number of k-mers whose frequency is x, x = 1, 2,
3. . . , h, where h is the maximum k-mer frequency. For example, a
k-mer set {AAT, ATA, TAG, TAG, AGT, ATA, AAT, AGT, AGT}
exists. For this k-mer set, no k-mer appears once, and thus, F(1)
= 0. F(2) = 3, which means that three k-mers appear twice, i.e.,
“AAT, ATA, TAG.” F(3) = 1, which means that only one k-mer,
i.e., “AGT,” is repeated three times.

Then, S
(

y
)

is used to calculate the cumulative sum of F(x), as
described in equation 1. When f is the smallest value such that
S
(

f
)

> θ∗S
(

h
)

, we set fmax = f , and θ = 0.9 by default, and
S
(

h
)

is the total frequency of k-mers whose frequencies are not
smaller than 2.

S
(

y
)

=

y
∑

x=fmin

F (x) (1)

After determining the interval [fmin, fmax], the k-mers whose
frequencies are not in this interval are ignored in subsequent
steps. Overlap detection using only solid k-mers can minimize
the impacts of sequencing errors and repetitive regions, and
improve the accuracy of results.

The remaining solid k-mers are indexed by using a k-mer hash
table with the k-mers as keys. For a specific k-mer, the k-mer hash
table enables LROD to quickly identify the long reads that include
it. At the same time, LROD can find locations and orientations in
these long reads. As a result, LROD can quickly find a CKS for
two long reads based on the k-mer hash table.

Detecting Overlap Between Two Long
Reads
LROD selects two long reads R1 and R2 to detect whether they
overlap. If they overlap, LROD will give the region in R1 that
overlaps with another region in R2. The process of overlap
detection for R1 and R2 is described below.

Algorithm 1: Finding_overlap_region (R1, R2, k, ks, α,
β , γ , ε)

Input: two long reads
Output: determines the final overlap
Begin

Finding the common k-mer set CKS between R1
and R2;
Removing forward or reverse common k-mers
from CKS;
Sorting common k-mers in CKS;
m← |CKS|;
count← 5;
ifm < count then

return NULL;
end if

i← 0;
while i < m do

if CKS[i] is not visited then

CKS[i] is visited;
chain← Chaining_from_start (CKS, i, k, ks,
α,β , γ);
if chain != NULL then

all common k-mers in the chain are
visited;
region← Evaluate_candidate

_ overlap_region
(CKS, chain, α, γ , ε);
if region != NULL then

return region;
else

i++;
end if

else

i++;
end if

end if

end while

return NULL;
End

Finding a Common k-mer Set Between R1 and R2

First, LROD extracts k-mers from R1 with a step (s, 1 in default),
and selects k-mers which appear in R2 through the k-mer hash
table. Then, LROD gets a common k-mer set (CKS). If one k-
mer in a long read appears twice or more in another long read,
LROD deletes it from CKS. The i-th common k-mer in CKS is
represented by a four-tuples (P1i,O1i, P2i,O2i). P1i and P2i are the
starting positions of the common k-mer inR1 andR2 respectively.
O1i and O2i are the orientations of the common k-mer in R1
and R2, respectively. If the i-th common k-mer has the same
orientation (O1i =O2i), the common k-mer is a positive common
k-mer, otherwise, it is an opposite common k-mer. LROD usesM
to represent the number of positive common k-mers, and N to
indicate the number of opposite common k-mers. IfM > N and
M > count (count = 5), LROD keeps the positive common k-
mers and ignores the opposite common k-mers. If N > M and

Frontiers in Genetics | www.frontiersin.org 3 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

Algorithm 2: Chaining_from_start (CKS, start, k, ks,
α,β , γ)

Input: the starting common k-mer
Output: find a chain which consists of some consistent
common k-mers
Begin

m← |CKS|;
end← start+ 1;
chain← NULL;
Adding CKS[start] to the chain;
while start < m and end <=m do

result← Determine_consistent (CKS[start],
CKS[end], k, ks, α,β , γ);
if result != true then
end++;
continue;

end if

Adding CKS[end] to the chain;
start← end;
end← end+ 1;

end while

if |chain| > 2 then
return chain;

else

return NULL;
end if

End

Algorithm 3: Determine_consistent (CKS[start],
CKS[end], k, ks, α,β ,γ)

Input: common k-mers
Output: whether two common k-mers are consistent
Begin:

if determine_consistent_1(CKS[start], CKS[end],
α, γ) != true then
return determine_consistent_2(CKS[i], CKS[j],
k, ks, β);

endif

return true;
End

N > count, LROD keeps the opposite k-mers and ignores the
positive k-mers. The remaining common k-mers in the CKS are
sorted in ascending order based on their positions in R1. If R1
and R2 do not satisfy any of the above two conditions, LROD
concludes that they do not have an overlap and processes another
pair of long reads.

Chaining
In this step, LROD aims to find a chain from the CKS that
consists of some consistent common k-mers, and corresponds
to a candidate overlap. Algorithm 2 shows the pseudocode of
chaining. First, the starting common k-mer is added to the
chain. Then, LROD searches for the first subsequent common
k-mer, which is consistent with the previous common k-mer

Algorithm 4: Determine_consistent_1 (CKS[start],
CKS[end], k, ks, α,γ)

Input: common k-mers
Output: whether two common k-mers are consistent
Begin

Getting the positions of the start and end common
k-mers:

P1i, P2i, P1j, P2j (P1i < P1j);
D1← |P1j− P1i|;
D2← |P2j− P2i|;
if forward common k-mers then

if (P1i < P1j and P2i < P2j) and (D1 < α && D2

< α) and((Max(D1, D2) – Min(D1,D2)) /
Max(D1,D2) < γ) then
return true;

else

return false;
end if

end if

if reverse common k-mers then
if (P1i < P1j and P2i > P2j) and (D1 < α and
D2 < α) and ((Max(D1, D2) – Min(D1,D2))
/ Max(D1,D2) < γ) then
return true;

else

return false;
end if

end if

End

in the chain. When one consistent common k-mer is found, it
is appended to the chain. LROD repeats this process until all
common k-mers are visited. Finally, LROD obtains a chain.

The most important issue in finding a chain is how to decide
whether two common k-mers are consistent. For two common
k-mers, their distances in the two long reads can be calculated.
When the two distances are large or differ too much, the two
common k-mers might be inconsistent. LROD employs a two-
stage strategy for this issue, an example of which is shown in
Figure 1. Algorithms 3–5 show the pseudocode for determining
whether two common k-mers are consistent. In the first stage
as shown in Algorithm 4, LROD presents some conditions to
evaluate. If they cannot be determined in the first stage, LROD
uses the second stage as shown in Algorithm 5 to further analyse
whether they are consistent based on smaller ks-mers (ks < k).

For two common k-mers (P1i, O1i, P2i, O2i) and (P1j, O1j, P2j,
O2j), two distances D1 = |P1j− P1i| and D2 = |P2j− P2i| can be
calculated. In Algorithm 4, LROD uses C1, C2, C3, and C4 to
evaluate their consistency. The four conditions are listed below.
C1 means that they are forward, while C2 means the reverse.
Due to the high sequencing error rate of TGS, we should allow
a distance between two consecutive consistent common k-mers.
However, the larger the distance is, the greater the number of
sequencing errors that exist. Hence, C3 specifies the distance
threshold α between two consistent common k-mers. However,
α is difficult to determine. A small α will miss some consistent

Frontiers in Genetics | www.frontiersin.org 4 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

FIGURE 1 | (A) A–F are the common k-mers in the two long reads, D–F is the common consistent k-mer that can be judged in the first stage. The distance between

B and C is slightly longer, but less than β. (B) Aligning sequences between B and C with smaller ks-mers in the second stage may result in two situations. Case 1:

Multiple ks-mers can be compared between B and C; Case2: there are no common consistent ks-mers between B and C. (C) According to different situations, two

different consistent chains will be generated.

common k-mers, and a large α will accept more inconsistent
common k-mers. In this stage, LROD adopts a small value of α

(400 by default) to select consistent common k-mers with high
confidence. C4 specifies the maximum difference between D1

and D2 (γ =0.3). When the two common k-mers satisfy the
conditions, LROD considers them to be consistent.

C1: P1i < P1j and P2i < P2j;
C2: P1i < P1j and P2i > P2j;
C3: D1 < α and D2 < α;
C4: (Max(D1, D2) – Min(D1,D2)) / Max(D1,D2) < γ

If Algorithm 4 returns false, LROD will utilize Algorithm 5
to further evaluate the consistency between the two common k-
mers. In Algorithm 5, LROD adopts a large β (1,500 by default),
which provides more candidate common k-mers. To identify
correct consistent common k-mers, LROD finds small ks-mers
(ks < k) from two regions in R1 and R2 between these two
common k-mers. If two common ks-mers satisfy C3 and C4,
they will be linked. If LROD can find a path from the starting
common ks-mer to the ending common ks-mer, then Algorithm 5
returns true.

After obtaining the chain, the number of common k-mers in
the chain should be larger than 2. Finally, if the common k-mers
in the chain are positive, LROD concludes that R1 and R2 possibly
come from the same strand. Otherwise, they might come from
reverse strands. Moreover, LROD obtains two draft overlaps [P1,
Pn+ k] and [Q1,Qn+ k] on R1 and R2, respectively, where P1 and
Q1 are the first k-mers in the chain, and Pn and Pn are the last
k-mers in the chain.

Determining the Final Overlap
Due to sequencing errors, the above candidate overlap may
deviate somewhat from the real overlap. Suppose the true overlap
on R1 is [SP1, EP1], and the true overlap on R2 is [SP2, EP2].

The lengths of R1 and R2 are Len1 and Len2, respectively. LROD
uses the following method to revise the candidate overlap and
obtain the true overlap for R1 and R2. An example is shown
in Figure 2.

(1) If P1 > Q1 and Len1− Pn <= Len2 −Qn, SP1= P1 − Q1,
EP1 = Len1; SP2 = 1, EP2 = Qn + Len1− Pn+1, as shown in
Figure 1A.

(2) If P1 < Q1 and Len1− Pn <= Len2 −Qn, SP1 = 1, EP1 =
Len1; SP2 = Q1− P1, EP2 = Qn + Len1− Pn+1, as shown in
Figure 1B.

(3) If P1 >Q1and Len1− Pn > Len2 −Qn, SP1 = P1−Q1, EP1 =
Pn+ Len2− Qn; SP2 = 1, EP2 = Len2.

(4) If P1 < Q1 and Len1 − Pn > Len2 −Qn, SP1= 1, EP1 = Pn+
Len2− Qn; SP2 = Q1− P1, EP2 = Len2.

After the above processing, the real overlap on R1 and R2 can
be obtained.

As shown in Figure 2, the length of the overlap on R1 is
OverlapLenR1 = EP1− SP1, and the length of the overlap on
R2 is OverlapLenR2 = EP2− SP2. We use MaxOverlapLen and
MinOverlapLen to represent the maximum overlap length and
the minimum overlap length, respectively. MaxOverlapLen =
max(OverlapLenR1, OverlapLenR2), and MinOverlapLen =

min(OverlapLenR1, OverlapLenR2).
When R1 and R2 satisfy the following three conditions, LROD

considers R1 and R2 to have an overlap. The overlaps are [SP1,
EP1] and [SP2, EP2] on R1 and R2, respectively. Otherwise, no
overlap exists between them. ε is the threshold of the overlap
length (500 by default).

(1) (EP1− SP1)− (Pn+k−P1)< α and (EP2− SP2)− (Qn+k−
Q1) < α;

(2) MinOverlapLen > ε;

Frontiers in Genetics | www.frontiersin.org 5 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

FIGURE 2 | P1 and Q1 are the start positions of the common positive k-mer on R1 and R2, and (Pn + k) and (Qn + k) are the end positions of the common positive

k-mer on R1 and R2. SP1 and EP1 are the start position and end position of the final overlap on R1, respectively, and SP2 and EP2 are the start position and end

position of the final overlap on R2. (A) Partial overlap: The right end of one long read aligning with the left end of the other long read. (B) Full overlap: A long read is

completely aligned to a part of the other long read.

Algorithm 5: Determine_consistent _2 (CKS[start],
CKS[end], k, ks, β)

Input: common k-mers
Output: whether two common k-mers are consistent
Begin:

Getting the positions of the start and end common
k-mers:

P1i, P2i, P1j, P2j (P1i < P1j);
D1← |P1j− P1i| and D2← |P2j− P2i|;
if D1 > β or D2 > β then

return false;
end if

For forward common k-mers, find the common
ks-mer set between [P1i + k− ks, P1j + ks] in R1and
[P2i + k− ks, P2j + ks] in R2. For reverse common
k-mers, find the common ks-mer set between
[P1i + k− ks, P1j + ks] in R1and [P2j − ks, P2i − k+ ks]
in R2.

if there is a chain which starting from the
starting point to the ending point then
return true;

else

return false;
end if

End

(3) (MaxOverlapLen− MinOverlapLen) /MaxOverlapLen < γ .

Parameters of LROD
LROD has nine tunable parameters that can affect the final
experimental results. These parameters can be categorized into
three groups. The first group contains five parameters, namely,
fmin, θ , s, k, and ks, which are used to determine the common k-
mers between two long reads. More solid k-mers can be retained

by increasing the value of fmin and reducing the value of θ ,
though doing so will also increase the number of false solid k-
mers. We assign 1 as the default value for parameter s, which
can retain all solid k-mers and find all common k-mers between
two long reads. Generally, the detection of overlaps based on
short k-mers (k = 9) is sensitive, while Minimap2 sets k = 15 to
detect overlaps. Therefore, we set k = 15 and ks= 9 by default to
balance the sensitivity and specificity. Specifically, the memory
requirement and running time of LROD decrease when the
values of these parameters increase. The second group consists of
three parameters, represented as α, β , and γ , which are utilized to
evaluate whether two common k-mers are consistent. Minimap2
uses a 500 bp band-width to find collinear minimizers. Here, we
set the default α to 400 to select consistent common k-mers with
high confidence. Moreover, we use β = 1,500 and ks-mers (ks <

k) to further determine whether they are consistent. Essentially,
if two common k-mers are consistent, the two distances between
them should be similar. Thus, when the difference between the
two distances is larger than γ (0.3 by default), they are regarded as
inconsistent by LROD. The values of these parameters will need
to be changed according to the sequencing error rate of TGS.
If the error rate is low, reducing the values of these parameters
could improve the precision of the result. The last group contains
parameter ε. LROD outputs only the overlaps whose lengths are
larger than ε.

To further examine the impact of these parameters on the
results of overlap detection, we conducted LROD with different
values of four parameters: α, β , γ , and θ . The results are shown
in the Supplementary Material.

RESULTS AND DISCUSSION

To verify the effectiveness of the proposed method in this paper,
we used three simulated and three real datasets to benchmark
LROD, MHAP and Minimap2; the performance was verified

Frontiers in Genetics | www.frontiersin.org 6 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

Algorithm 6: Evaluate_candidate_overlap_region(CKS,
chain, α, γ , ε)

Input: CKS, chain, α, γ , ε
Output: True or False
Begin

Getting draft overlap based on chain: [SP1, EP1]
and [SP2, EP2];
OverlapLenR1← EP1− SP1;
OverlapLenR2← EP2− SP2;
MaxOverlapLen←max(OverlapLenR1,

OverlapLenR2);
MinOverlapLen←min(OverlapLenR1,

OverlapLenR2);
if (EP1− SP1)− (Pn+ k−P1) < α and (EP2− SP2)
− (Qn + k− Q1) < α

andMinOverlapLen > ε and
(MaxOverlapLen− MinOverlapLen) /
MaxOverlapLen < γ then

return true;
end if

return false;
End

TABLE 1 | Details of datasets.

Datasets Genomic length

(Mbp)

Average length

of reads(bp)

Number

of read

Coverage

E. coli-10 ∼4.6 6,555 6,955 ∼10

E. coli-20 ∼4.6 6,619 13,911 ∼20

chr20-10 ∼6.4 6,621 96,574 ∼10

E. coli_Real ∼4.6 4,185 6,972 ∼7

C. elegans_Real ∼99.9 4,091 188,559 ∼77

Human_Real ∼3,157 25,890 461,247 ∼3.78

with k-mer lengths of k = 13 and k = 15, respectively. The
three real datasets are from genomes of Escherichia coli (E. coli),
Caenorhabditis elegans (C. elegans), and humans, which were
sequenced by SMRTs. The real datasets related to E. coli and C.
elegans are available from schatzlab.cshl.edu/data/ectools/. The
real human dataset is NA20300 (SRR9683669). The three real
datasets are herein referred to as E. coli_Real,C. elegans_Real, and
Human_Real. In this paper, we used SURVIVOR (Jeffares et al.,
2017) to obtain three simulated datasets: 10X coverage E. coli
(E. coli-10), 20X coverage E. coli (E. coli-20), and 10X coverage
human chromosome 20 (chr20-10). For these long-read datasets,
we retained the long reads whose lengths were longer than 2,000
bp in the following experiments. Table 1 shows the details of the
long-read datasets, including the genomic length, average length
of reads, number of reads, and coverage.

For the three simulated datasets, we can directly obtain the
real overlaps among the long reads. For the three real datasets,
we used BLASR to align these long reads against the reference
genomes. We retained only those reads whose aligning quality
was >85%, and the long reads were completely aligned on the

genome reference. Then, we were able to acquire real overlaps
among these long reads based on their alignment positions. The
obtained overlaps were used to evaluate the performance of the
overlap detection tools. All tools were run with 10 threads on
a computer with 128 GB of memory. During the experiments,
the wall time of LROD can be reduced by adopting a larger
thread number.

Results
For the real human dataset, when k = 13, Minimap2 and LROD
did not end with 10 threads after 10 days, and the memory
requirement of MHAP was larger than the memory capacity of
our computer (128 GB). Therefore, we do not give the results for
the human dataset with k= 13.

As shown in Table 2 and Figure 3, LROD obtained
satisfactory results for these datasets. Especially in the simulated
datasets, for most cases, the precision, recall, and F1-score
of LROD were higher than those of Minimap2 and MHAP.
Although LROD was slightly inferior to Minimap2 in terms
of the F1-score for E. coli_Real, it also achieved a similar
performance to that of Minimap2. When k = 15, as shown in
Table 2 and Figure 4, LROD was superior to the other two tools
on the basis of the F1-score.

Simulated Datasets
For E. coli-10, E. coli-20, and chr20-10, LROD consistently had
the best results in terms of the precision, recall, and F1-score.
For these three datasets, the precision of LROD was consistently
above 90%. Although the recall of LROD did not reach 90%,
all values were >85% and higher than those of the other two
tools. The average F1-scores for LROD were 5% and 20% higher
than those of Minimap2 and MHAP, respectively. The precision
of LROD exceeded 92%, and the recall of LROD exceeded 83%.
Both the precision and recall of LROD were higher than those
of Minimap2 in both the precision and recall. Therefore, the
F1-score of LROD ranked first for these datasets.

Real Datasets
As shown in Table 2 and Figures 3, 4, for E. coli_Real, the F1-
scores of LROD and Minimap2 were >95%. Although LROD
did not obtain the highest F1-score, it was very close to that of
Minimap2. For C. elegans_Real, the precisions of Minimap2 and
MHAP were smaller than that of LROD. Both Minimap2 and
LROD showed good recall, and LRODobtained the best F1-score.
For Human_Real, the F1-scores of Minimap2 and LROD were
similar. Note that the memory requirement of MHAP exceeded
the memory capacity of our computer; hence, we did not give
its result.

Running Time and Memory Requirements
We compared the computational requirements among the three
tools for the six datasets. The results are shown in Table 3. The
memory consumption of MHAP is very large, and Minimap2
has the lowest memory consumption. Although the memory
consumption of LROD is greater than that of Minimap2, it is
smaller than that of MHAP. In terms of running time (CPU
time), LROD is better than MHAP. The surprising running time

Frontiers in Genetics | www.frontiersin.org 7 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

TABLE 2 | Overlap detection on the datasets.

k Dataset Precision Recall F1-score

MHAP Minimap2 LROD MHAP Minimap2 LROD MHAP Minimap2 LROD

k = 13 E. coli-10 0.871 0.866 0.935 0.599 0.837 0.887 0.710 0.851 0.910

E. coli-20 0.859 0.855 0.924 0.597 0.827 0.875 0.704 0.841 0.899

chr20-10 0.685 0.752 0.933 0.612 0.829 0.893 0.646 0.788 0.912

E. coli_Real 0.967 0.987 0.976 0.875 0.969 0.948 0.919 0.978 0.962

C. elegan_Real 0.362 0.685 0.752 0.746 0.917 0.909 0.487 0.785 0.824

k = 15 E. coli-10 0.878 0.834 0.941 0.490 0.759 0.849 0.629 0.795 0.893

E. coli-20 0.866 0.825 0.930 0.487 0.751 0.831 0.624 0.786 0.878

chr20-10 0.734 0.851 0.942 0.504 0.746 0.855 0.598 0.795 0.896

E. coli_Real 0.963 0.957 0.964 0.798 0.953 0.924 0.873 0.955 0.943

C. elegan_Real 0.729 0.789 0.897 0.706 0.947 0.958 0.717 0.861 0.926

Human_Real – 0.779 0.736 – 0.667 0.706 – 0.719 0.720

FIGURE 3 | Overlap detection with k = 13.

FIGURE 4 | Overlap detection with k = 15.

and memory consumption of Minimap2 have attracted attention
from many researchers. Note that all tools can use more threads
to reduce the wall time.

Discussion
MHAP is a MinHash algorithm used to implement overlap
detection based on k-mer similarity. For two long reads,
MHAP builds a fixed number of k-mer sketch lists with the
minimum value of the hash functions and then finds the

location of the overlap. Only a certain number of k-mers
are left for each read because the length of each read is
different; the shorter the reads are, the more accurate the MHAP
detection. Minimap2 ingeniously combines the advantages of
its predecessor’s algorithms, including DALIGNER, MHAP, and
GraphMap (Sović et al., 2016). Minimap2 adopts the streaming
SIMD extension instruction calculation method. Hence, the
efficiency ofMinimap2 is very high. LROD is an overlap detection
algorithm based on the k-mer distribution. It starts with solid

Frontiers in Genetics | www.frontiersin.org 8 July 2020 | Volume 11 | Article 632

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

TABLE 3 | Running time and memory.

k Dataset MHAP Minimap2 LROD

Running time Memory (Mb) Running time Memory (Mb) Running time Memory (Mb)

k = 13 E. coli-10 4m 29 s 39,703 0m 45 s 1,251 2m 4 s 1,491

E. coli-20 9m 15 s 39,971 2m 30 s 1,612 5m 5 s 2,336

chr20-10 87m 44 s 42,748 125m 26 s 8,441 59m 1 s 11,487

E. coli_Real 4m 14 s 39,501 0m 26 s 1,129 1m 36 s 1,238

C. elegans_Real 28,813m 15 s 42,156 1,753m 38 s 25,940 14,625m 23 s 36,708

k = 15 E. coli-10 6m 3 s 41,163 0m 17 s 2,644 2m 14 s 3,326

E. coli-20 12m 34 s 42,959 0m 48 s 2,972 5m 51 s 4,248

chr20-10 88m 18 s 43,641 21m 52 s 7,625 46m 38 s 11,906

E. coli_Real 4m 42 s 41,099 0m 1 s 2,513 1m 40 s 3,036

C. elegans_Real 377m 17 s 44,414 292m 45 s 15,522 620m 16 s 17,418

Human_Real – – 424m 42 s 35,814 4,402m 10 s 51,906

k-mers selected based on the frequency distribution of k-mers
for the entire long-read dataset. Although LROD performs
well-according to the experimental results, it has an obvious
shortcoming in terms of running time. In the future, we will
focus on improving the LROD calculation performance module,
increasing the calculation speed, and reducing the running time.

CONCLUSION

In this paper, we develop an overlap detection tool named
LROD, which performs well in detecting overlaps among the
long reads obtained from TGS technology. LROD first selects
solid k-mers, which can reduce the computation time and
memory requirements and can avoid some problems caused by
sequencing errors and repetitive regions. For two long reads,
LROD first finds their common k-mers. Second, LROD adopts
a two-stage strategy to detect whether two common k-mers
are consistent and to search for a chain that corresponds to a
candidate overlap. Finally, LROD further evaluates the candidate
overlap and determines the real overlap between the two long
reads. The experimental results on three simulated datasets and
three real datasets show that LROD can obtain satisfactory
overlap detection results in terms of the precision, recall, and F1-
score.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at Schatz Lab (http://schatzlab.cshl.edu/data/

ectools/; http://schatzlab.cshl.edu/data/nanocorr/). All source
codes for LROD are available at Github (https://github.com/
luojunwei/LROD).

AUTHOR CONTRIBUTIONS

JL, ZH, and RC proposed the method and designed the
experiments. JL and RC wrote the paper. YW and XZ provided
guidance for this paper. HL and CY provided support for the
completion of the experiment. All authors contributed to the
article and approved the submitted version.

FUNDING

This work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 61972134,
61602156, 61802113, and 61772557, Henan Provincial
Department of Science and Technology Research Project
under Grant No. 192102210118, Doctor Foundation of
Henan Polytechnic University under Grant No. B2018-
36, and Henan University Scientific and Technological
Innovation Team Support Program under Grant
No. 19IRTSTHN012.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00632/full#supplementary-material

REFERENCES

Berlin, K., Koren, S., Chin, C., Drake, J. P., Landolin, J. M., and Phillippy, A.
M. (2015). Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat. Biotechnol. 33, 623–630. doi: 10.1038/nbt.3238

Broder, A. Z. (1997). “On the resemblance and containment of documents,” in
Proceedings of the Compression and Complexity of Sequences 1997 (Cat. No.

97TB100171) (Salerno: IEEE), 21–29. doi: 10.1109/SEQUEN.1997.666900

Chaisson, M. J., and Tesler, G. (2012). Mapping single mole-cule sequencing
reads using basic local alignment with successive refinement (BLASR):
application and theory. BMC Bioinformatics 13:238. doi: 10.1186/1471-2105-
13-238

Ding, X., and Guo, X. (2018). A survey of SNP data analysis. Big DataMining Anal.

1, 3–20. doi: 10.26599/BDMA.2018.9020015
Farrer, R. A., Kemen, E., Jones, J. D., and Studholme, D. J. (2009). De novo

assembly of the Pseudomonas syringae pv. syringae B728a genome using

Frontiers in Genetics | www.frontiersin.org 9 July 2020 | Volume 11 | Article 632

http://schatzlab.cshl.edu/data/ectools/
http://schatzlab.cshl.edu/data/ectools/
http://schatzlab.cshl.edu/data/nanocorr/
https://github.com/luojunwei/LROD
https://github.com/luojunwei/LROD
https://www.frontiersin.org/articles/10.3389/fgene.2020.00632/full#supplementary-material
https://doi.org/10.1038/nbt.3238
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1186/1471-2105-13-238
https://doi.org/10.26599/BDMA.2018.9020015
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

Luo et al. LROD

Illumina/Solexa short sequence reads. FEMS Microbiol. Lett. 291, 103–111.
doi: 10.1111/j.1574-6968.2008.01441.x

Ferragina, P., and Manzini, G. (2005). Indexing compressed text. J. ACM 52,
552–581. doi: 10.1145/1082036.1082039

Jeffares, D. C., Jolly, C., Hoti, M., Speed, D., Shaw, L. P., Rallis, C., et al.
(2017). Transient structural variations have strong effects on quantitative
traits and reproductive isolation in fission yeast. Nat. Commun. 8:14061.
doi: 10.1038/ncomms14061

Levene, M., Korlach, J., Turner, S., Foquet, M., Craighead, H. G., and
Webb, W. W. (2003). Zero-mode waveguides for single-molecule analysis
at high concentrations. Science 299, 682–686. doi: 10.1126/science.10
79700

Li, H. (2016). Minimap and miniasm: fast mapping and de novo

assembly for noisy long sequences. Bioinformatics 32, 2103–2110.
doi: 10.1093/bioinformatics/btw152

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100. doi: 10.1093/bioinformatics/bty191

Liao, X., Li, M., Luo, J., Zou, Y., Wu, F., Pan, Y., et al. (2020). Improving de

novo assembly based on read classification. IEEE/ACM Trans. Comput. Biol.

Bioinform. 17, 177–188. doi: 10.1109/TCBB.2018.2861380
Liu, B., Shi, Y., Yuan, J., Hu, X., Zhang, H., Li, N., et al. (2013). Estimation

of genomic characteristics by analyzing kmer frequency in de novo genome
projects. arXiv (preprints). arXiv:1308.2012.

Luo, C., Tsementzi, D., Kyrpides, N. C., Read, T. D., and Konstantinidis,
K. T. (2012). Direct comparisons of illumina vs. Roche 454 sequencing
technologies on the same microbial community DNA sample. PLoS ONE

7:e30087. doi: 10.1371/journal.pone.0030087
Luo, J., Wang, J., Li, W., Zhang, Z., Wu, F., Li, M., et al. (2015a).

EPGA2: memory-efficient de novo assembler. Bioinformatics 31, 3988–3990.
doi: 10.1093/bioinformatics/btv487

Luo, J., Wang, J., Shang, J., Luo, H., Li, M., Wu, F., et al. (2020).
GapReduce: a gap filling algorithm based on partitioned read sets. IEEE/ACM
Trans. Comput. Biol. Bioinform. 17, 877–886. doi: 10.1109/TCBB.2018.27
89909

Luo, J., Wang, J., Zhang, Z., Li, M., and Wu, F. (2016). BOSS: a novel scaffolding
algorithm based on an optimized scaffold graph. Bioinformatics 33, 169–176.
doi: 10.1093/bioinformatics/btw597

Luo, J., Wang, J., Zhang, Z., Wu, F., Li, M., and Pan, Y. (2015b). EPGA: de novo
assembly using the distributions of reads and insert size. Bioinformatics 31,
825–833. doi: 10.1093/bioinformatics/btu762

Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly algorithms
for next-generation sequencing data. Genomics 95, 315–327.
doi: 10.1016/j.ygeno.2010.03.001

Myers, G. (2014). “Efficient local alignment discovery amongst noisy long reads,”
in International Workshop on Algorithms in Bioinformatics (Berlin; Heidelberg:
Springer), 52–67. doi: 10.1007/978-3-662-44753-6_5

Nagarajan, N., and Pop, M. (2013). Sequence assembly demystified. Nat. Rev.
Genet. 14, 157–167. doi: 10.1038/nrg3367

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An Eulerian path approach
to DNA fragment assembly. Proc. Natl. Acad. Sci. U.S.A. 98, 9748–9753.
doi: 10.1073/pnas.171285098

Rizk, G., Lavenier, D., and Chikhi, R. (2013). DSK: k-mer counting with very low
memory usage. Bioinformatics 29, 652–653. doi: 10.1093/bioinformatics/btt020

Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N., Hegarty, R., et al.
(2013). Characterizing and measuring bias in sequence data. Genome Biol.

14:R51. doi: 10.1186/gb-2013-14-5-r51
Schadt, E. E., Turner, S. W., and Kasarskis, A. (2010). A window

into third-generation sequencing. Hum. Mol. Genet. 19:R227–R240.
doi: 10.1093/hmg/ddq416

Sović, I., KriŽanovic, K., Skala, K., and Sikic, M. (2016). Evaluation of hybrid and
non-hybrid methods for de novo assembly of nanopore reads. Bioinformatics

32, 2582–2589. doi: 10.1093/bioinformatics/btw237
Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G., and Bayley, H.

(2009). Single-nucleotide discrimination in immobilized DNA oligonucleotides
with a biological nanopore. Proc. Natl. Acad. Sci. U.S.A. 106, 7702-7707.
doi: 10.1073/pnas.0901054106

Ummat, A., and Bashir, A. (2014). Resolving complex tandem repeats with long
reads. Bioinformatics 30, 3491–3498. doi: 10.1093/bioinformatics/btu437

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Luo, Chen, Zhang, Wang, Luo, Yan and Huo. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Genetics | www.frontiersin.org 10 July 2020 | Volume 11 | Article 632

https://doi.org/10.1111/j.1574-6968.2008.01441.x
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.1038/ncomms14061
https://doi.org/10.1126/science.1079700
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1109/TCBB.2018.2861380
https://doi.org/10.1371/journal.pone.0030087
https://doi.org/10.1093/bioinformatics/btv487
https://doi.org/10.1109/TCBB.2018.2789909
https://doi.org/10.1093/bioinformatics/btw597
https://doi.org/10.1093/bioinformatics/btu762
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1007/978-3-662-44753-6_5
https://doi.org/10.1038/nrg3367
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.1186/gb-2013-14-5-r51
https://doi.org/10.1093/hmg/ddq416
https://doi.org/10.1093/bioinformatics/btw237
https://doi.org/10.1073/pnas.0901054106
https://doi.org/10.1093/bioinformatics/btu437
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	LROD: An Overlap Detection Algorithm for Long Reads Based on k-mer Distribution
	Introduction
	Materials and Methods
	Selecting Solid k-mers
	Detecting Overlap Between Two Long Reads
	Finding a Common k-mer Set Between R1 and R2
	Chaining
	Determining the Final Overlap

	Parameters of LROD

	Results and Discussion
	Results
	Simulated Datasets
	Real Datasets
	Running Time and Memory Requirements

	Discussion

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

