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Aging attracts the attention throughout the history of humankind. However, it is still

challenging to understand how the internal driving forces, for example, the fundamental

building blocks of life, such as genes and proteins, as well as the environments work

together to determine longevity in mammals. In this study, we built a gene regulatory

network for mammalian cellular aging based on the experimental literature and quantify

its underlying driving force for the dynamics as potential and flux landscape. We found

three steady-state attractors: a fast-aging state attractor, slow-aging state attractor, and

intermediate state attractor. The system can switch from one state attractor to another

driven by the intrinsic or external forces through the genetics and the environment.

We identified the dominant path from the slow-aging state directly to the fast-aging

state. We also identified the dominant path from slow-aging to fast-aging through an

intermediate state. We quantified the evolving landscape for revealing the dynamic

characteristics of aging through certain regulation changes in time. We also predicted

the key genes and regulations for fast-aging and slow-aging through the analysis of the

stability for landscape basins. We also found the oscillation dynamics between fast-aging

and slow-aging and showed that more energy is required to sustain such oscillations.

We found that the flux is the dynamic cause and the entropy production rate the

thermodynamic origin of the phase transitions or the bifurcations between the three-state

phase and oscillation phase. The landscape quantification provides a global and physical

approach to explore the underlying mechanisms of cellular aging in mammals.

Keywords: aging, slow-aging, landscape, flux, entropy production, gene regulatory network

1. INTRODUCTION

The study of aging has been one of the most long-lasting and influential fields for both
scientists and the public. Previous studies have shown that there are nine hallmarks of aging:
genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated
nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered
intercellular communication (López-Otín et al., 2013). In this work, we focus on studies of cellular
aging based not only on the key genes but also, more importantly, on their associated gene
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regulations. Thanks to the rapid development of molecular
biology, researchers can manipulate certain genes and observe
their effects on the aging process of a model organism (Gems
and Partridge, 2013). An early breakthrough showed that the
mutation of only one gene, daf-2, can prolong the lifespan of
Caenorhabditis elegans by more than two times (Kenyon et al.,
1993). Since then, hundreds of genes related to aging have been
isolated, and evolutionarily conserved pathways like Insulin/IGF-
1 signaling, TOR signaling, AMP kinase, and Sirtuins have been
identified (Kenyon, 2010; Colman et al., 2014). Although great
progress has been made in aging research over the last several
decades, there is still a lack of a physical model to integrate
these experimental observations, to quantitatively understand
the mechanisms of how the internal and external elements
(such as environments) work together to control aging, and to
predict the key genes and regulations that significantly affect the
aging process.

The landscape paradigm for development was introduced
by Waddington in the 1940s (Waddington, 2014). However,
the Waddington landscape initially only provided a qualitative
picture and lacked physical foundation and quantification
(Wang, 2015). Recently, there has been significant progress in
establishing the physical theory and foundation as well as the
quantification of the Waddington landscape (Wang et al., 2008;
Wang J. et al., 2011; Wang, 2015; Zhou and Li, 2016). A detailed
comparison and critical review of various approaches was
presented in (Zhou and Li, 2016). To find the core mechanisms of
the mammalian cellular aging process, we built a gene regulatory
network based on the existing experimental literature (Haruta
et al., 2000; Stambolic et al., 2001; Inoki et al., 2002, 2003;
Ogawara et al., 2002; Kong, 2004; Lahav et al., 2004; Nemoto,
2004; You et al., 2006; Greer et al., 2007b; Okoshi et al., 2007;
Budanov and Karin, 2008; Gwinn et al., 2008; Lan et al., 2008;
Salih and Brunet, 2008; Cantó et al., 2009; Chen et al., 2010;
Georgescu, 2010; Ghosh et al., 2010; Sengupta et al., 2010; Yi
and Luo, 2010; Budanov, 2011; Dunlop et al., 2011; Gao et al.,
2011; Kim et al., 2011; Löffler et al., 2011; Renault et al., 2011;
Wang F. et al., 2011; Parmigiani et al., 2014). We quantified the
potential landscape through analyzing the long-term dynamic
trajectories. We identified the driving forces of aging dynamics
as the steady-state probability landscape and the steady-state
probability flux. While the landscape tends to stabilize the states
of the system, the flux tends to stabilize the flow of state.
The quantification of the landscape and the flux provides us
with a global way to understand the functions and stabilities
of and also the relationships among different functional states.
Furthermore, one can detect what key elements can lead to
significant changes on the system stabilities and quantify these by
the landscape topography through barrier heights and switching
times between states.

In the following sections, we first detail how we built an
underlying gene regulatory network of mammalian cellular aging
based on the existing experimental literature (Haruta et al., 2000;
Stambolic et al., 2001; Inoki et al., 2002, 2003; Ogawara et al.,
2002; Kong, 2004; Lahav et al., 2004; Nemoto, 2004; You et al.,
2006; Greer et al., 2007b; Okoshi et al., 2007; Budanov and Karin,
2008; Gwinn et al., 2008; Lan et al., 2008; Salih and Brunet, 2008;

Cantó et al., 2009; Chen et al., 2010; Georgescu, 2010; Ghosh
et al., 2010; Sengupta et al., 2010; Yi and Luo, 2010; Budanov,
2011; Dunlop et al., 2011; Gao et al., 2011; Kim et al., 2011;
Löffler et al., 2011; Renault et al., 2011; Wang F. et al., 2011;
Parmigiani et al., 2014). Based on this gene circuit, we developed a
mathematical model to quantitatively describe the basic features
of the mammalian cellular aging process. A landscape with
three attractors that represent fast-aging, intermediate, and slow-
aging, respectively, was identified. We discuss the biological
functions of these three attractors and their possible effects on
mammalian cellular aging. We identify the dominant paths of
system switching between the fast-aging and slow-aging state
attractors, giving the most likely route of how fast-aging and
slow-aging processes may have occurred. Since the cellular aging
process is affected by many factors from inside and outside of
the system, we performed a global sensitivity analysis based on
the landscape topography and kinetics to investigate how the
changes of the genes and the regulations influence the fast-aging
and slow-aging processes. The genes or regulations that may play
key roles in controlling the mammalian cellular aging process are
predicted. Finally, we also found a possible scenario of oscillation
dynamics between fast-aging and slow-aging. We show the phase
transition/bifurcation between amulti-stable state and oscillation
of fast-aging and slow-aging. We show that the flux is the
dynamic cause and entropy production rate related to the flux
the thermodynamic cause for this phase transition/bifurcation
process of fast-aging and slow-aging.

2. RESULTS

2.1. Network Wiring and Kinetic Equations
To investigate the fundamental dynamic features of mammalian
cellular aging, we first selected genes that have been revealed to
play essential roles in aging. We then gathered the regulatory
information regarding these genes by mining the literature for
previous relevant studies (Haruta et al., 2000; Stambolic et al.,
2001; Inoki et al., 2002, 2003; Ogawara et al., 2002; Kong, 2004;
Lahav et al., 2004; Nemoto, 2004; You et al., 2006; Greer et al.,
2007b; Okoshi et al., 2007; Budanov and Karin, 2008; Gwinn
et al., 2008; Lan et al., 2008; Salih and Brunet, 2008; Cantó
et al., 2009; Chen et al., 2010; Georgescu, 2010; Ghosh et al.,
2010; Sengupta et al., 2010; Yi and Luo, 2010; Budanov, 2011;
Dunlop et al., 2011; Gao et al., 2011; Kim et al., 2011; Löffler
et al., 2011; Renault et al., 2011; Wang F. et al., 2011; Parmigiani
et al., 2014). We integrated all of this information to give rise to
a gene regulatory network. This gene regulatory network of the
mammalian cellular aging includes nine genes and 28 regulatory
interactions, as shown in Figure 1.

Some well-studied genes and pathways related to mammalian
cellular aging are included in the network. The PI3K/Akt
signaling pathway, which inhibits FOXO transcription factors,
is highly conserved across metazoans (Hay, 2011). FOXO
transcription factors have consistently been revealed as
important determinants in aging and longevity. In mammals,
the FOXO subfamily is involved in a wide range of crucial
cellular processes regulating stress resistance, metabolism, cell
cycle arrest, and apoptosis (Martins et al., 2015). AMPK and
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FIGURE 1 | Gene network wiring of mammalian cellular aging. Green arrows

represent activation regulations. Red bars represent inhibition regulations.

mTORC1 are important nutrient-sensing protein kinases that
have antagonistic functions in regulating metabolic homeostasis.
Several experiments show that inhibiting mTORC1 delays
aging in yeast and invertebrates, extends lifespan in mice,
and has an impact on a diverse array of age-related diseases
(Johnson et al., 2013). An increase in AMPK activity extends
lifespan in lower organisms (Salminen and Kaarniranta,
2012), and experiments demonstrated that AMPK together
with mTORC1 and ULK1, a key protein needed in the early
steps of autophagosome biogenesis, controls cell growth and
autophagy in mammals (Huber et al., 2012; Dunlop and Tee,
2013). Inactivation of Sestrin genes in invertebrates resulted
in diverse metabolic pathologies, including oxidative damage,
fat accumulation, mitochondrial dysfunction, and muscle
degeneration, which resemble accelerated tissue aging (Lee
et al., 2013). SIRT1 regulates numerous processes, including
inflammation and cellular senescence and aging (Rahman and
Bagchi, 2013). SIRT1 is decreased in both transcriptional and
post-transcriptional conditions during aging, accompanied by
attenuated mitochondrial biogenesis, an important component
of aging-related diseases (Yuan et al., 2016). The p53 gene
is well-known as a tumor suppressor gene. Its activation
also modulates cellular senescence and organismal aging.
P53 also regulates aging in a complex way. It accelerates or
decelerates the aging process under different circumstances
(Rufini et al., 2013). Besides, a few important regulatory
interactions affecting aging have been studied. It is found
that an AMPK-FOXO pathway is important for mediating
life span extension by caloric restriction in C. elegans (Greer
et al., 2007a). AMPK regulation of FOXO factors may help
coordinate energy metabolism with cellular responses to
prevent diabetes (Greer et al., 2007b). FOXO3 and p53 are part
of a common transcriptional network affecting cellular and
organismal responses that is important to counter aging and
cancer (Renault et al., 2011). The p53-regulated antioxidant
Sestrins gene family involved in control of the AMPK-TORC1
pathway and mitochondrial function might defend against the

accumulation of detrimental damage, which potentiates aging
and fuel age-associated diseases (Budanov, 2011). It has been
found that SIRT2 deacetylates FOXO3 to increase the expression
of its target genes, thus regulating cell proliferation, anti-
oxidation, and apoptosis (Wang et al., 2007). Detailed references
for each regulatory interaction in the network can be found in
Table S1.

The complexity of the network wiring is reflected in two
different aspects. From the molecular biological perspective,
several types of regulatory interactions are present in the
network, including transcriptional regulation, translational
control, protein-protein interaction, and signal transduction.
From the network wiring topology perspective, the intensive
communications among the nine genes imply emergent
biological functions as a result. The network motif includes
positive and negative, feed-forward and feed-back loops.
This can give rise to the possibility of generating complex
dynamic features, such as forming multi-stable state attractors
and oscillations.

To explore the dynamics of the mammalian cellular aging
network, we employ non-linear differential equations (Tyson and
Novák, 2010) to describe the dynamics of each genes expression
in the network. A sigmoidal function was previously used to
model T-cell differentiation (Hong et al., 2012) and epithelial-
mesenchymal transition (Watanabe et al., 2019) in mammalian
cells and appears to be suitable for describing both gene
expression and gene regulation networks (Mjolsness et al., 1991;
Hong et al., 2011, 2015). There are nine genes in the network, so
a total of nine equations are included in our simulation model.
The form of the kinetic equation is shown as:

Ẋi = γi[F(σiWi)− Xi] (1)

F(σiWi) = 1/(1+ e−σiWi ) (2)

Wi = ωi0 +
∑
j

ωijXj (3)

where Xi represents the expression level of the gene i, where i
= 1,...,9, in the network. The parameter γi denotes a reciprocal
rate description of the dynamic timescale of the system. F(σiWi)
denotes the regulation for gene i. It is described by a non-linear
sigmoidal function that varies from 0 where Wi ≪ −1/σi to 1
where Wi ≫ 1/σi. Wi denotes a combination of the effects of all
input regulations to gene i. A small regulation input to gene i will
lead to a weak driving force for the dynamics of gene i, while a
large regulation input to gene i will give rise to a large driving
force to the dynamics of gene i. The coefficient ωij indicates
the regulatory strength of gene j on gene i, where ωij < 0 for
inhibitory interaction, ωij > 0 for promoting regulation, and
ωij = 0 for no effect of gene j on gene i. The coefficient ωi0

represents the basal regulation strength. Since cellular aging is not
an isolated or static process, the value of ωi0 can be varied under
genetic changes or environmental influences. The parameter σi
controls the steepness of the sigmoidal function at its inflection
point. It provides a threshold for the onset of significant dynamics
of the gene.
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FIGURE 2 | The potential landscape and gene expression levels of fast-aging

and slow-aging. Red arrows represent the dominant path from slow-aging to

fast-aging. Green arrows represent the dominant paths from fast-aging to

slow-aging. (A) The potential landscape of fast-aging and slow-aging. (B)

Gene expression levels of fast-aging and slow-aging.

2.2. Potential Landscape of Aging
A biological system is naturally subject to intrinsic and extrinsic
fluctuations. Therefore, we added an additional fluctuation
term in the ODEs to characterize the stochastic behaviors of
the mammalian cellular aging process. We use the Langevin
dynamic approach to simulate the gene circuit dynamics. From
the resulting dynamic trajectories of the gene expressions, we
collected the statistics and quantified the underlying potential
landscape (Wang J. et al., 2011). For visualization, we projected
the high-dimensional state spaces into two coordinates. This
choice can still distinguish the major biological functions that are
reflected as attractors in the landscape.

The potential landscape of mammalian cellular aging is shown
in Figure 2A.X and Y coordinates represent the expression levels
of genes SIRT1 and mTORC1, respectively. The Z coordinate
represents the landscape U. Three attractors emerge on the 3D
landscape. The position of each attractor can be distinguished by
the expression levels of all of the nine genes in the network. This is
shown as a heatmap in Figure 2B. We defined the three attractors
as the slow-aging state (S), fast-aging state (F), and intermediate
state (I) according to the gene expression levels and their
corresponding gene functions. In the slow-aging state, genes with
longevity-promoting functions, such as SIRT1, AMPK, and Ulk1,

have relatively high expression levels and genes with lifespan-
limiting effects, such as mTORC1 and AKT, have relatively low
expression levels. In the fast-aging state, longevity-promoting
genes and lifespan-limiting genes show the opposite expression
patterns compared to the case of slow aging. The intermediate
state is located between the fast-aging and the slow-aging state;
genes, such as FOXO, Sestrins, p53, and Ulk1 show relatively low
expression levels compared to the slow-aging state, while genes,
such as SIRT1 and AMPK show relatively high expression levels
compared to the slow-aging state. Some organisms undergo rapid
aging and death, while others grow old slowly and live far longer,
even within a population of isogenic organisms in identical
environments (Crane et al., 2020). A previous study on an aging
model of yeast cell with an intermediate state was proposed
based on categorizing the age-dependent phenotypic conditions
and was validated through experiment (Jin et al., 2019). The
emergence of the intermediate state provides new perspectives to
explain themechanisms of themammalian cellular aging process.
The intermediate statemay provide a bridge ormid-land between
fast-aging and slow-aging. This can help to facilitate the fast or
slow aging process through the intermediate state.

The depths of the three attractors are significantly different.
A deeper attractor has lower energy U, where U = −logP
and P represents the steady-state probability of the state. Thus,
the system is expected to reside in a deeper attractor for a
longer time, and it is harder to escape from it. The mean first
passage time (MFPT) reflects the average transition time from
one attractor to another. In Figure 2A, we can see the fast-
aging state attractor is deeper than the slow-aging state attractor
and the intermediate attractor. We calculate the MFPT from
slow-aging to fast-aging and from fast-aging to slow-aging as
44.27 and 126.32, respectively. These quantifications indicate that
under current system conditions, the system prefers to stay at the
fast-aging attractor with lifespan-limiting effects, and the
transition from slow-aging to fast-aging is significantly faster
than that from fast-aging to slow-aging. This may explain why
the fast-aging process seems more dominant, since the fast-aging
state attractor is more stable and therefore has a higher chance of
being observed.

The dominant path (Wang et al., 2010) is the most probable
path when a system switches from one state to another. We
quantify the dominant paths from slow-aging to fast-aging and
from fast-aging to slow-aging, which are separately shown as a
red arrow and a green arrow in Figure 2A. It is notable that
the two dominant paths are completely different. For the fast-
aging process, the red dominant path is directly from the slow-
aging state to fast-aging state. The green dominant path from
fast-aging to slow-aging passes through the intermediate state.
This indicates that, in our mammalian cellular aging model, the
slow-aging process is divided into two steps. The first step is
from the fast-aging state to the intermediate state, marked by
a significant increase in the expression levels of AMPK and the
SIRT1. These two genes together regulate diverse processes, such
as cellular fuel metabolism, inflammation, and mitochondrial
function (Ruderman et al., 2010). The second step is from
the intermediate state to the slow-aging state, marked by the
changes of the gene expressions of the other aging-related genes,
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FIGURE 3 | Dynamic landscape of fast-aging and slow-aging upon changes

in the basal expression level of SIRT1. The horizontal coordinates represent

the top two principal components of gene expression, while the vertical axis

represents changes in the basal level of expression for gene SIRT1.

such as FOXO and mTORC1 (see Figure 2B). It is possible to
experimentally slow the rate of aging through longevity genes
or dietary restriction (Rando and Chang, 2012), but further
experimental verifications are needed to check the predictions of
the two-step transition to slow-aging in our model.

2.3. Dynamics of Landscapes of Aging
Aging is certainly not an isolated process. Most of the aging-
related genes are multi-faced, and they also play key roles in some
other basic functions, such as metabolism, energy homeostasis,
protein synthesis, cell growth, proliferation, autophagy,
apoptosis, and senescence. Several kinds of stimulations have
been found to have a great influence on the natural aging
process. Genetic manipulations of certain genes have been found
to significantly extend the lifespan of C. elegans (McCormick
et al., 2011). Dietary restrictions have been found to regulate
aging and increase the healthy lifespan in various model
organisms (Kapahi et al., 2010; Smith-Vikos et al., 2014). The
accumulation of cell damage was shown to lead to several types
of degenerative diseases like cancer and Alzheimers disease
(Powers et al., 2009). These examples reflect the importance of
studying aging in a systematic and dynamic way.

In our mammalian cellular aging model, the parameter ωi0

in the ODEs represents the basal expression level for each
gene i. The increase or decrease of ωi0 will influence the
behaviors of the system. The dynamic landscapes describe
the changes in the landscape topography according to the

FIGURE 4 | Changes in barrier heights upon increasing the basal gene

expression level of SIRT1. BHFI, barrier height from the fast-aging to the

intermediate attractor; BHIF , barrier height from the intermediate to the

fast-aging attractor; BHIS, barrier height from the intermediate to the

slow-aging attractor; BHSI, barrier height from the slow-aging to the

intermediate attractor; BHSF , barrier height from the slow-aging to the

fast-aging attractor; BHFS, barrier height from the fast-aging to the

slow-aging attractor.

changes in certain genes or regulations. The barrier height
(BH) based on principal component analysis (PCA) of the
landscape can be used to quantitatively measure the degree
of difficulty for the system to switch from one attractor to
another. BH is defined as the difference between the minimum
potential in the current attractor and the potential of the
saddle point from the current attractor to the other attractor.
We first use the PCA method to project the nine-dimensional
landscape into the top two principal components (PCs). We
then calculate the BH among the attractors based on the PCA
projected landscape.

The dynamical PCA landscapes according to the changes
in the basal expression level of SIRT1 are shown in Figure 3.
The X and Y coordinates represent the top two principal
components, respectively. These two principal components
show about 95 percent of the variance of the dynamic
expression trajectory. The three attractors are labeled F (fast-
aging), I (intermediate), and S (slow-aging), respectively. If
we increase (decrease) the SIRT1 basal expression level, the
depth of the fast-aging attractor decreases (increases) and the
depths of both the intermediate and slow-aging attractors
increase (decrease). Figure 4 quantitatively shows the change
of barrier height vs. the increase in basal expression level
of SIRT1. There are three attractors in the PCA landscape,
so a total of six barrier heights for each pair of attractors
can be quantified. The line labeled BHSF denotes the BH of
the system switching from the slow-aging to the fast-aging
attractor, while BHFS represents the BH of the system switching
from the fast-aging to the slow-aging attractor. Other labels
have similar notations. The results clearly show an increase
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(decrease) in the stability of the fast-aging attractor state and
a decrease (increase) in the stability for the slow-aging and
intermediate states when the SIRT1 basal expression level
decreases (increases). These results are consistent with the
evidence that SIRT1 plays a key role in dietary restriction-
induced longevity promotion, while the activity of SIRT1
decreases with the mammalian cellular aging process (Ruderman
et al., 2010).

2.4. Global Sensitivity Analysis of Aging in
Mammals
Here, we use global sensitivity analysis to quantitatively identify
the contributions of individual regulations on the functional
behavior of mammalian cellular aging. We change the basal
expression level ωi0 for every gene and the regulatory strength
for every regulation ωij to investigate to what extent these
regulations influence the functional behavior. The functional
stability can be quantitatively measured by the barrier heights.
BH0 represents the barrier height with the original value of
the given parameter. 1BH represents changes in the barrier
height when the regulation is changed by a constant value (0.04).
Thus, 1BH/BH0 can be used to measure the sensitivity of the
barrier heights under certain regulation changes. We performed
global sensitivity analysis to find the key genes or regulations
by changing ωi0 or ωij and then finding out which genes and
regulations will significantly impact the landscape stability. These
predicted genes or regulations may play important roles in the
mammalian cellular aging process or may even be useful in
treating aging-related degenerative diseases.

We performed global sensitivity analysis on the basal
expression level to quantifying the barrier height changes for
every gene. The detailed results of the global sensitivity analysis
are shown in Figure 5. For the barriers related to the slow-
aging state, BHSF and BHSI , we can see that increasing the
basal expression levels of the genes AMPK, FOXO, and Sestrins
significantly enhances the stability of the slow-aging state. This
indicates that it becomes harder for the system to escape from the
slow-aging state. In contrast, gene AKT significantly decreases
the stability of the slow-aging state. These results are consistent
with previous experimental findings (Salminen and Kaarniranta,
2012; Lee et al., 2013; Gharibi et al., 2014;Martins et al., 2015). For
the barrier heights related to the fast-aging state, BHFI and BHFS,
we can clearly see that increasing the basal expression levels of
the genes AMPK, SIRT1, and Sestrins significantly decreases the
stability of the fast-aging state. AMPK and Sestrins play opposite
roles in the slow-aging state, but the role of SIRT1 in slow-aging is
not significant. For the intermediate state, the result is complex.
Genes mTORC1 and p53 are only effective in the intermediate
state, but not in the other two states. Although the existence of
the intermediate state between fast-aging and slow-aging has not
been directly verified, this study shows that different genes seem
to influence different attractors. This can provide new insight for
research on mammalian cellular aging mechanisms.

We also performed global sensitivity analysis on regulatory
strength ωij. The bar charts shown in Figure 6 reflect 1BH =

BH0 vs. ωij. The most sensitive regulation from the slow-
aging state to the fast-aging state is SIRT1->AMPK, and the
barrier height from the slow-aging state to the fast-aging state
is increased with increasing SIRT1->AMPK. This means that
increasing the activation regulation of SIRT1->AMPK will
stabilize the slow-aging state and therefore delay the aging
process. The most sensitive regulation of barrier height from
the fast-aging state to the slow-aging state is AMPK->SIRT1,
and the barrier height from the fast-aging state to slow-aging
state is decreased with increasing AMPK->SIRT1. This means
that increasing the activation regulation of AMPK->SIRT1 will
destabilize the fast-aging state and therefore increase the chance
of slow aging, thereby delaying the aging process. The most
sensitive regulation of barrier height from the intermediate state
to the slow-aging state is AKT-|p53, and the barrier height from
the intermediate state to the slow-aging state is increased with
increasing AKT-|p53. This means that increasing the inhibition
regulation of AKT-|p53 will stabilize the intermediate state and
decrease the chance of slow aging, effectively promoting the aging
process. The most sensitive regulation of barrier height from the
slow-aging state to the intermediate state is p53->Sestrins, and
the barrier height from the slow-aging state to the intermediate
state is increased with increasing p53->Sestrins. This means
that increasing the activation regulation of p53->Sestrins will
stabilize the slow-aging state and therefore delay the aging
process. The most sensitive regulation of barrier height from the
fast-aging state to the intermediate state is Sestrins->AMPK, and
the barrier height from the fast-aging state to the intermediate
state is decreased with increasing Sestrins->AMPK. This means
the increasing the activation regulation of Sestrins->AMPK will
destabilize the fast-aging state and therefore increase the chance
of slow aging, thus effectively delaying the aging process. The
most sensitive regulation of barrier height from the intermediate
state to the fast-aging state is SIRT1->AMPK, and the barrier
height from the intermediate state to the fast-aging state is
decreased with increasing SIRT1->AMPK. This means that
increasing the activation regulation of SIRT1->AMPK will
stabilize the intermediate state and destabilize the fast-aging state
and therefore delay the aging process. We show the top three
sensitive regulations for each barrier in Table 1. Changes in these
regulatory strengths significantly change the system behavior.
Further experiments are needed to validate these predictions.

2.5. Aging Oscillations Landscape
Oscillation dynamics can emerge in certain parameter regimes
when the regulation strengths are varied. The transitions
between the oscillation and monostable states are found to be
mainly regulated by Sestrins->AMPK. The changes in landscape
topography are shown in Figure 7. RS represents the regulation
strength of Sestrins->AMPK. The landscape shows oscillation
dynamics with a Mexican hat shape when RS is 0.76, as
shown in Figure 7B. The two relatively deeper regions on the
oscillation ring correspond to the fast-aging and slow-aging state,
respectively. The states of the system rotate clockwise along the
oscillation ring valley around the central hill of the Mexican hat.
When the regulation strength RS is increased, the slow-aging
state attractor becomes deeper. When the regulation strength
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FIGURE 5 | Results of global sensitivity analysis of the barrier height upon changing the basal expression level of different genes. BH0, barrier height with the original

value; 1BH, change in barrier height upon changing the basal expression level. (A) Change in barrier height from the fast-aging to the intermediate attractor. (B)

Change in barrier height from the intermediate to the fast-aging attractor. (C) Change in barrier height from the intermediate to the slow-aging attractor. (D) Change in

barrier height from the slow-aging to the intermediate attractor. (E) Change in barrier height from the slow-aging to the fast-aging attractor. (F) Change in barrier height

from the fast-aging to the slow-aging attractor.

RS is increased to 0.88, the system switches from the oscillation
to a monostable state with only the slow-aging attractor state.
In contrast, when the regulation strength RS is decreased, the
basin at the fast-aging steady state becomes deeper. When the
regulation strength RS is decreased to 0.62, the system switches
from the oscillation to a monostable state with only the fast-aging
steady state.

Interestingly, these oscillation dynamics were found in the
previous mathematical model of C. elegans (Zhao and Wang,
2016). The oscillation can drive the dynamics to switch
coherently (periodically) between the fast-aging state and the
slow-aging state. The processes of fast-aging and slow-aging
occur at different times along with the oscillation. The transitions
between the fast-aging state and the slow-aging state with

the oscillation are different from the transitions in a tri-
stable system. The transitions between the fast-aging state
and the slow-aging state in the tri-stable regime are random
and incoherent, while the transitions between the fast-aging
state and the slow-aging state in the oscillation regime are
periodic and coherent. In order to address the role of the flux
as the driving force of the aging process in addition to the
landscape, we quantified the flux integral as a measure of the
magnitude of the flux and the coherence of the oscillation,
as shown in Figure 8B. The flux integral correlates with the
coherence. This indicates that higher flux leads tomore stable and
coherent oscillation.

We also quantified the thermodynamic cost in terms of the
entropy production rate (EPR), which is related to the flux and
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FIGURE 6 | Global sensitivity analysis of the barrier height upon changing regulatory strengths. BH0, barrier height with the original value; 1BH, change in barrier

height upon changing the regulation. (A) Change in barrier height from the fast-aging to the intermediate attractor. (B) Change in barrier height from the intermediate

to the fast-aging attractor. (C) Change in barrier height from the intermediate to the slow-aging attractor. (D) Change in barrier height from the slow-aging to the

intermediate attractor. (E) Change in barrier height from the slow-aging to the fast-aging attractor. (F) Change in barrier height from the fast-aging to the slow-aging

attractor.
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TABLE 1 | Top three key regulations from global sensitivity analysis.

Barrier Sensitive regulations

BHSF SIRT1->AMPK, p53->Sestrins, p53->FOXO.

BHFS AMPK->SIRT1, Ulk1-|mTORC1, AMPK->p53.

BHIS AKT-|p53, SIRT1-|p53, TSC1/2-|mTORC1.

BHSI p53->Sestrins, p53->FOXO, SIRT1->AMPK.

BHFI Sestrins->AMPK, AMPK->SIRT1, mTORC1-|p53.

BHIF SIRT1->AMPK, AMPK-|mTORC1, TSC1/2-|mTORC1.

the mean flux, for the phase transition/bifurcation from the
monostability of fast-aging to oscillation and from the oscillation
to monostability of slow-aging by increasing the regulation
strength of Sestrins->AMPK. An increase in the EPR indicates
that the system costs more energy to maintain. The mean flux
correlates with the EPR. As shown in Figure 8A, the EPR is low
when the system stays in the phase of the fast-aging state. When
the strength of Sestrins->AMPK increases, the EPR increases
sharply at the phase where the transition from the stable fast-
aging state to oscillation occurs. When the system switches from
oscillation to the monostable slow-aging state, the EPR sharply
decreases and then stays at a low level. This demonstrates that
the oscillation costs more energy to maintain than either the fast-
aging or slow-aging state. Through the oscillation, the dynamic
process of switching between fast-aging and slow-aging achieves
functional switching, which can cost more energy. Therefore,
there can be direct and indirect pathways for aging. The direct
pathway is the one directly from the slow-aging state to the fast-
aging state. The indirect pathways can be from the slow-aging
state to the fast-aging state through either the intermediate state
or oscillation.

3. DISCUSSION

In this study, we presented a mathematical model to describe
the dynamic features of the mammalian cellular aging process.
We built the underlying gene regulatory network by integrating
the information from previous experimental studies. The genes
and wirings in the gene regulatory network were formed, and
the dynamics of gene expression was described by nine non-
linear ordinary differential equations. Based on these equations,
we quantified the potential landscape of the mammalian cellular
aging process. Three attractors emerged on the landscape:
the fast-aging, intermediate, and slow-aging states. When the
system resides in one of the three attractors, the escape time is
determined by the depth of the attractor. The system can also
switch from one attractor to another, and the transition needs
to overcome the barriers between the attractors. We integrated
the previous studies and analyzed the mammalian cellular aging
process from a systemic and network perspective.

The aging process is not only a spontaneous biological
process but also can be significantly altered by interventions,
such as genetic manipulations and dietary restrictions. Thus,
the potential landscape of aging is not invariant. We changed

FIGURE 7 | The landscape topography changes from the monostable state of

fast-aging to the oscillation between the fast-aging and the slow-aging, and

then to the monostable slow-aging state upon the increase of the regulation of

Sestrins->AMPK. (A) The landscape of fast-aging. (B) The landscape of

oscillation between fast-aging and slow-aging. (C) The landscape

of slow-aging.

certain regulations in our model in order to perform quantitative
analysis and investigate the changes in aging functions through
the changes in the landscape. The stabilities of attractors can be
significantly changed by the basal strength of certain genes and
the regulatory strengths of gene-gene regulations.We believe that
these genes or regulations may play key roles in the mammalian
cellular aging process. Further experiments are needed to validate
these predictions.

Oscillations emerge in certain regulation regimes. The
oscillation leads to switching between the processes of fast-aging
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FIGURE 8 | EPR, flux, and coherence changes upon the regulation changes

of Sestrins->AMPK through the transitions from the monostable fast-aging

state to the oscillation between the fast-aging state and the slow-aging state,

and then to the slow-aging state. (A) The entropy production rate and the

mean flux of the monostability and the oscillation. (B) The flux integral and the

coherence of oscillations.

and slow-aging. This is different from switching between the
fast-aging state and the slow-aging state through the stochastic
trajectories in the tri-stable regime. The switching between the
fast-aging state and the slow-aging state in the oscillation regime
is periodic and coherent. In contrast, the switching between the
fast-aging state and the slow-aging state in the tri-stable regime
is random and incoherent. Through the analysis of the flux
integral and coherence as well as the mean flux and entropy
production rate, it is suggested that more energy is required to
sustain oscillations.

In this work, we have provided a framework to reveal the
underlying mechanism of fast-aging and slow-aging in mammals
based on landscape and flux theory. We predict the key genes
and interactions in the fast-aging and slow-aging processes. This
approach may be helpful for studying strategies for expanding
lifespan in mammals or humans.

FIGURE 9 | Shape of the force function F (σW) vs. different values of W. W,

the combination of effects of all input regulation on a certain gene.

4. MATERIALS AND METHODS

4.1. Kinetic Equations
The shape of the term F(σW) in the non-linear ODEs used in our
model is intuitively similar toHill equations. The sigmoidal shape
and the steepness of F(σW) can be altered by varying certain
parameters, as shown in Figure 9.

The form of summing Hill equations as the regulation force
for ODEs is used in other studies (Li, 2018; Li and Balazsi, 2018).
It is shown in Equation (4).

dxk

dt
=

∑
i∈activators

wkx
n
i

sn
ik
+ xni

+
∑

j∈inhibitors

wks
n
jk

sn
jk
+ xnj

− µkxk (4)

where xk represents the kth gene expression, while wk represents
the relative strength of every regulation of gene k. Parameter µk

is defined as the self-degradation rate. Parameter n is the Hill
coefficient. Parameters sik and sjk represent the inflection points
of the activation or inhibition regulation terms.

However, the Hill equations have an inherent defect that the
value of w cannot be negative. This leads to defects in the case
of the presence of both activation and inhibition regulations.
For example, under the additive rule, when adding a negative
regulation or increasing the weight of a negative regulation,
the expression changes, and dx/dt may increase, while in fact
it should decrease. This problem also emerges when using the
multiplicative rule.

In the equations in our model, the regulations of
activation and inhibition have the same form, ωijXj, as
shown in Equations (1–3). The coefficient ωij indicates the
regulatory strength from gene j to gene i, where ωij < 0
for inhibitory interaction and ωij > 0 for promoting
regulation. The value of Ẋi is increased when Wi is increased.
Wi is increased or decreased when an activation term or
inhibition term is added. Thus, Ẋi is increased when an
activation term is added and is decreased when an inhibition
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term is added. This overcomes the defects of the form
representing the regulation in Equation (4). Therefore, we
can directly add the regulation term, ωijXj, together to
quantify the force. The calculation is logically reasonable and
less time-consuming.

4.2. Parameter Setting
We assume the following restrictions on the regulation
parameters. For all equations, the steepness parameter is set
to σ = 10, and the time scale parameter is set to γ =

1. The basal weight parameter is set to −1 < ωi0 < 1,
and the regulation weight parameter is set to −1 < ωij <

1. This equation has the great advantage that it is subject to
all the powerful analytical and simulation tools of non-linear
ODEs. This is because in the limit of large σi, it behaves
like a discrete Boolean network. When σ ≫ 1, Xi tends to
flip between 0 and 1, and the dynamic system describes a
Boolean network.

There is a question about why and how to set the basal weight
parameter ωi0. Technically, ωi0 has to be present because if only
activation or inhibition on a target node X exists, the expression
level of X will eventually reach the boundary values, 1 and 0.
This can make it hard for multi-stability to emerge. Biologically,
the model we developed can be influenced by the environment,
and many conditions and molecular signals from outside can
change the state of the system and affect the basal level of the
expressions. The parameter settings of ωij and ωi0 are shown
in Table S2.

4.3. Langevin Method
The aging process in real life is influenced by the intrinsic
or external fluctuations of the system. Langevin equation is
appropriate to describe the stochastic time evolution of gene
expression dynamics. These stochastic differential equations
for describing to gene regulatory network dynamics are
as follows:

ẋ = F(x)+ η (5)

where x is a vector of the gene expressions and F(x) is the
driving force of the gene-regulating network dynamics. The
term η represents fluctuation or noise force, which has a
Gaussian probability distribution with correlation function <

ηi(t), ηj(t
′) >= 2Dijδijδ(t − t′), where D is the diffusion

coefficient matrix characterizing the strength of the fluctuations.
The global steady-state probability distribution P for the state
space can be quantified through the statistics by collecting the
time evolution trajectories of the expression dynamics from long-
duration simulations.

4.4. Landscape and Flux
The individual stochastic trajectory is unpredictable due to
its random nature. However, the evolution of the probability
distribution is predictable and can be used to describe the
probabilistic behaviors and patterns of the aging process.

The evolution of the probability distribution is governed by
the Fokker-Planck equation (Wang et al., 2008; Wang, 2015)
as follows:

∂P(x, t)

∂t
= −∇ · J(x, t) (6)

J(x, t) = F(x)P(x, t)−D · ∇P(x, t) (7)

which presents that the change in the probability P(x, t) in time
at state x and time t is equal to the probability flux J(x, t) in or
out of this state at time t characterized by its divergence. In the
steady state, the divergence of probability flux is equal to zero.
However, the probability flux is not necessarily equal to zero. The
steady-state probability flux, due to its divergent free nature, is
rotational as a curl. The steady-state probability flux at the steady
state (long time limit) is given in Equation (7). The steady-state
probability flux being not equal to zero represents net flow to
or from the system. The non-zero net flow breaks the detailed
balance. Therefore, the steady-state probability flux quantifies the
degree of non-equilibrium away from the equilibrium when it
has deviated from zero. For non-equilibrium systems, the driving
force F for the dynamics can be decomposed to a gradient of
the potential landscape and a curl flux force under constant
fluctuations (Wang et al., 2008): F = −D · ∇U + Jss/Pss,
where U = −lnPss is the potential landscape, while Pss is the
steady-state probability distribution.

4.5. Dominant Path
The dominant paths are the most probable paths when the
system switches from one state to another. The quantification
of the dominant paths is important for uncovering how the
biological processes have actually occurred and is therefore
the key for understanding the underlying physical mechanism
and function. The dominant path can be quantified by the
path integral approach (Wang et al., 2010; Wang J. et al.,
2011). The probability of switching from the initial x at
time 0 to the final x at time t with the path integral is
given as:

P(xfinal, t, xinitial, 0) =

∫
Dxexp[−

∫
dt(

1

2
∇ · F(x)

+
1

4
(ẋ− F(x))) ·D−1 · (ẋ− F(x))]

=

∫
Dxexp[−S(x)]

=

∫
Dxexp[−

∫
L(x(t))dt] (8)

The integral over Dx represents the sum over all the possible
trajectories from the state xinitial at time 0 to the state xfinal at time
t. F(x) represents the driving force of the gene regulatory network
dynamics. D represents the strength of the diffusion coefficient
matrix. S(x) and L(x(t)) represent the action and the Lagrangian
of the associated path. Each path is assigned with a probability
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weight, exp[−S(x)], associated with the action of that path. The
dominant path is the path with the largest weight. Therefore,
the dominant paths can be identified through minimizing
the action.

4.6. Entropy Production Rate
A non-equilibrium system often exchanges energy, matter, and
information with the environment. This leads to thermodynamic
dissipation. The change in the system entropy in the
non-equilibrium system can be divided into two parts (Wang
et al., 2008; Wang, 2015) as:

Ṡ = Ṡt − Ṡe (9)

Ṡt =

∫
dx(J ·D−1 · J)/P (10)

Ṡe =

∫
dx(J ·D−1) · F′ (11)

where Ṡt represents the entropy production rate (EPR) or
the total entropy rate of the system and environment and Ṡe
represents the heat dissipation rate of the environments. The
effective force F′ is defined as F′ = F− ∇ ·D.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

JW designed the research. WL, LZ, and JW performed
the research, analyzed the data, and wrote the paper.
All authors contributed to the article and approved the
submitted version.

FUNDING

WL was supported by NSFC grant no. 21721003 and MOST
China grant no. 2016YFA0203200.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2020.00593/full#supplementary-material

REFERENCES

Budanov, A. V. (2011). Stress-responsive sestrins link p53 with redox regulation

and mammalian target of rapamycin signaling. Antioxid. Redox Signal. 15,

1679–1690. doi: 10.1089/ars.2010.3530

Budanov, A. V., and Karin, M. (2008). p53 target genes sestrin1 and

sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460.

doi: 10.1016/j.cell.2008.06.028

Cantó, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L.,

Milne, J. C., et al. (2009). AMPK regulates energy expenditure by

modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060.

doi: 10.1038/nature07813

Chen, C.-C., Jeon, S.-M., Bhaskar, P. T., Nogueira, V., Sundararajan, D.,

Tonic, I., et al. (2010). FoxOs inhibit mTORC1 and activate akt by

inducing the expression of sestrin3 and rictor. Dev. Cell 18, 592–604.

doi: 10.1016/j.devcel.2010.03.008

Colman, R. J., Beasley, T. M., Kemnitz, J. W., Johnson, S. C., Weindruch, R.,

and Anderson, R. M. (2014). Caloric restriction reduces age-related and all-

cause mortality in rhesus monkeys. Nat. Commun. 5:3557. doi: 10.1038/

ncomms4557

Crane, M. M., Chen, K. L., Blue, B. W., and Kaeberlein, M. (2020). Trajectories of

aging: how systems biology in yeast can illuminate mechanisms of personalized

aging. Proteomics 20:1800420. doi: 10.1002/pmic.201800420

Dunlop, E. A., Hunt, D. K., Acosta-Jaquez, H. A., Fingar, D. C., and Tee,

A. R. (2011). ULK1 inhibits mTORC1 signaling, promotes multisite raptor

phosphorylation and hinders substrate binding. Autophagy 7, 737–747.

doi: 10.4161/auto.7.7.15491

Dunlop, E. A., and Tee, A. R. (2013). The kinase triad, AMPK, mTORC1 and

ULK1, maintains energy and nutrient homoeostasis. Biochem. Soc. Trans. 41,

939–943. doi: 10.1042/BST20130030

Gao, W., Shen, Z., Shang, L., and Wang, X. (2011). Upregulation of human

autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes

to DNA-damage-induced cell death. Cell Death Differ. 18, 1598–1607.

doi: 10.1038/cdd.2011.33

Gems, D., and Partridge, L. (2013). Genetics of longevity in model

organisms: debates and paradigm shifts. Annu. Rev. Physiol. 75, 621–644.

doi: 10.1146/annurev-physiol-030212-183712

Georgescu, M.-M. (2010). PTEN tumor suppressor network in PI3k-akt

pathway control. Genes Cancer 1, 1170–1177. doi: 10.1177/19476019114

07325

Gharibi, B., Farzadi, S., Ghuman, M., and Hughes, F. J. (2014). Inhibition of

akt/mTOR attenuates age-related changes in mesenchymal stem cells. Stem

Cells 32, 2256–2266. doi: 10.1002/stem.1709

Ghosh, H. S., McBurney, M., and Robbins, P. D. (2010). SIRT1 negatively

regulates the mammalian target of rapamycin. PLoS ONE 5:e9199.

doi: 10.1371/journal.pone.0009199

Greer, E. L., Dowlatshahi, D., Banko, M. R., Villen, J., Hoang, K., Blanchard, D.,

et al. (2007a). An AMPK-FOXO pathway mediates longevity induced by a

novel method of dietary restriction in C. elegans. Curr. Biol. 17, 1646–1656.

doi: 10.1016/j.cub.2007.08.047

Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., Gygi, S. P., et al.

(2007b). The energy sensor AMP-activated protein kinase directly regulates

the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119.

doi: 10.1074/jbc.M705325200

Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A.,

Vasquez, D. S., et al. (2008). AMPK phosphorylation of raptor mediates

a metabolic checkpoint. Mol. Cell 30, 214–226. doi: 10.1016/j.molcel.2008.

03.003

Haruta, T., Uno, T., Kawahara, J., Takano, A., Egawa, K., Sharma, P. M., et al.

(2000). A rapamycin-sensitive pathway down-regulates insulin signaling via

phosphorylation and proteasomal degradation of insulin receptor substrate-1.

Mol. Endocrinol. 14, 783–794. doi: 10.1210/mend.14.6.0446

Hay, N. (2011). Interplay between FOXO, TOR, and akt. Biochim. Biophys. Acta

1813, 1965–1970. doi: 10.1016/j.bbamcr.2011.03.013

Hong, T., Oguz, C., and Tyson, J. J. (2015). A mathematical framework

for understanding four-dimensional heterogeneous differentiation of

$$\hbox {CD4}ˆ{+}$$ CD4 + t cells. Bull. Math. Biol. 77, 1046–1064.

doi: 10.1007/s11538-015-0076-6

Hong, T., Xing, J., Li, L., and Tyson, J. J. (2011). A mathematical model for the

reciprocal differentiation of t helper 17 cells and induced regulatory t cells. PLoS

Comput. Biol. 7:e1002122. doi: 10.1371/journal.pcbi.1002122

Hong, T., Xing, J., Li, L., and Tyson, J. J. (2012). A simple theoretical framework for

understanding heterogeneous differentiation of CD4+ t cells. BMC Syst. Biol.

6:66. doi: 10.1186/1752-0509-6-66

Frontiers in Genetics | www.frontiersin.org 12 June 2020 | Volume 11 | Article 593

https://www.frontiersin.org/articles/10.3389/fgene.2020.00593/full#supplementary-material
https://doi.org/10.1089/ars.2010.3530
https://doi.org/10.1016/j.cell.2008.06.028
https://doi.org/10.1038/nature07813
https://doi.org/10.1016/j.devcel.2010.03.008
https://doi.org/10.1038/ncomms4557
https://doi.org/10.1002/pmic.201800420
https://doi.org/10.4161/auto.7.7.15491
https://doi.org/10.1042/BST20130030
https://doi.org/10.1038/cdd.2011.33
https://doi.org/10.1146/annurev-physiol-030212-183712
https://doi.org/10.1177/1947601911407325
https://doi.org/10.1002/stem.1709
https://doi.org/10.1371/journal.pone.0009199
https://doi.org/10.1016/j.cub.2007.08.047
https://doi.org/10.1074/jbc.M705325200
https://doi.org/10.1016/j.molcel.2008.03.003
https://doi.org/10.1210/mend.14.6.0446
https://doi.org/10.1016/j.bbamcr.2011.03.013
https://doi.org/10.1007/s11538-015-0076-6
https://doi.org/10.1371/journal.pcbi.1002122
https://doi.org/10.1186/1752-0509-6-66
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. On Mammalian Cellular Aging

Huber, T. B., Edelstein, C. L., Hartleben, B., Inoki, K., Jiang, M., Koya, D., et al.

(2012). Emerging role of autophagy in kidney function, diseases and aging.

Autophagy 8, 1009–1031. doi: 10.4161/auto.19821

Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.-L. (2002). TSC2 is phosphorylated

and inhibited by akt and suppresses mTOR signalling.Nat. Cell Biol. 4, 648–657.

doi: 10.1038/ncb839

Inoki, K., Zhu, T., and Guan, K.-L. (2003). TSC2 mediates cellular energy

response to control cell growth and survival. Cell 115, 577–590.

doi: 10.1016/S0092-8674(03)00929-2

Jin, M., Li, Y., O’Laughlin, R., Bittihn, P., Pillus, L., Tsimring, L. S., et al. (2019).

Divergent aging of isogenic yeast cells revealed through single-cell phenotypic

dynamics. Cell Syst. 8, 242–253.e3. doi: 10.1016/j.cels.2019.02.002

Johnson, S. C., Rabinovitch, P. S., and Kaeberlein, M. (2013). mTOR is a

key modulator of ageing and age-related disease. Nature 493, 338–345.

doi: 10.1038/nature11861

Kapahi, P., Chen, D., Rogers, A. N., Katewa, S. D., Li, P. W.-L., Thomas,

E. L., et al. (2010). With TOR, less is more: a key role for the

conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465.

doi: 10.1016/j.cmet.2010.05.001

Kenyon, C., Chang, J., Gensch, E., Rudner, A., and Tabtiang, R. (1993). A C.

elegans mutant that lives twice as long as wild type. Nature 366, 461–464.

doi: 10.1038/366461a0

Kenyon, C. J. (2010). The genetics of ageing. Nature 464, 504–512.

doi: 10.1038/nature08980

Kim, J., Kundu, M., Viollet, B., and Guan, K.-L. (2011). AMPK andmTOR regulate

autophagy through direct phosphorylation of ulk1. Nat. Cell Biol. 13, 132–141.

doi: 10.1038/ncb2152

Kong, M. (2004). The PP2a-associated protein 4 is an essential inhibitor of

apoptosis. Science 306, 695–698. doi: 10.1126/science.1100537

Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B.,

et al. (2004). Dynamics of the p53-mdm2 feedback loop in individual cells.Nat.

Genet. 36, 147–150. doi: 10.1038/ng1293

Lan, F., Cacicedo, J. M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of

the acetylation status, cytosolic localization, and activity of LKB1. J. Biol. Chem.

283, 27628–27635. doi: 10.1074/jbc.M805711200

Lee, J. H., Budanov, A. V., and Karin, M. (2013). Sestrins orchestrate

cellular metabolism to attenuate aging. Cell Metab. 18, 792–801.

doi: 10.1016/j.cmet.2013.08.018

Li, C. (2018). Landscape of gene networks for random parameter perturbation.

Integr. Biol. 10, 92–99. doi: 10.1039/C7IB00198C

Li, C., and Balazsi, G. (2018). A landscape view on the interplay between EMT and

cancer metastasis. NPJ Syst. Biol. Appl. 4:34. doi: 10.1038/s41540-018-0068-x

Löffler, A. S., Alers, S., Dieterle, A.M., Keppeler, H., Franz-Wachtel,M., Kundu,M.,

et al. (2011). Ulk1-mediated phosphorylation of AMPK constitutes a negative

regulatory feedback loop. Autophagy 7, 696–706. doi: 10.4161/auto.7.7.15451

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013).

The hallmarks of aging. Cell 153, 1194–1217. doi: 10.1016/j.cell.2013.05.039

Martins, R., Lithgow, G. J., and Link, W. (2015). Long live FOXO: unraveling

the role of FOXO proteins in aging and longevity. Aging Cell 15, 196–207.

doi: 10.1111/acel.12427

McCormick, M., Chen, K., Ramaswamy, P., and Kenyon, C. (2011). New genes

that extend caenorhabditis elegans’ lifespan in response to reproductive signals.

Aging Cell 11, 192–202. doi: 10.1111/j.1474-9726.2011.00768.x

Mjolsness, E., Sharp, D. H., and Reinitz, J. (1991). A connectionist model of

development. J. Theor. Biol. 152, 429–453. doi: 10.1016/S0022-5193(05)80391-1

Nemoto, S. (2004). Nutrient availability regulates SIRT1 through a forkhead-

dependent pathway. Science 306, 2105–2108. doi: 10.1126/science.

1101731

Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., et al.

(2002). Akt enhances mdm2-mediated ubiquitination and degradation of p53.

J. Biol. Chem. 277, 21843–21850. doi: 10.1074/jbc.M109745200

Okoshi, R., Ozaki, T., Yamamoto, H., Ando, K., Koida, N., Ono, S., et al. (2007).

Activation of AMP-activated protein kinase induces p53-dependent apoptotic

cell death in response to energetic stress. J. Biol. Chem. 283, 3979–3987.

doi: 10.1074/jbc.M705232200

Parmigiani, A., Nourbakhsh, A., Ding, B., Wang, W., Kim, Y. C., Akopiants, K.,

et al. (2014). Sestrins inhibit mTORC1 kinase activation through the GATOR

complex. Cell Rep. 9, 1281–1291. doi: 10.1016/j.celrep.2014.10.019

Powers, E. T., Morimoto, R. I., Dillin, A., Kelly, J. W., and Balch,

W. E. (2009). Biological and chemical approaches to diseases

of proteostasis deficiency. Annu. Rev. Biochem. 78, 959–991.

doi: 10.1146/annurev.biochem.052308.114844

Rahman, I., and Bagchi, D. (2013). Inflammation, Advancing Age and Nutrition:

Research and Clinical Interventions. London: Elsevier Science.

Rando, T. A., and Chang, H. Y. (2012). Aging, rejuvenation, and

epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57.

doi: 10.1016/j.cell.2012.01.003

Renault, V. M., Thekkat, P. U., Hoang, K. L., White, J. L., Brady, C. A., Broz, D. K.,

et al. (2011). The pro-longevity gene FoxO3 is a direct target of the p53 tumor

suppressor. Oncogene 30, 3207–3221. doi: 10.1038/onc.2011.35

Ruderman, N. B., Xu, X. J., Nelson, L., Cacicedo, J. M., Saha, A. K., Lan, F.,

et al. (2010). AMPK and SIRT1: a long-standing partnership? Am. J. Physiol.

Endocrinol. Metab. 298, E751–E760. doi: 10.1152/ajpendo.00745.2009

Rufini, A., Tucci, P., Celardo, I., and Melino, G. (2013). Senescence and aging: the

critical roles of p53. Oncogene 32, 5129–5143. doi: 10.1038/onc.2012.640

Salih, D. A., and Brunet, A. (2008). FoxO transcription factors

in the maintenance of cellular homeostasis during aging.

Curr. Opin. Cell Biol. 20, 126–136. doi: 10.1016/j.ceb.2008.

02.005

Salminen, A., and Kaarniranta, K. (2012). AMP-activated protein kinase (AMPK)

controls the aging process via an integrated signaling network. Ageing Res. Rev.

11, 230–241. doi: 10.1016/j.arr.2011.12.005

Sengupta, S., Peterson, T. R., and Sabatini, D. M. (2010). Regulation of the mTOR

complex 1 pathway by nutrients, growth factors, and stress. Mol. Cell 40,

310–322. doi: 10.1016/j.molcel.2010.09.026

Smith-Vikos, T., de Lencastre, A., Inukai, S., Shlomchik, M., Holtrup, B., and Slack,

F. J. (2014). MicroRNAs mediate dietary-restriction-induced longevity through

PHA-4/FOXA and SKN-1/nrf transcription factors. Curr. Biol. 24, 2238–2246.

doi: 10.1016/j.cub.2014.08.013

Stambolic, V., MacPherson, D., Sas, D., Lin, Y., Snow, B., Jang, Y., et al.

(2001). Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325.

doi: 10.1016/S1097-2765(01)00323-9

Tyson, J. J., and Novák, B. (2010). Functional motifs in biochemical

reaction networks. Annu. Rev. Phys. Chem. 61, 219–240.

doi: 10.1146/annurev.physchem.012809.103457

Waddington, C. (2014). The Strategy of the Genes. London: Routledge.

Wang, F., Chan, C.-H., Chen, K., Guan, X., Lin, H.-K., and Tong, Q.

(2011). Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to skp2-

mediated FOXO3 ubiquitination and degradation. Oncogene 31, 1546–1557.

doi: 10.1038/onc.2011.347

Wang, F., Nguyen, M., Qin, F. X.-F., and Tong, Q. (2007). SIRT2 deacetylates

FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6,

505–514. doi: 10.1111/j.1474-9726.2007.00304.x

Wang, J. (2015). Landscape and flux theory of non-equilibrium

dynamical systems with application to biology. Adv. Phys. 64, 1–137.

doi: 10.1080/00018732.2015.1037068

Wang, J., Xu, L., and Wang, E. (2008). Potential landscape and flux framework

of nonequilibrium networks: robustness, dissipation, and coherence of

biochemical oscillations. Proc. Natl. Acad. Sci. U.S.A. 105, 12271–12276.

doi: 10.1073/pnas.0800579105

Wang, J., Zhang, K., and Wang, E. (2010). Kinetic paths, time scale, and

underlying landscapes: a path integral framework to study global natures

of nonequilibrium systems and networks. J. Chem. Phys. 133:125103.

doi: 10.1063/1.3478547

Wang, J., Zhang, K., Xu, L., and Wang, E. (2011). Quantifying the waddington

landscape and biological paths for development and differentiation. Proc. Natl.

Acad. Sci. U.S.A. 108, 8257–8262. doi: 10.1073/pnas.1017017108

Watanabe, K., Panchy, N., Noguchi, S., Suzuki, H., and Hong, T. (2019).

Combinatorial perturbation analysis reveals divergent regulations of

mesenchymal genes during epithelial-to-mesenchymal transition. NPJ

Syst. Biol. Appl. 5:21. doi: 10.1038/s41540-019-0097-0

Yi, J., and Luo, J. (2010). SIRT1 and p53, effect on cancer, senescence and beyond.

Biochim. Biophys. Acta 1804, 1684–1689. doi: 10.1016/j.bbapap.2010.05.002

You, H., Yamamoto, K., and Mak, T. W. (2006). Regulation of transactivation-

independent proapoptotic activity of p53 by FOXO3a. Proc. Natl. Acad. Sci.

U.S.A. 103, 9051–9056. doi: 10.1073/pnas.0600889103

Frontiers in Genetics | www.frontiersin.org 13 June 2020 | Volume 11 | Article 593

https://doi.org/10.4161/auto.19821
https://doi.org/10.1038/ncb839
https://doi.org/10.1016/S0092-8674(03)00929-2
https://doi.org/10.1016/j.cels.2019.02.002
https://doi.org/10.1038/nature11861
https://doi.org/10.1016/j.cmet.2010.05.001
https://doi.org/10.1038/366461a0
https://doi.org/10.1038/nature08980
https://doi.org/10.1038/ncb2152
https://doi.org/10.1126/science.1100537
https://doi.org/10.1038/ng1293
https://doi.org/10.1074/jbc.M805711200
https://doi.org/10.1016/j.cmet.2013.08.018
https://doi.org/10.1039/C7IB00198C
https://doi.org/10.1038/s41540-018-0068-x
https://doi.org/10.4161/auto.7.7.15451
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1111/acel.12427
https://doi.org/10.1111/j.1474-9726.2011.00768.x
https://doi.org/10.1016/S0022-5193(05)80391-1
https://doi.org/10.1126/science.1101731
https://doi.org/10.1074/jbc.M109745200
https://doi.org/10.1074/jbc.M705232200
https://doi.org/10.1016/j.celrep.2014.10.019
https://doi.org/10.1146/annurev.biochem.052308.114844
https://doi.org/10.1016/j.cell.2012.01.003
https://doi.org/10.1038/onc.2011.35
https://doi.org/10.1152/ajpendo.00745.2009
https://doi.org/10.1038/onc.2012.640
https://doi.org/10.1016/j.ceb.2008.02.005
https://doi.org/10.1016/j.arr.2011.12.005
https://doi.org/10.1016/j.molcel.2010.09.026
https://doi.org/10.1016/j.cub.2014.08.013
https://doi.org/10.1016/S1097-2765(01)00323-9
https://doi.org/10.1146/annurev.physchem.012809.103457
https://doi.org/10.1038/onc.2011.347
https://doi.org/10.1111/j.1474-9726.2007.00304.x
https://doi.org/10.1080/00018732.2015.1037068
https://doi.org/10.1073/pnas.0800579105
https://doi.org/10.1063/1.3478547
https://doi.org/10.1073/pnas.1017017108
https://doi.org/10.1038/s41540-019-0097-0
https://doi.org/10.1016/j.bbapap.2010.05.002
https://doi.org/10.1073/pnas.0600889103
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. On Mammalian Cellular Aging

Yuan, Y., Cruzat, V. F., Newsholme, P., Cheng, J., Chen, Y., and Lu, Y.

(2016). Regulation of SIRT1 in aging: roles in mitochondrial function

and biogenesis. Mech. Ageing Dev. 155, 10–21. doi: 10.1016/j.mad.2016.

02.003

Zhao, L., and Wang, J. (2016). Uncovering the mechanisms of caenorhabditis

elegans ageing from global quantification of the underlying landscape. J. R. Soc.

Interface 13:20160421. doi: 10.1098/rsif.2016.0421

Zhou, P., and Li, T. (2016). Construction of the landscape for multi-stable systems:

potential landscape, quasi-potential, a-type integral and beyond. J. Chem. Phys.

144:094109. doi: 10.1063/1.4964682

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Li, Zhao and Wang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 14 June 2020 | Volume 11 | Article 593

https://doi.org/10.1016/j.mad.2016.02.003
https://doi.org/10.1098/rsif.2016.0421
https://doi.org/10.1063/1.4964682
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Searching for the Mechanisms of Mammalian Cellular Aging Through Underlying Gene Regulatory Networks
	1. Introduction
	2. Results
	2.1. Network Wiring and Kinetic Equations
	2.2. Potential Landscape of Aging
	2.3. Dynamics of Landscapes of Aging
	2.4. Global Sensitivity Analysis of Aging in Mammals
	2.5. Aging Oscillations Landscape

	3. Discussion
	4. Materials and Methods
	4.1. Kinetic Equations
	4.2. Parameter Setting
	4.3. Langevin Method
	4.4. Landscape and Flux
	4.5. Dominant Path
	4.6. Entropy Production Rate

	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References




