AUTHOR=Tian Xiaocui , Zhang Kaixin , Liu Shulin , Sun Xu , Li Xiyu , Song Jie , Qi Zhongying , Wang Yue , Fang Yanlong , Wang Jiajing , Jiang Sitong , Yang Chang , Tian Zhixi , Li Wen-Xia , Ning Hailong TITLE=Quantitative Trait Locus Analysis of Protein and Oil Content in Response to Planting Density in Soybean (Glycine max [L.] Merri.) Seeds Based on SNP Linkage Mapping JOURNAL=Frontiers in Genetics VOLUME=11 YEAR=2020 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2020.00563 DOI=10.3389/fgene.2020.00563 ISSN=1664-8021 ABSTRACT=

Soybean varieties suitable for high planting density allow greater yields. However, the seed protein and oil contents, which determine the value of this crop, can be influenced by planting density. Thus, it is important to understand the genetic basis of the responses of different soybean genotypes to planting density. In this study, we quantified the protein and oil contents in a four-way recombinant inbred line (FW-RIL) soybean population under two planting densities and the response to density. We performed quantitative trait locus (QTL) mapping using a single nucleotide polymorphism (SNP) linkage map generated by inclusive composite interval mapping. We identified 14 QTLs for protein content and 17 for oil content at a planting density of 2.15 × 105 plant/ha (D1) and 14 QTLs for protein content and 20 for oil content at a planting density 3.0 × 105 plant/ha (D2). Among the QTLs detected, two oil-content QTLs was detected at both plant densities. In addition, we identified 38 QTLs for the responses of protein and oil contents to planting density. Of the QTLs detected, 70 were identified in previous studies, while 33 were newly identified. Fourty-five QTLs accounted for over 10% of the phenotypic variation of the corresponding trait, based on 23 QTLs at a marker interval distance of ~600 kb detected under different densities and with the responses to density difference. Pathway analysis revealed four candidate genes involved in protein and oil biosynthesis/metabolism. These results improve our understanding of the genetic underpinnings of protein and oil biosynthesis in soybean, laying the foundation for enhancing protein and oil contents and increasing yields in soybean.