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Breast cancer (BC) is one of the most common tumors, leading the causes of cancer
death in women. However, the pathogenesis of BC still remains unclear, and the atlas
of BC-associated risk factors is far from complete. In this study, we constructed a
BC-specific coordinately regulatory network (CRN) to prioritize potential BC-associated
protein-coding genes (PCGs) and non-coding RNAs (ncRNAs). We integrated 813 BC
sample transcriptome data from The Cancer Genome Atlas (TCGA) and eight types
of regulatory relationships to construct BC-specific CRN, including 387 transcription
factors (TFs), 174 microRNAs (miRNAs), 407 long non-coding RNAs (lncRNAs), and
905 PCGs. After that, the random walk with restart (RWR) method was performed on the
CRN by using the known BC-associated factors as seeds, and potential BC-associated
risk factors were prioritized. The leave-one-out cross-validation (LOOCV) was utilized
on the BC-specific CRN and achieved an area under the curve (AUC) of 0.92. The
performances of common CRN, common protein–protein interaction (PPI) network, and
BC-specific PPI network were also evaluated, demonstrating that the context-specific
CRN prioritizes BC risk factors. Functional analysis for the top 100-ranked risk factors in
the candidate list revealed that these factors were significantly enriched in cancer-related
functions and had significant semantic similarity with BC-related gene ontology (GO)
terms. Differential expression analysis and survival analysis proved that the prioritized risk
factors significantly associated with BC progression and prognosis. In total, we provided
a computational method to predict reliable BC-associated risk factors, which would
help improve the understanding of the pathology of BC and benefit disease diagnosis
and prognosis.

Keywords: breast cancer, transcriptional factor, non-coding RNA, context-specific regulatory network, RWR
algorithm

INTRODUCTION

Breast cancer (BC), a type of cancer developing from breast tissue, is the most frequent occurrence
and one of the leading causes of cancer-related deaths among women (Siegel et al., 2019). A large
amount of study has been conducted to dissect the pathogenesis of BC, and multiple risk factors
have been identified for the development of BC in the last decades. Extrinsic factors inclusive of
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dietary habits, long-term medical intervention, and carcinogens
have been confirmed to commit the risk of BC (Kaminska et al.,
2015). In particular, the inherent factors, including age, sex,
race, genetic mutations, and disturbance of molecular pathways,
contribute the most cases of BC. For example, epidemiological
data demonstrated 50% of BCs occurred in women aged
from 50 to 69 years, and both BRCA1 and BRCA2 mutations
conferred a 60 to 80% lifetime risk for the development of
BC (Matsen and Neumayer, 2013). Substantial single-nucleotide
polymorphism (SNP) array screen revealed that ESR1 gene
amplification occurred in about 20% of BC patients (Holst et al.,
2007). With the advances in RNA-sequencing techniques, non-
coding RNAs (ncRNAs), especially microRNAs (miRNAs) and
long non-coding RNAs (lncRNAs), are confirmed to be related
with the pathology of BC (Bhan et al., 2017; Xu et al., 2017).
For example, Yan et al. (2008) identified differentially expressed
(DE) miRNAs in BC and suggested that miR-21 overexpression
contributed to the poor prognosis of BC patients. Xu et al. (2017)
identified a cluster of oncogenic upregulated lncRNAs in BC
tissue and that the knockout of DSCAM-AS1, TINCR, or HOTAIR
prohibited BC cell proliferation. Currently, several curated
databases have archived the known BC-associated factors, such as
the Comparative Toxicogenomics Database (CTD) (Davis et al.,
2017), Human microRNA Disease Database (HMDD) (Huang
et al., 2019), and LncRNADisease (Bao et al., 2019). Although
great progress has been made in identifying genetic risk factors
of BC, the genetic contribution to BC etiology remains to be
elucidated (Skol et al., 2016).

Computational methods have been considered as effective
means to decipher genetic risk factors for complex diseases
(Oti et al., 2006; Natarajan and Dhillon, 2014; Chen et al.,
2018a; Luo et al., 2019). For example, the guilt-by-association
strategy is widely used to predict disease-associated genes
in computational biology according to the phenomenon that
genes participating in a common biological process tend to
be correlated with similar phenotypes (Ideker and Sharan,
2008; Lee et al., 2011; Itzel et al., 2015). As an extension of
this principle, functional and semantic similarity calculation
between diseases and genes is employed to prioritize disease-
related genes (Hu et al., 2017; Asif et al., 2018; Chen et al.,
2018b). In addition, knowledge-based approaches are also
developed to infer disease–gene associations. For example,
Zhou and Skolnick (2016) provided a Know-GENE method to
detect genes associated with given diseases by implementing a
boosted tree regression approach which combined the gene–
gene mutual information and known protein–protein interaction
(PPI) networks. Network-based approaches are other types of
frequently used methods for novel disease gene prediction.
Kohler et al. (2008) implemented a random walk algorithm
on the constructed PPI network to prioritize disease–gene
associations. Sun et al. (2014) proposed a computational method
to speculate potential human-disease-associated lncRNAs based
on the lncRNA functional similarity network. Chen et al.
(2015) provided two novel lncRNA functional similarity
calculation models and introduced them into the model
of Laplacian regularized least squares for disease–lncRNA
relationship prediction. Vanunu et al. (2010) provided a network

propagation method for prioritizing abnormal genes based
on formulating constraints on the prioritization function, and
protein complex associations also can be predicted. However,
all these above methods do not consider the context-specific
condition for disease genetic risk factor prediction. It is
believed that if the context-specific status is provided, the
biological associations will be constructed credibly. Furthermore,
transcriptional and posttranscriptional coordinately regulatory
networks (CRNs) have been demonstrated as powerful tools to
establish biological associations, which could be employed to
prioritize BC-associated risk factors (Wang et al., 2015, 2018).

In this study, we provided a computational method to
prioritize BC-associated protein-coding and non-coding genes
and compared the performance of a BC-specific CRN with other
networks. Publicly available experimentally verified regulatory
data and BC-associated high-throughput transcriptome
data from The Cancer Genome Atlas (TCGA) were firstly
integrated to construct a comprehensive BC-specific CRN,
comprising TFs, miRNAs, lncRNAs, and protein-coding genes
(PCGs). Then, the random walk with restart (RWR) algorithm
was performed on the constructed CRN to prioritize BC-
associated risk factors, using the known BC-associated factors
as seeds. Leave-one-out cross-validation (LOOCV) proved
the better performance of BC-specific CRN. Furthermore,
differential expression analysis and survival analysis manifested
that the prioritized factors were associated with BC onset
and prognosis. In total, we constructed a BC-specific CRN
and implemented a computational method to prioritize
credible protein-coding and non-coding genes associated
with BC, which would provide potential therapeutic targets
for BC treatment.

MATERIALS AND METHODS

Construction of Comprehensive
BC-Specific CRN
The BC-specific CRN referred to the regulatory network that
especially existed in the BC context. To fulfill this purpose, eight
types of regulatory relationships among four types of factors
(TFs, miRNAs, lncRNAs, and PCGs) and BC-associated high-
throughput transcriptome data were integrated to form the
BC-specific CRN.

First, eight types of regulatory relationships, incorporating
TF–miRNA, TF–lncRNA, TF–PCG, miRNA–lncRNA, miRNA–
TF, miRNA–PCG, lncRNA–TF, and lncRNA–PCG, were obtained
from credibly curated databases and integrated to form
the common CRN. TF-miRNA regulations were downloaded
from TransmiR v2.0, a database recording manually surveyed
experimentally supported TF regulations to miRNA (Wang et al.,
2010). TF–lncRNA regulations were obtained from ChIPBase
(Yang et al., 2013). Here, we only retained the credible TF–
lncRNA regulations that presented in more than 20 datasets.
Furthermore, we performed TRANSFAC MATCH programs to
ensure lncRNA sequences possessing transcription factor binding
sites (TFBS) (Matys et al., 2006). The final TF regulations
to lncRNAs were gotten by integrating the ChIPBase data
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and TRANSFAC MATCH results. TF–PCG regulations were
obtained from TRANSFAC (v12.4). miRNA–TF and miRNA–
PCG regulations were integrated from two databases, miRecords
(Xiao et al., 2009) and miRTarBase (Chou et al., 2018). We
obtained the union set of the relationships existing in these
two datasets. miRNA–lncRNA regulations were obtained from
LncBase v2 (Paraskevopoulou et al., 2016). We obtained the
interactions provided in the experimental module, and the
prediction score should be no less than 0.95. lncRNA–TF and
lncRNA–PCG regulations were downloaded from LncReg and
LncRNA2Target (v2.0) (Jiang et al., 2015). We retained the union
set of lncRNA regulations to TFs and PCGs presented in two
databases. Incorporating all the above regulations, we finally
got the common CRN, which comprised candidate BC-specific
regulatory relationships.

Next, we derived specifically highly expressed and co-
expressed regulatory relationships in the BC context to obtain
a BC-specific CRN. The BC-associated high-throughput TF,
miRNA, and PCG expression profiles were collected from TCGA,
and the lncRNA expression profiles were derived from The Atlas
of Non-coding RNAs in Cancer (TANRIC). The intersection
samples having the expression profiles of all these four types
of factors were retained. Highly expressed genes are defined as
those whose expression are ranked in the top 50% of all genes in
more than 50% samples. Co-expressed relationships are defined
as relationships whose Pearson’s correlation coefficient (PCC)
values (or absolute PCC values) are ranked in the top 20% of
all highly expressed genes’ pairwise PCC values calculated from
each type of regulatory relationship. For TF–miRNA, the PCC
values of all the couples of highly expressed TFs and miRNAs
were calculated. Then the TF–miRNA pairs ranked in the top
20% of all these PCC values were retained. Similarly for the TF–
lncRNA and TF–PCG, the pairs having PCC values that are top
20% ranked were retained. For miRNA–lncRNA, miRNA–TF,
miRNA–PCG, the pairs having PCC values that are bottom 20%
ranked were retained. For lncRNA–TF and lncRNA–PCG, the
pairs having absolute PCC values that are top 20% ranked were
retained. All these retained pairs intersecting with the common
CRN constituted the final BC-specific CRN.

In addition, we constructed the PPI network to compare the
performance of the CRN. The PPI relationships were obtained
from the STRING database (Szklarczyk et al., 2019). We retained
the relationships with a direct evidence score of >0.9 to form
the common PPI network. The BC-specific PPI network was
obtained by retaining the common PPI network relationships
exhibiting high expression and co-expression in the BC context,
which were calculated as described above.

Collection of Known BC-Associated
Factors
The known BC-associated TFs, miRNAs, lncRNAs, and PCGs
were obtained from publicly available data resources. BC-
associated TFs and PCGs were obtained from CTD, and the TFs
and PCGs with direct evidence to the BC were retained. Next,
we downloaded the BC-associated miRNAs from HMDD v3.0
(Huang et al., 2019). The BC-associated lncRNAs were integrated

from LncRNADisease v2.0 (Bao et al., 2019) and Lnc2Cancer
v2.0 (Gao et al., 2019), both of which were curated databases
for disease-associated lncRNAs. We integrated the union of these
two lncRNA sets as known BC-associated lncRNAs. All these
obtained BC-associated TFs, miRNAs, lncRNAs, and PCGs were
mapped to the BC-specific CRN, and the intersection nodes were
used as seeds for the RWR algorithm.

Prioritization of Potential BC-Associated
Risk Factors With RWR
We thus conducted an RWR method on the BC-specific CRN to
prioritize potential BC-associated risk factors. Here, the obtained
known BC-associated factors were employed as seed nodes. We
denoted S0 as the initial score vector and St as a process vector in
which the ith element represented the probability of the random
walker appearing at node i in step t. We let α measure the restart
probability of the random walk at the initial nodes in each step.
Also P represented the probability transition matrix (PTM), and
it was obtained from the adjacency matrix of the BC-associated
CRN. The formula is described as

p(i, j) =

{
M(i, j)/

∑
j M(i, j), if

∑
j M(i, j) 6= 0

0, otherwise

where p(i, j) is the entry in the PTM and M (i, j) is the entry in the
adjacency matrix. The score vector in step t + 1 can be defined as
follows:

St+1 = (1− α)PSt + αS0

Here, the restart probability α was set as 0.5, and the initial score
S0 of each seed node was set as 1/n (where n was the number of
total seed BC-associated factors). The initial scores of all other
nodes were set as 0 (Li and Patra, 2010; Chen et al., 2016). It is
natural that the score of each node will become stable with the
iteration steps going on. We set the stable scores as S∞ when the
difference between St and St+1 was no more than 10−10. Then the
final stable scores S∞ could be used to measure the proximity of
each node to the seed nodes. Thus, all candidate nodes in the BC-
specific CRN could be ranked based on S∞, and the top-ranked
nodes could be speculated to be closely related with BC.

Functional Analysis for Predicted
BC-Associated Risk Factors
We conducted a functional analysis for the putative BC-
associated risk factors. We first extracted the top-100-ranked
potential BC-associated risk factors (excluding seeds), inclusive
of TFs, miRNAs, lncRNAs, and PCGs, and conducted functional
enrichment analysis separately. We employed DAVID to conduct
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis for the obtained
TFs and PCGs separately (Huang da et al., 2009). For the obtained
miRNAs, we firstly gathered the experimentally verified miRNA
targets from miRecords (Xiao et al., 2009) and miRTarBase (Chou
et al., 2018); then all these miRNA targets underwent GO and
KEGG pathway enrichment analysis by DAVID. In addition, for
the obtained lncRNAs, we extracted associated TFs and PCGs for
each obtained lncRNA from ChIPBase (Yang et al., 2013), LncReg
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FIGURE 1 | Characteristics of the BC-specific CRN. (A) Overview of the BC-specific CRN. The TFs, miRNAs, lncRNAs, and PCGs were red, green, yellow, and blue
colored. (B) The proportion of TFs, miRNAs, lncRNAs, and PCGs in the CRN. (C) Degree distribution of all nodes in the CRN. (D) The log-log plots for the degree
distributions of all nodes in the CRN (E) Degree distributions for TFs, miRNAs, lncRNAs, and PCGs in the CRN.

(Zhou et al., 2015), and LncRNA2Target (v2.0) (Jiang et al., 2015),
and the union set of obtained TFs and PCGs was inputted into
DAVID to perform functional enrichment analysis. Furthermore,
GO enrichment analysis was conducted for the known BC-
associated TFs, miRNAs, lncRNAs, and PCGs separately, as
described above. Then the union set of these significant GO
categories was regarded as the BC-associated GO terms. We
adopted the same criteria for all these functional analyses, in
which GO analysis employed the biological process (BP) category
and the significant level was set at P < 0.05. In the end,
we computed the functional similarity scores between the GO
terms enriched in top-ranked BC-associated factors and the BC-
associated GO terms. The calculative process was conducted by
using the GOSemSim R package (Yu et al., 2010). The widely
used “Lin” parameter was assigned to compute the two given
GO terms’ semantic similarity, and the rcmax method was used
as a combined method to accumulate multiple GO terms. We
also conducted 1,000 random tests to assess the significance of
obtained functional similarity scores. The same number of GO
terms as the real situation was randomly chosen in each random

test, and the functional similarity scores between the random
GO term set and the BC-associated GO terms were calculated.
The P-value was computed as the ratio of stochastic functional
similarity scores higher than the true functional similarity score.

Differential Expression Analysis
TF, miRNA, and PCG expression data were generated by next-
generation sequencing, and the read count data could be available
from TCGA. Here, we dealt with the TFs and PCGs together
and used genes to refer to them both. Based on read counts, we
used the edgeR package and calculated fold change (FC) to derive
DE genes and miRNAs (Robinson et al., 2010). The paired BC
samples in TCGA were retained, and genes and miRNAs with <1
count per million (CPM) in more than half of the samples were
filtered out. Then, we used the exactTest function to implement
an exact test for the genes and miRNAs. The significantly DE
genes and miRNAs were obtained by selecting those genes and
miRNAs with an adjusted P-value < 0.05 and | log2FC| > 1. The
paired BC samples with lncRNA expression data were extracted
from TANRIC. Because expressions of lncRNA were presented
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FIGURE 2 | Receiver operating characteristic curves and AUC values for the RWR method on the whole and partial BC-specific CRNs, common CRN, BC-specific
PPI network, and common PPI network with real seeds and random seeds.

in an RPKM unit and were normalized to follow a normal
distribution, a linear model was fitted for each lncRNA by using
the lmFit function of the R package limma (Ritchie et al., 2015).
Then the eBayes function was used to implement an empirical
Bayes method to rank lncRNAs for differential expression. The
significantly DE lncRNAs were obtained by selecting those with
an adjusted P-value < 0.05 and | log2FC| > 1.

Survival Analysis
The univariate Cox regression analysis was performed to assess
the association between the prognosis of survival and the
putative BC-associated risk factors. A risk score formula was
implemented to measure the contribution of the predicted BC-
associated risk factors to the survival of BC patients, which
was computed from the linear integration of the expression
values and the regression coefficient obtained from the univariate
Cox regression analysis. The detailed formula was described as
follows.

ScoreRisk =

n∑
i=1

ri × Exp(xi)

where ri represents the univariate Cox regression coefficient of
the predicted BC-associated factor i and n is the top-ranked

number for factors we prioritized (100 assigned here). Exp(xi)
represents the expression value of factor i in the corresponding
patient. We used the median risk score as a cutoff to classify
patients into low-risk and high-risk groups. The Kaplan–Meier
survival analysis was performed for these two groups, and
statistical significance was evaluated using the log-rank test. All
analyses were performed by the R package “survival” within
the R framework. The coxph function was used to obtain
the univariate Cox regression coefficient of the predicted BC-
associated factor, and the survdiff function was used to perform
a log-rank test.

RESULTS

Construction and Characterization of the
BC-Specific CRN
In this study, we firstly integrated experimentally verified
regulatory relationships from publicly available data resources
to obtain a common CRN (Supplementary Table S1). When
combining the transcriptome data in BC, we constructed
a BC-specific CRN (section “Materials and Methods,”
Supplementary Table S2). The BC-specific CRN included
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FIGURE 3 | The top 20 GO enrichment results and KEGG enrichment results for top-ranked TFs.

2,582 edges, comprising 387 TFs, 174 miRNAs, 407 lncRNAs,
and 905 PCGs (Figures 1A,B). We inspected the degree
distribution of the network to get an overview of the CRN. As
shown in Figure 1C, most nodes (58.9%) of the CRN had one
degree and only few nodes had a high degree. Next, the power
law distribution of the form y = 504.1× 10−1.62 (R2 = 0.862) was
fitted for the whole degree of the BC-specific CRN (Figure 1D).
This illustrated that the CRN met scale-free topology, which
was a common feature for most biological networks (Barabasi
and Oltvai, 2004). In addition, we investigated the degree
distributions for TFs, miRNAs, lncRNAs, and PCGs (Figure 1E).
The miRNAs had a higher median degree than other factors,
which meant that miRNAs were likely to act as hubs in the
BC-specific CRN.

Performance Evaluation
To assess the performance of our method for inferring potential
BC-associated risk factors, we conducted a LOOCV analysis.
The known BC-associated factors from curated databases
were integrated, and 1,298 credible BC-associated factors were
obtained in total. When mapping these factors to the BC-
specific CRN, we finally got 177 BC-associated factors as seeds,
including 49 TFs, 95 miRNAs, 15 lncRNAs, and 18 PCGs
(Supplementary Table S3). Each known BC factor was left
out in turn as the test case, and the other known BC factors
were taken as seeds. All the other nodes in the BC-specific
CRN were regarded as candidate BC-associated factors. Then
different sensitivities and specificities were calculated by varying
the threshold. Finally, a receiver operating characteristic (ROC)
curve was plotted, and the value of the area under the curve
(AUC) was calculated. Our proposed method tested on known
BC-associated factors achieved an AUC of 0.92 (Figure 2),
demonstrating excellent performance. Here, the BC-specific CRN
included four kinds of factors (TFs, miRNAs, lncRNAs, and
PCGs) and eight types of regulations (TF–miRNA, TF–lncRNA,

TF–PCG, miRNA–lncRNA, miRNA–TF, miRNA–PCG, lncRNA–
TF, and lncRNA–PCG). In order to evaluate the effectivity and
reliability of the BC-specific CRN, we compared the performance
of partial CRN. The AUCs were calculated for the CRN-TLP
network (TFs, lncRNAs, and PCGs only), CRN-TMP network
(TFs, miRNAs, and PCGs only), CRN-TML network (TFs,
miRNAs, and lncRNAs only), and CRN-MLP network (miRNAs,
lncRNAs, and PCGs only) separately, by performing LOOCV.
As shown in Figure 2, the AUCs were 0.88, 0.89, 0.83, and
0.75 for the CRN-TLP, CRN-TMP, CRN-TML, and CRN-MLP
networks, respectively, which were lower than those using the
whole CRN. We also evaluated the comprehensiveness and
accuracy of seeds used in the RWR. The seeds were randomly
chosen from candidate nodes for all these five networks, and
we calculated the AUC values by performing LOOCV as above.
The AUC values under randomization tests were much lower
than those in real situations (0.45, 0.42, 0.50, 0.51, and 0.46)
(Figure 2). In addition, we detected the performance of the
common CRN, common PPI network, and BC-specific PPI
network, and as shown in Figure 2, their AUCs were 0.79,
0.74, and 0.70, respectively. The result indicated that the CRN
performed better than did the PPI, and BC-specific PPI was
better than common PPI. All these results confirmed that the
BC-specific CRN with known BC seeds is valid and reliable for
BC-associated risk factors.

Identification of BC-Associated Risk
Factors
We finally prioritized potential BC-associated risk factors by
performing the RWR method on the BC-specific CRN. The
prioritizations of all candidate BC-associated risk factors were
provided in Supplementary Table S4. The top-100-ranked
candidate risk factors, including 48 TFs, 2 miRNAs, 14 lncRNAs,
and 36 PCGs, were further validated by literature mining, in
which 71 factors had been verified to be associated with BC
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FIGURE 4 | Prioritized BC-associated factors are potential prognostic biomarkers. (A) Volcano plot for the DE genes of BC. The top-ranked TFs and PCGs that
differentially expressed were marked. (B) Volcano plot for the DE miRNAs of BC. The top-ranked miRNAs that differentially expressed were marked. (C) Volcano plot
for the DE lncRNAs of BC. The top-ranked lncRNAs that differentially expressed were marked. (D) Kaplan–Meier analysis for overall survival of patients with high-risk
or low-risk scores. P-value was calculated using the two-sided log-rank test.

in recently published articles (Supplementary Table S5). For
example, the first-ranked factor MYC was recently reported to
be upregulated by hematological and neurological expressed 1
(HN1) in BC and thus promoted the progression of BC (Zhang
et al., 2017). The TF risk factor SP1 was demonstrated to
upregulate the known BC-associated lncRNA TINCR, which in
turn stimulated cell proliferation of BC (Liu et al., 2018). The
top-rankedmiR-365 expression level was found to be significantly
higher in BC tissues, and the relatively high expression levels
promoted cell proliferation and invasion in BC by targeting the
known BC-associated PCG ADAMTS-1 (Li et al., 2015). The
lncRNA OIP5-AS1 was recently demonstrated to play a critical
role in promoting BC progression through acting as a miR-129-
5p sponge to upregulate the expression of SOX2 (Zeng et al.,
2019). The top-ranked PCG VEGFA, involved with miR-205
and FGF2, contributed to the resistance to chemotherapeutics
in BC, which promoted the BC progression and suppressed cell
apoptosis (Hu et al., 2016). Another top-ranked PCG BCL2L11
was involved in tamoxifen response of BC by disturbing the
expression levels of cleaved PARP and caspase-3, which would
affect BC prognosis (Yin et al., 2017). The extensive literature

survey exhibited the feasibility of our method to predict BC-
associated risk factors.

Functional Characteristics of Predicted
BC-Associated Risk Factors
The top-100-ranked candidate BC-associated risk factors then
underwent functional analysis separately (see section “Materials
and Methods” for details). For the top-ranked TFs, the top
20 significantly enriched GO terms and KEGG pathways were
shown in Figure 3. We observed that some cancer-related
GO terms, such as positive regulation of cell proliferation and
negative regulation of apoptotic process, were enriched in these
top-ranked TFs. Some significantly enriched KEGG pathways
were also associated with cancers, for instance, pathways in
cancer and MAPK signaling pathway. In addition, some other
cancer-related pathways, such as small cell lung cancer, bladder
cancer, and melanoma were also enriched in top-ranked TFs.
In accordance with the functions of TFs, multiple transcription-
related GO terms and KEGG pathways were enriched in the
top-ranked TFs. Similar to top-ranked TFs, the cancer-related
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GO terms and KEGG pathways, such as cell proliferation and
pathways in cancer, were also enriched in top-ranked miRNAs,
lncRNAs, and PCGs.

In order to further demonstrate that the top-ranked factors
were related with BC, we compared the GO terms enriched by the
top-100-ranked BC with those enriched by known BC-associated
factors. The numbers of overlapped enriched GO terms among
the top-ranked factors and known BC-associated factors were
high (Supplementary Figure S1A). We computed the functional
similarity scores between the BC-related GO terms and the top-
100-ranked factors enriched GO terms. The functional similarity
scores between the BC-related GO terms and those enriched by
top-ranked TFs, miRNAs, lncRNAs, and PCGs were 0.973, 0.968,
0.977, and 0.984, respectively (Supplementary Figure S1B). The
random functional similarity scores for each kind of factors,
which were calculated by randomly choosing the same number of
GO terms as the true situation, were significantly lower than the
real scores (Supplementary Figure S1B). The results showed that
all these P-values were less than 2.2× 10−16, which demonstrated
that the top-ranked factors were significantly associated with
BC. The functional characteristics of the top-ranked factors
indicated that our method was capable of identifying novel BC-
associated factors.

Prioritized BC-Associated Risk Factors
Are Potential Prognostic Biomarkers
We characterized the expression status of the top-100-ranked
BC-associated risk factors in BC. The 224 paired BC samples
and 15,591 genes with a CPM > 1 in at least half of the
samples were obtained from TCGA. Differential expression
analysis based on read counts was performed by using the edgeR
package. At a significance level of an adjusted P-value < 0.05
and | log2FC| > 1, we identified 3,000 significantly DE
genes, with 1,495 upregulated and 1,505 downregulated in BC
(Figure 4A and Supplementary Table S6). The top-100-ranked
BC-associated TFs and PCGs (48 TFs and 36 PCGs) were
compared with the DE genes. There were 18 TFs and 15 PCGs
exhibiting DE (Figure 4A) and hypergeometric test P-values
of 1.62 × 10−3 and 2.42 × 10−3 separately. Furthermore,
we also detected the expression status of the known BC-
associated genes. A total of 555 known BC-associated genes
were collected, and 161 genes were DE. The hypergeometric
test P-value was 1.04 × 10−8. We retained 206 paired BC
samples and 268 miRNAs with a CPM > 1 in at least half
of the samples from TCGA. We identified 86 significantly DE
miRNAs (Figure 4B) in total, and the two miRNAs in top-
100-ranked BC-associated factors were both DE miRNAs. The
hypergeometric test P-value was 1.09 × 10−3. A total of 546
known BC-associated miRNAs were obtained, and 74 miRNAs
were DE. The hypergeometric test P-value was <2.2 × 10−16.
The 210 paired BC samples with 12,727 lncRNA expression data
were obtained from TANRIC. By using the criteria described
in the “Materials and Methods” section, we identified 357 DE
lncRNAs (Figure 4C). The 14 lncRNAs in top-100-ranked BC-
associated factors embraced three lncRNAs exhibiting DE, and
the hypergeometric test P-value was 6.33 × 10−3. A total of 146

known BC-associated lncRNAs were obtained, and 12 lncRNAs
were DE. The hypergeometric test P-value was 7.39 × 10−4.
Furthermore, we depicted remarkable top-100-ranked TFs,
miRNAs, lncRNAs, and PCGs that expressed differentially in BC
(Figures 4A–C).

In addition, we assess the clinical relevance of these predicted
BC-associated risk factors. BC patients’ survival data and
transcriptome data were obtained from TCGA. In total, we
obtained 832 BC samples and then conducted a survival analysis
on these patient samples. We firstly performed the univariate Cox
regression analysis for each predicted BC-associated factor and
obtained a univariate Cox regression coefficient for each factor.
Then a risk score was computed for each BC patient by linear
integration of the expression data and Cox regression coefficient
of predicted BC-associated risk factors (see section “Materials
and Methods” for details). According to the median risk score,
all these BC patients were separated into a low-risk group (416
patients) and high-risk group (416 patients). The Kaplan–Meier
survival analysis was conducted for the two groups, and the log-
rank test P-value was less than 1.0× 10−3 (Figure 4D). All these
results indicated that the predicted BC-associated factors could
potentially serve as prognostic biomarkers for BC.

DISCUSSION

Breast cancer is the most common malignancy in women
worldwide with differing molecular signatures, prognoses, and
responses to therapies (Siegel et al., 2019). Although great
progress has been achieved in identifying risk factors of BC
development in the last decades, the comprehensive landscape
of genetic contribution to BC etiology remains to be further
elucidated (Skol et al., 2016; Sun et al., 2017). In addition,
the identification of novel BC risk factors is beneficial for BC-
targeted therapy, which represents a promising strategy for BC
treatment. A context-specific regulatory network, which provides
a general view of the transmission of genetic information and
characterizes the concrete biological status, has been proven as
a powerful tool for studying biological issues (Wang et al., 2015,
2018). The constructed BC-specific CRN and computational
method presented here prioritized BC-associated protein-coding
and non-coding genes, exhibiting high credible performance.

The landscape of CRN has been described elaborately in
the past decades (Liang et al., 2012; Wang et al., 2015).
However, exhaustive regulatory associations still need further
investigation. Especially, the depiction of lncRNA regulations to
TFs and PCGs is still at a preliminary level (Kopp and Mendell,
2018). Furthermore, competing endogenous RNA (ceRNA)
relationships that existed in TFs, miRNAs, lncRNAs, and PCGs
lead to further complicated regulations among these factors,
which should be taken into consideration in future analyses
of CRN (Tay et al., 2014). It also should be noted that the
algorithm provides potential associations rather than suggesting
causality. Further experiment confirmation is needed to clarify
the BC pathogenesis. Furthermore, BC can be categorized
into different subtypes based on the immunohistochemical
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analysis of the molecular markers, such as basal-like, HER2+,
luminal A, and luminal B. Single-cell RNA sequencing can
categorize the BC subtypes in more detail (Sun et al., 2017).
In general, different BC subtypes possessed distinct genetic
risk factors. With the abundance of research for the BC
subtype analysis, we will be able to prioritize subtype-specific
risk factors and provide more comprehensive information
for BC pathogenesis. In summary, we constructed a BC-
specific CRN which could characterize the complex regulatory
relationships of BC and serve as an effective tool to predict
BC risk factors, which was enlightening for other disease
gene prioritization.
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