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Using calibrations to obtain absolute divergence times is standard practice in molecular
clock studies. While the use of primary (e.g., fossil) calibrations is preferred, this
approach can be limiting because of their rarity in fast-growing datasets. Thus,
alternatives need to be explored, such as the use of secondary (molecularly-derived)
calibrations that can anchor a timetree in a larger number of nodes. However, the use
of secondary calibrations has been discouraged in the past because of concerns in
the error rates of the node estimates they produce with an apparent high precision.
Here, we quantify the amount of errors in estimates produced by the use of secondary
calibrations relative to true times and primary calibrations placed on distant nodes. We
find that, overall, the inaccuracies in estimates based on secondary calibrations are
predictable and mirror errors associated with primary calibrations and their confidence
intervals. Additionally, we find comparable error rates in estimated times from secondary
calibrations and distant primary calibrations, although the precision of estimates derived
from distant primary calibrations is roughly twice as good as that of estimates derived
from secondary calibrations. This suggests that increasing dataset size to include
primary calibrations may produce divergence times that are about as accurate as
those from secondary calibrations, albeit with a higher precision. Overall, our results
suggest that secondary calibrations may be useful to explore the parameter space of
plausible evolutionary scenarios when compared to time estimates obtained with distant
primary calibrations.

Keywords: molecular clocks, secondary calibrations, simulation, divergence times, timetree, confidence interval

INTRODUCTION

The use of calibrations to estimate absolute times in a phylogeny is a source of controversy for
many reasons; among these are that (i) few are available from independent sources (e.g., fossil
record), (ii) their phylogenetic placement can be incorrect, especially in cases of uncertain fossil
identification or phylogenetic position, and that (iii) calibration constraints (and the internal
distributions between them) are heavily debated, although new methods to estimate probability
densities of node ages are being developed (Marjanović and Laurin, 2007, 2008; Ho and Phillips,
2009; Inoue et al., 2010; Sauquet et al., 2012; Sterli et al., 2013; Heath et al., 2014; Hipsley
and Müller, 2014; Warnock et al., 2015; dos Reis et al., 2016; Kumar and Hedges, 2016; Didier
et al., 2017; Didier and Laurin, 2018; Bromham, 2019; Marshall, 2019). Despite these issues,
molecular clock analyses cannot avoid using calibrations if absolute time estimates are the ultimate
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goal. Alternative approaches that have been explored include the
direct use of substitution rates to estimate divergence times, but
these present other challenges such as their applicability when,
in many cases, these rates are measured from laboratory-grown
strains and may not accurately represent rates of strains in the
environment (Ho, 2007; Hipsley and Müller, 2014). A recently
developed new strategy, instead, suggests the use of horizontal
gene transfer events as time-calibrated constraints in a phylogeny
(Magnabosco et al., 2018; Wolfe and Fournier, 2018). While
this method holds promise, it currently has not been applied
widely and the reconstruction of horizontal gene transfer events
useful as calibration constraints is a challenging endeavor as it
relies on clear gene exchange patterns between groups, one of
which should also have primary calibrations. Thus, challenges
for these alternative calibration strategies are equally difficult
to overcome and, for now, limited improvements have been
made. Therefore, the process of assigning time constraints to
some nodes in a phylogeny still remains the primary source of
information to obtain absolute node times, despite the unbalance
between the amount of information (i.e., number of nodes that
can be calibrated) available and what would be required to obtain
accurate time estimates. This unbalance between availability and
need has led researchers to test a variety of alternatives to meet the
new needs by increasing calibration sources. These new strategies
are especially important in very large phylogenies due to the
increase in the ratio of unknown to calibrated nodes and, thus,
the potential increase in error propagation of estimates for nodes
that are far from a calibration point often caused by rate variation
among branches (Britton, 2005; Hug and Roger, 2007; Perie and
Doyle, 2012; dos Reis and Yang, 2013; Hipsley and Müller, 2014).

Some examples of alternative strategies to improve the
number and quality of available calibrations include (i) the
definition of boundaries is either based on the time boundaries
of the geologic stratum in which the fossil is found or based
on an accurate phylogenetic placement and timing of extinct
taxa (Marjanović and Laurin, 2007; Marshall, 2008; Sterli et al.,
2013; Warnock et al., 2017) (ii) the selection of representative
taxa, which effectively decreases the unknown/calibrated node
ratio (Britton, 2005; Perie and Doyle, 2012), and (iii) the use
of secondary calibrations (Sauquet et al., 2012; Hipsley and
Müller, 2014; Schenk, 2016). In this study we focus on secondary
calibrations, which are molecular time estimates obtained from
previous molecular clock analyses that were calibrated using
independent evidence (primary calibrations). The strongest
advantage of using derived (e.g., secondary, tertiary) calibrations
is that it effectively provides an infinite source of calibration
constraints, only constrained by the number of steps (nodes)
a researcher chooses between calibrated and unknown nodes.
However, this advantage is dependent on one fundamental
question: does the use of derived calibrations result in accurate
timetree estimates?

Two past studies have addressed this question with simulation
and empirical data analyses, using both Bayesian and maximum-
likelihood-based methods (Sauquet et al., 2012; Schenk, 2016).
Both found similar outcomes, with secondary calibration
estimates being younger than expected and with overly narrow
confidence intervals leading to small uncertainties around

inaccurate estimates. These results supported previous evidence
against the use of secondary calibrations reinforcing the practice
of avoiding them, if possible (e.g., Graur and Martin, 2004; Reisz
and Müller, 2004; Hug and Roger, 2007; Hipsley and Müller,
2014). However, questions about the performance of secondary
calibrations remain. For example, how is the error from primary
calibrations compounded into estimates based on secondary
calibrations? Can the performance of secondary calibrations be
predicted based on uncertainties in the primary calibrations? Is
the performance of secondary calibrations worse than that of a
small number of primary calibrations that are phylogenetically
distant from the nodes of interest (distant primary calibrations)?

To address these questions, we designed a simple simulated
scenario with the aim of testing if there are predictable patterns
when secondary calibrations are used. For this purpose we used
RelTime to estimate times because of its minimal assumption
requirements and speed of analyses (Tamura et al., 2012, 2018). In
our scenario we used two nested trees that share one overlapping
ingroup node that is used as the secondary calibration. In
one of the two trees we also selected three nodes to act as
primary calibrations. These were used with increasingly larger
uncertainties in their boundaries (from 0 to 20% departure
from the true, simulated time) and biases (either balanced
around the true time or skewed toward younger or older times).
Based on the results from previous studies, we expected that
estimates based on secondary calibrations would be consistently
and precisely underestimated relative to the use of primary
calibrations and the true times. Instead, we found that secondary
time estimates are generally overestimated by approximately 10%
but with low precision (large confidence intervals) and with
overall patterns that are clearly predictable. These results suggest
that our understanding of the accuracy of secondary calibrations
is still incomplete and more comprehensive testing is required to
determine their effect if used in empirical datasets.

MATERIALS AND METHODS

Dataset
We started from a main tree of 248 species represented in a
tree of life (Hedges and Kumar, 2009). This main tree was
split into two subtrees (Figure 1), tree A (173 species) and
tree B (71 species), that represent two clades and maximize
the size of the dataset in each tree (see Supplementary Data
Sheet S5 for NWK formatted tree files). We then added to these
clades two shared lineages which were arbitrarily chosen and an
outgroup. This setup created two nested phylogenies that were
used to test hypotheses on the performance of the calibrations.
To simulate multiple genes, we used a set of 446 empirical
parameters (e.g., length, GC content, initial evolutionary rate)
and altered the main timetree according to an autocorrelated
model (ν = 1) that resulted in estimated rates of up to ± 25% of
the mean rate (Thorne and Kishino, 2002; Rosenberg and Kumar,
2003) (Supplementary Presentation S1 and Supplementary
Figure S1). This effectively created 446 phylogenies with different
branch lengths but same topology. These parameters were given
to SeqGen to simulate genes under a Hasegawa-Kishino-Yano
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FIGURE 1 | Topologies used in simulated analyses for Tree A (A) and Tree B (B) red dots primary calibration nodes; blue dot: overlapping node between trees A and
B used as secondary calibration in tree (B). Gray branch outgroup.

(HKY) model (Rambaut and Grassly, 1997). Ten random sets
of individual genes were then concatenated to reach a length
of at least 30,000 sites (30,029–30,725). In addition, we also
created one concatenation with all genes (approximately 604,000
sites) and two concatenations of half the number of genes
(223 genes per concatenation) with lengths of 273,812 and
330,187. Each of these concatenations were used independently
in downstream analyses. Patterns between the 30k, half, and full
concatenations were similar. Therefore, we discuss results from
the 30k concatenations because they allow us to evaluate the
variance of estimates among datasets. For primary calibrations,
three nodes from tree A were chosen: a relatively shallow node
at 63.9 million years ago (mya), and two that were deeper in
the tree but in two different clades (209.4 and 220.2 mya). The
overlapping node between tree A and B has an intermediate
depth (167 mya) within tree A and is centrally placed within
the topology of tree B (Figure 1). These primary and secondary
calibrations were chosen to minimize the effect that biased
location (e.g., all within one clade) and divergence times (e.g., all
young nodes) may have on the accuracy of estimations.

Time Estimation
Time estimates for each concatenation were calculated using
RelTime as implemented in the command-line version of
MEGA X (Kumar et al., 2018). Each analysis was run on
the Michigan State University HPCC-ICER cluster using a
HKY model, uniform rates among sites, all sites, a maximum
likelihood estimator, and local clocks. Our goal was to explore
the accuracy of time estimates for the nodes in tree B when
different types of calibration were used. Thus, we used three

combinations of calibrations, all with minimum and maximum
constraints: tree A with three primary calibrations (Figure 1,
red dots) + tree B with one secondary calibration (this is the
overlapping node between tree A and B; Figure 1, blue dot)
[B_secondary]; tree B with one primary calibration (same node
as the previous combination) (Figure 1, blue dot) [B_primary];
tree AB (the combination of trees A and B) with the same
three primary calibrations used in tree A (Figure 1, red dots)
which are distant from the nodes in tree B [B_distant_primary].
Additionally, each of these combinations was tested for seven
different scenarios that were meant to account for increasing
uncertainty on primary calibrations: three of these scenarios
had increasingly larger uncertainties, from 0 to 20%, but spread
evenly around the true time [0 balanced (0B), 10 balanced
(10B), and 20 balanced (20B)]; two scenarios had the error
skewed toward younger times [10 low (10L) and 20 low (20L)]
and two with the error skewed toward older times [10 high
(10H) and 20 high (20H)]. This set up allowed us to test
if and how the error in primary calibrations propagates to
estimates based on secondary calibrations. Using a subset of
our dataset, we also compared our results obtained from tree
A using RelTime to results obtained from MCMCTree and
found the two to be highly correlated (less than 3% different)
(Yang, 2007; Rambaut et al., 2018). Additionally, we tested the
potential effect of using a non-partitioned concatenation on
the accuracy of the RelTime results by re-analyzing one of
our concatenations, partitioning it by gene. Also, in this case,
the results are comparable (less than 3% difference), suggesting
that the use of a single partition is not biasing the results (see
Supplementary Material).
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Measures of Accuracy
We assessed the outcomes of our molecular clock analyses with a
number of measures. First, we measured the percent departure
of the estimated times (ET) from the known (simulated) true
times (ET accuracy). Second, we calculated the frequency of
confidence intervals (CIs) that included the true times (TT) (CI
accuracy). Third, we calculated the range of each CI normalized
to the depth of the node [(maximum–minimum boundary)/TT]
(CI precision). Fourth, we measured the distance of each CI
boundary to the true time [| (CI boundary – TT)/TT] (CI
skewness). We applied the latter measure only to the overlapping
node between tree A and B to evaluate the effect of skewness
on estimates based on secondary calibrations. Each of these
measures was applied to all analyses. We report the averages
across the 10 concatenations with ± 1 standard deviation
in parenthesis because no significant difference was detected
among individual concatenations (see Supplementary Data
Sheets S1–S4 for concatenation specific estimates).

RESULTS

Generally, secondary calibrations are used when primary
calibrations are not available or are believed to be too few to
provide accurate estimates on nodes that are distantly related.
While many studies have used this approach as a last-resort
method, a systematic evaluation of their performance might
open up the use of secondary calibration to more (and larger)
phylogenies, thus expanding the applicability of molecular clocks
to complex datasets. To investigate and quantify the amount
of error associated with secondary calibration, we used a
simulated approach by creating two nested trees (A and B)
in which one node estimate from primary calibrations in A
is used as a secondary calibration in B. We then quantified
the accuracy of estimated times (ET) vs. simulated true times
(TT) and the properties of the confidence intervals (CIs) in
both trees relative to the type of calibration used. Each analysis
was repeated for a series of scenarios with variable levels
of uncertainty in the primary calibrations to investigate how
estimates derived from secondary calibrations may be affected
(see section “Materials and Methods”).

In practice, we simulated 100s of nucleotide alignments
with a variety of empirically derived parameters (length, initial
evolutionary rate, transition/transversion ratio, GC content;
Supplementary Figure S1) for a phylogeny of 248 lineages that
was split into two nested trees (A with 176 species and B with 74
species). We used variable numbers of genes in concatenation to
obtain the alignments used to estimate divergence times. On three
nodes in A, we applied primary calibrations with varying levels of
uncertainty around their true time (see Table 1). Then, the CI of
the molecular time estimate for the common node between A and
B was used as secondary calibration for tree B.

Our evaluations of time estimates’ accuracy rely on two basic
measures: similarity of the estimated time to the simulated
true time (ET accuracy) and the general properties of the
CIs (accuracy, precision, skewness). In addition, we also
compared estimated times from secondary calibrations to those

TABLE 1 | Scenarios of varying uncertainty around the true time (TT) for primary
calibration boundaries.

Scenario Calibration boundaries

Minimum time Maximum time

0B −1 my +1 my

10B −5% of TT +5% of TT

20B −10% of TT +10% of TT

10L −10% of TT +1 my

10H −1 my + 10% of TT

20L −20% of TT +1 my

20H −1 my +20% of TT

Each scenario was applied to all three primary calibrations at once and run
independently from the other scenarios. The uncertainty associated with the
boundaries varies from a minimum of 0% (±1 million year of the true time) to a
maximum of 20%. my: million years.

obtained from B_distant_primary calibrations when the two
trees were combined.

Assessing Accuracy of Primary
Calibrations
The first step was to measure the trends in accuracy of
estimated times and CIs from primary calibrations in tree
A. On average, the ET differed from TT by approximately
3% with a tendency to underestimate the results (average of
slopes = 0.97, SD = 0.06) which reflects a generally higher
confidence on younger (minimum) calibration boundaries than
older (maximum) ones (Figure 2, black triangles; Supplementary
Figure S2 and Supplementary Table S1). The observed trends
in accuracy were as expected relative to the error associated
with calibration boundaries: balanced calibrations (0, 10, and
20B) performed the best, boundaries skewed toward younger
times (10 and 20L) produced underestimated times and
boundaries skewed toward older times (10 and 20H) produced
overestimated times.

On average, the CI ranges included the true time in 87% of
the cases with the 0B scenario being the most likely to fail (78%
of CIs include the TT) (Table 2). This is expected as narrower
calibration boundaries generate narrower CI ranges that are less
likely to include the TT in light of the underestimated divergence
times. Similarly, in an average of 87% of all the cases the CI
included the true time for the node overlapping in trees A and
B and, in those cases in which the TT was not included, the
minimum boundary was < 5% older than the TT (the maximum
boundary was never younger than the TT). In only one scenario,
20H, the difference between TT and minimum boundary was
6.5%, which is expected given the large uncertainty skewed
toward deeper times. Moreover, in 93% of the cases the CI of the
overlapping node was skewed toward older times which means
that, when used as a secondary calibration, this node is expected
to behave similarly to the “high” simulated scenarios (see below).
Overall, the trends observed from different calibration scenarios
in tree A are as expected and provide an accurate basis for the
estimation of times using a secondary calibration.
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FIGURE 2 | Comparison of average slopes for each of the seven scenarios in the four callibration setting. Gradient of color represents the accuracy of the estimates
yellow is ± 5%, Orange ± 10% red = ± 15%. Each data point represents the average slope of the 10 concatensions of true time vs. estimate time with ±1 standard
deviation.

Assessing Accuracy of Secondary
Calibrations
Using the CI estimated for the overlapping node between tree
A and tree B, we obtained secondary divergence times and
measured the accuracy of these secondary node ages relative to

TABLE 2 | Confidence intervals (CIs) accuracy (proportion of CIs that include the
simulated true time) for each of the seven scenarios.

Scenario CI accuracy

Tree A Tree B Tree B Tree B
primary secondary distant primary primary

0B 0.78 1.0 0.98 0.91

(0.1495) (0.0044) (0.0222) (0.0287)

10B 0.87 1.0 0.97 1.0

(0.1333) (0.0044) (0.0306) (0.0048)

20B 0.95 1.0 0.98 1.00

(0.0704) (0.0044) (0.0181) (0.0000)

10L 0.86 1.0 0.89 0.99

(0.0608) (0.000) (0.1139) (0.0000)

10H 0.84 1.0 0.99 0.99

(0.1590) (0.0059) (0.0097) (0.0125)

20L 0.88 1.00 0.85 1.0

(0.1223) (0.0000) (0.1528) (0.0042)

20H 0.89 0.99 1.0 0.99

(0.1658) (0.0240) (0.0014) (0.0097)

Average 0.87 1.0 0.95 0.98

(0.0525) (0.0044) (0.0589) (0.0313)

Values shown are averages of all 30k concatenations with 1 standard
deviation in parenthesis.

true times and to estimated times from primary calibrations on
distant nodes (we refer to this scenario as B_distant_primary).
The first measure is unrealistic in real cases but allows us to
quantify the overall error produced by secondary calibrations
relative to the true times, while the second measure leads to a
quantification of the error introduced by secondary calibrations
compared to distant primary ones.

Contrary to previous studies, our results show an average
10% (±6%) overestimation of molecular time estimates against
true times with the strongest overestimation in the scenarios
with the largest inaccuracy on the maximum boundary (10,
20H) (Figure 2, green squares; Supplementary Figure S3
and Supplementary Table S1). This is predicted from the CI
boundaries of the secondary calibrations that are most strongly
skewed toward older times in the “high” scenarios. Interestingly,
the amount of inaccuracy produced by secondary calibrations
is comparable to the average 7% (±6%) departure of the
estimates from the true times produced by distant primary
calibrations, although in these cases the node ages are generally
underestimated (Figure 2, orange circles; Supplementary
Figures S4, S5 and Supplementary Table S1).

Despite the overestimation produced by the secondary
calibrations, > 99% of CIs include the true time (Table 2). The
high probability of the true time being included in the CI of
each node is due to the large CI range estimates (78–95% of
the true time) (Table 3). This is approximately double the size
of the CIs obtained from distant primary calibrations (42–53% of
the true time) and from primary calibrations. The larger size of
the CIs when secondary calibrations are used reflects the larger
uncertainty in the calibrating range. Indeed, while the primary
calibrations were allowed to have at most a 20% uncertainty, the
CIs of the node used as secondary calibration have, on average,

Frontiers in Genetics | www.frontiersin.org 5 March 2020 | Volume 11 | Article 252

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00252 March 18, 2020 Time: 16:51 # 6

Powell et al. Accuracy of Estimates From Secondary Calibrations

TABLE 3 | Confidence interval (CI) precision relative to the simulated true time.

Scenario CI Precision

Tree A Tree B Tree B Tree B
primary secondary distant primary primary

0B 0.29 0.78 0.45 0.27

(0.0507) (0.1409) (0.1420) (0.0548)

10B 0.32 0.78 0.43 0.38

(0.0606) (0.1740) (0.0826) (0.0516)

20B 0.45 0.89 0.49 0.51

(0.0614) (0.1756) (0.0943) (0.0474)

10L 0.32 0.78 0.42 0.37

(0.0543) (0.1626) (0.0777) (0.0487)

10H 0.33 0.82 0.45 0.40

(0.0655) (0.1867) (0.0886) (0.0540)

20L 0.44 0.82 0.48 0.50

(0.0567) (0.1316) (0.0827) (0.0353)

20H 0.47 0.95 0.53 0.54

(0.0670) (0.1780) (0.1045) (0.0525)

Average 0.37 0.83 0.46 0.42

(0.0749) (0.0065) (0.0039) (0.0955)

Averages of the 30k concatenations with 1 standard deviation are
shown in parentheses.

double that amount, thus producing twofold larger CIs in the
estimated nodes.

It is possible that the results obtained in the estimation of node
ages for tree B with secondary calibrations could have been driven
by anomalies in branch lengths and evolutionary rates specific
to this phylogeny rather than the type of calibration used. To
identify these potentially confounding factors we first applied a
primary calibration on the same node that was used as secondary.
If the location and branch lengths associated with the calibration
node were biasing the results, the accuracy of estimated times
should have been lower even with primary calibrations. Instead,
we observed similar accuracy and precision to what was obtained
with three calibrations in tree A [Figure 2, blue diamonds;
Supplementary Figure S6 and Supplementary Table S1; ET on
average within 5% of TT, >98% of CIs include the TT (Table 2),
and the CI precision is approximately 40% (Table 3)]. Then,
we compared the relative times (before calibrations are applied)
of nodes represented only in tree B, only in tree A, and in the
combined tree AB. If trees A and B differed substantially in
the relative rates of their branches, we would expect that the
relative times would not be comparable to those obtained with
the combined tree AB. Again, we found the opposite result,
which suggests that evolutionary rates do not differ significantly
between trees (Supplementary Figure S7). These results show
that the estimated times obtained are driven primarily by the
choice of calibration and that, therefore, they are a valid measure
of calibration performance.

These results show predictable trends for the estimates of
secondary calibrations that closely mirror the uncertainty of the
primary calibrations. Additionally, they show that, at least in this
simulated scenario, the absolute accuracy of using a secondary
calibration is similar to that of using distant primary calibrations,
although the precision is approximately half.

DISCUSSION

Despite the potentially broad applications of secondary
calibrations, their use has been hindered by concerns over: (i) the
process of implementation of time uncertainties from primary
calibrations, (ii) the predictability of their performance, and (iii)
their overall accuracy and precision. A few studies in the past
15 years have evaluated these three points and generally agreed
that secondary calibrations produce systematically biased but
precise estimates, effectively attributing to secondary calibrations
the worst kind of error: wrongly precise (Graur and Martin, 2004;
Hug and Roger, 2007; Sauquet et al., 2012; Hipsley and Müller,
2014; Schenk, 2016). However, some key aspects of secondary
calibration assessment are still missing, such as a systematic
analysis of how errors in primary calibrations are compounded
in the estimates from secondary calibrations and how secondary
vs. primary but distant calibrations perform relative to true
(simulated) times. Understanding these key aspects would allow
us to determine if, and under which conditions, secondary
calibrations might produce informative results.

However, because absolute time estimates are the result of
the entanglement of evolutionary rates, branch lengths, and
calibrations, another fundamental property of a molecular clock
assessment analysis is being able to identify the source of
observed errors and, if possible, predict the behavior of model
parameterizations based on specific scenarios. This approach can
be difficult in methods, such as Bayesian, that produce estimates
based on many interacting priors. Instead, a theoretically
more straightforward approach, such as RelTime, allows to
analyze each parameter independently and isolate the source or
sources of errors.

Using this approach, we applied secondary calibrations to a
suite of simulated alignments with the goal of analyzing three
aspects: (i) the overall accuracy of secondary time estimates
compared to true times, (ii) the relative accuracy of secondary
vs. primary time estimates, (iii) the trends in the errors for the
secondary time estimates relative to uncertainties in primary
calibrations. By using the same substitution model and topology
as in the simulations, we limited issues from phylogenetic
uncertainty, and by using uniform, flat distributions for the
calibrations we minimized the need to account for decreasing
probabilities in the tails of non-uniform calibration distributions.
Despite this, our study design has some limitations and caveats
that should be taken into consideration when interpreting our
results. For example, the use of uniform distributions is not
common in empirical data. In real data, calibration constraints
are considered more likely to be close to the earliest known fossil
evidence for the lineage, thus favoring the use of lognormal,
normal, or exponential distributions that are expected to weigh
estimates toward younger times (Hedges and Kumar, 2003; Ho
and Duchêne, 2014; Ware and Barden, 2016; Didier and Laurin,
2018). Given our overestimated times in the simulations, using
lognormal or exponential distributions would likely improve the
performance of secondary calibrations. Thus, our use of uniform
distributions was more conservative (more likely to highlight
estimation biases produced by secondary calibrations). Second,
all our primary calibrations have minimum and maximum
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constraints. Molecular clock methods are known to perform
better when both boundaries are provided but this is often not
possible in empirical data analysis (Marjanović and Laurin, 2007;
Parham et al., 2012; Warnock et al., 2012, 2017). Because one
of our goals was to evaluate error propagation from primary to
secondary calibrations, providing min-max boundaries allowed
us to simulate the exact amount of uncertainties in calibrations
and, thus, to track their effect on derived time estimates. The
predictable correlation between errors in primary and secondary
calibrations could be used to investigate the effect of removing
one boundary on a primary node.

The measures we used to determine the effects of the use of
secondary calibrations are the typical ones of molecular clock
assessment studies: the similarity of true times and estimated
times, the frequency of CIs that include the true time, and the
precision of CI (their range relative to the age of the node).
In addition to these, we also considered the relative error (TT
vs. ET) and CI precision of secondary calibrations vs. distant
primary calibrations and the predictability of estimates based
on secondary calibrations based on the simulated scenario.
Surprisingly, our results are opposite to those found by two
recent studies: our results show that estimates based on secondary
calibrations are, in general, overestimated (by approximately
10%) with poor precision (large CIs). While these results are far
from optimal, they show that our understanding of estimates
based on secondary calibrations is still incomplete and that
their dismissal might be premature. Perhaps more interestingly,
we also found that the magnitude of the error in estimates
based on secondary calibrations is approximately the same as
that produced by the use of distant primary calibrations but
in the opposite direction (secondary calibrations overestimate,
distant primary ones underestimate). This result is significant
because one of the strategies commonly adopted to avoid using
secondary calibrations is to increase the dataset size to obtain
one or more primary calibrations (Perie and Doyle, 2012). These
will inevitably be far away, in the phylogenetic sense, from the
nodes of interest, potentially leading to errors, as we see in our
simulations. However, an advantage of using distant primary
calibrations would be two-fold higher precision (narrower CI
ranges) that does not come at the expense of a lower probability of
including the true time. It should be noted that in our simulated
scenario primary calibrations are given with minimum and
maximum boundaries which are expected to increase accuracy
and precision. It is possible that the precision of distant primary
calibrations would be negatively affected in empirical analyses
that do not use maximum constraints (Marjanović and Laurin,
2007, 2008; Marshall, 2019).

A deeper analysis of estimates from proximal primary,
distant primary, and secondary calibrations can explain the
trends observed. First, the large CI ranges from secondary
calibrations are caused by the large uncertainty in the
boundaries derived from the primary calibrations. Indeed,
these boundaries include a 30–40% error, which is almost
double the maximum amount of error assigned to primary
calibrations. Therefore, these results suggest that estimates
based on secondary calibrations incorporate the error present
in the primary estimate in addition to their own. Second,

the directionality of the secondary estimated errors (over- or
underestimation) is also clearly dependent on the skewness of the
primary calibration boundaries. For example, in our simulated
cases, we saw that CIs for the overlapping node were almost
always skewed toward older times by approximately 30%, driving
the observed overestimation. Thus, careful choice of accurate
primary calibrations is key when secondary calibrations are to be
used. Unfortunately, errors associated with primary calibrations
are often unknown in empirical data (but see Didier and
Laurin, 2018); but knowing that these errors are included in the
estimates based on secondary calibrations with predictable trends
makes it possible to test the plausibility of different evolutionary
hypotheses based on what is known of the primary calibrations.

A question that remains open is why our results differ
so strikingly from those of previous studies. While additional
analyses will be necessary to provide an answer, a few hypotheses
are possible: first, previous studies used primarily Bayesian
methods that are known to depend strongly on priors (dos Reis
and Yang, 2013; dos Reis et al., 2016). It is possible that the priors
affected the results; but the magnitude of this effect, if present,
is unknown. Second, the two previous studies did not take into
consideration the error associated with the primary calibrations.
In one case (Schenk, 2016) it was not simulated and in the other
(Sauquet et al., 2012) it was not known because an empirical
dataset was used. From the analyses of multiple scenarios (from
many different studies) that the authors carried out it is obvious
that the youngest estimates based on secondary calibrations are
obtained when only young proximal primary calibrations are
used, which is the same trend we observe in our analyses and in
other, earlier, studies (Brochu, 2004a,b).

Overall, our simulation study shows that our current
understanding of the performance of secondary calibrations is
still incomplete and that their dismissal from implementation in
favor of other solutions (e.g., distant primary) might not produce
the desired increase in accuracy. Additionally, our results show
that the performance of secondary calibrations can be predicted
based on the uncertainty of the primary calibrations (in our case
the different scenarios). Thus, secondary calibrations can be used
as a testing tool for different evolutionary scenarios. Therefore,
we suggest that rather than avoiding secondary calibrations, they
should be used and compared with distant primary ones to
test the limits of the parameter space of plausible evolutionary
scenarios of divergence times.
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