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As an important approach to cancer classification, cancer sample clustering is of
particular importance for cancer research. For high dimensional gene expression data,
examining approaches to selecting characteristic genes with high identification for cancer
sample clustering is an important research area in the bioinformatics field. In this paper, we
propose a novel integrated framework for cancer clustering known as the non-negative
symmetric low-rank representation with graph regularization based on score function
(NSLRG-S). First, a lowest rank matrix is obtained after NSLRG decomposition. The
lowest rank matrix preserves the local data manifold information and the global data
structure information of the gene expression data. Second, we construct the Score
function based on the lowest rank matrix to weight all of the features of the gene
expression data and calculate the score of each feature. Third, we rank the features
according to their scores and select the feature genes for cancer sample clustering.
Finally, based on selected feature genes, we use the K-means method to cluster the
cancer samples. The experiments are conducted on The Cancer Genome Atlas (TCGA)
data. Comparative experiments demonstrate that the NSLRG-S framework can
significantly improve the clustering performance.

Keywords: cancer gene expression data, low-rank representation, feature selection, score function, clustering
INTRODUCTION

High-throughput DNAmicroarray technology has long been used to collect biomedical cancer gene
expression data (Russo et al., 2003). In general, gene expression data contain a notably large number
of genes (high dimension), a small number of samples (low sample size), irrelevant genes and noisy
genes caused by complex processing (Mohamad et al., 2010). Therefore, it is necessary to select
feature genes or informative genes that contribute to identifying different cancers and the cancerous
state (Mohamad et al., 2013; Ge and Hu, 2014; Tang et al., 2014). The selected genes have potential
for use in developing cancer treatment strategies (Rappoport and Shamir, 2018). However, the high-
dimensional and low-sample-size characteristics of the cancer gene expression dataset present a
January 2020 | Volume 10 | Article 13531

https://www.frontiersin.org/article/10.3389/fgene.2019.01353/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01353/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01353/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01353/full
https://loop.frontiersin.org/people/778014
https://loop.frontiersin.org/people/805365
https://loop.frontiersin.org/people/838718
https://loop.frontiersin.org/people/862470
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles
http://creativecommons.org/licenses/by/4.0/
mailto:wangjuansdu@163.com
https://doi.org/10.3389/fgene.2019.01353
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01353
https://www.frontiersin.org/journals/genetics
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01353&domain=pdf&date_stamp=2020-01-22


Lu et al. NSLRG Method for Cancer Clustering
challenge for researchers in terms of data mining. To mitigate
this problem, researchers have proposed many methods (Cui
et al., 2013; Ge and Hu, 2014; Wang et al., 2016; Wang et al.,
2018; Xu et al., 2019). Among the existing methods, feature
selection is a reasonable method that has achieved great success.

Feature selection is an important data processing method that
can select the most important feature subset from a set of features
and reduce the dimension of the feature space. The existing
feature selection methods can be divided into two groups:
“wrapper” methods and “filter” methods (Kohavi and John,
1997). Wrapper methods use the learning algorithm to
evaluate the candidate features. However, because wrapper
methods are highly complex with a large amount of
calculation, they are not suitable for large-scale datasets
(Langley, 1994). Filter methods select a feature subset via the
evaluation function. Construction of an evaluation function is
based on the correlations between the features and properties of
the raw data, such as the distance measures, information
measures, dependence measures or others (Dash and Liu, 1997;
Talavera, 2005; He et al., 2006). Among the existing evaluation
functions, as a criterion, the data variance might be the simplest
evaluation for feature selection. The main idea of the data-
variance-based approach is to capture the directions of the
maximum variance in the data, which reflects the major power
of the data. The Principal Component Analysis (PCA) method
and its variants belong to the filter methods and are used to find
features that are useful for recovering data. However, there is no
reason to confirm that selected features can effectively
discriminate between data points in different classes. He et al.
proposed the Laplacian Score (LS) method to select features with
high identification, and the LS method is a “filter”method that is
independent of other methods (He et al., 2006). The LS method
constructs a nearest neighbour graph to preserve the local
geometric structure. The selected features can reflect the local
structure of the data space.

As we know, the global structure plays an important role in
clustering when the data contain multiple subspaces (Liu et al.,
2010). The LS method focuses excess attention on the
relationships between local data points but ignores the influence
of global data structures. This drawback might lead to reduced
discrimination effects of the selected feature when the given data
contain multiple subspaces. For the feature selection method, it is
a challenge to satisfactorily characterize and represent global data
structures from a dataset with multiple subspaces. Fortunately, the
Low-Rank Representation (LRR) method solves this issue nicely.
The LRR method can find a low-rank matrix to capture and
represent the global structure of the raw dataset (Liu et al., 2010).
The key to the LRR method is that the high-dimensional data can
be represented by potential low-dimensional subspaces (You et al.,
2016). In bioinformatics, LRR has achieved great success in gene
expression data mining. For example, Cui et al. used the LRR
method to identify subspace gene clusters and obtained good
results (Cui et al., 2013). To preserve the intrinsic geometric
structures of gene expression data, Wang et al. introduced graph
regularization into LRR and proposed the Laplacian regularized
LRR (LLRR) method (Wang et al., 2016). Recently, LLRR was
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applied to cancer sample clustering (Wang et al., 2019a).
Furthermore, Wang et al. introduced the mixed-norm to
increase the robustness of the LLRR method and proposed the
mixed-norm Laplacian regularized LRR (MLLRR) method for
tumour sample clustering based on penalized matrix
decomposition (Wang et al., 2018). However, cancer sample
clustering is processed on the obtained low-rank matrix, which
is the global structural representation of the raw data. These LRR-
based approaches mainly consider the global structure of data, but
sometimes they ignore the single feature gene.

Motivated by the above insights, we propose a novel
framework that integrates the advantages of the LRR and LS
methods. Based on the multi-cancer gene expression dataset, the
proposed framework is used to select the feature gene for cancer
sample clustering.

First, we incorporate the constraints of the non-negative
symmetric low-rank matrix and graph regularization in the LRR
method and propose a non-negative symmetric low-rank
representation graph regularized method, or NSLRG method for
short. The NSLRGmethod considers the property and structure of
the gene expression data. The NSLRG method obtains the lowest
rank matrix, which preserves the local data manifold information
and the global data structure information of the raw data.

Second, according to the lowest rank matrix, we construct a
Score function to evaluate each gene for selection of the feature
genes. The importance level of a gene depends on its significance
for the global and local structures of the raw data. We integrate
the NSLRG method with the Score function to achieve the aim of
evaluating and selecting feature genes, and we refer to it as the
NSLRG-S framework.

Finally, we apply the K-means method to cluster cancer
samples based on the selected feature genes. Based on the
different multi-cancer gene expression data, the experimental
results suggest that the performance of the NSLRG-S framework
is better than that of other methods.

In summary, the contributions of this paper include the
following main aspects:

(1.) We propose a novel data mining method known as the
NSLRG method. The NSLRG method operates under graph
regularization and non-negative symmetric low-rank matrix
constraints. The NSLRG method can learn the lowest rank
matrix to satisfactorily represent the gene expression data
and can capture the global structures and local geometric
structures of the raw data. Non-negativity is more consistent
with biological modelling. The symmetric constraint
improves the interpretability of the lowest rank matrix. The
constraints of non-negativity and symmetry facilitate the
lowest rank matrix to learn the structure of the gene
expression data.

(2.) Based on the lowest rank matrix, we propose a Score function
to select the feature genes for cancer sample clustering. The
selected feature genes have important significance to the raw
data. In the clustering of cancer samples, the selected genes
have strong discriminability to realize the classification of
different samples.
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(3.) We present a novel feature selection framework, known as
NSLRG-S, that is designed to evaluate and select the feature
genes for cancer sample clustering. Based on this framework,
the selected result of the gene expression dataset has lower
dimensionality. In multi-cancer sample clustering, this
method has a high recognition rate to find subsets using the
selected result as experimental data. We conduct extensive
experiments to demonstrate that the feature gene subset
selected by NSLRG-S has good performance in cancer
sample clustering.

The remainder of this paper is organized as follows. In section
Related Work, we briefly review the original LRR and several
related variants as well as the LS method. In section Method, we
first present the NSLRG method and its optimal solution, and
based on the Score function, the NSLRG-S framework is clearly
given for modelling of multi-cancer gene expression data.
Section Experiments analyses and discusses the NSLRG method
based on multiple evaluation indicators and convergence
analysis. The performance of the NSLRG-S framework is
validated by experiments based on synthetic data and multi-
cancer gene expression data. Section Conclusions Work presents
the conclusion of our work.
RELATED WORK

In this section, we briefly introduce the original Low-Rank
Representation (LRR) (Liu et al., 2010), the related variants
based on the original LRR method, and the Laplacian Score
method (He et al., 2006).

Low-Rank Representation
Original LRR Method
The Low-Rank Representation (LRR) method is an efficient
method for exploring observed data and subspace clustering.
The main idea is that each data sample can be represented as a
linear combination of the dictionary data. In general, the matrix
X = [x1,x2,…,xn]∈Rm×n represents the observed data, of which
each column is a data sample. Therefore, the matrix X contains n
data samples drawn from independent subspaces. The matrix
D = [d1,d2,…,dk]∈Rm×k represents the dictionary data and is
overcomplete. The general model of the LRR method is
formulated as follows.

min
Z

rank Zð Þ   s : t :    X = DZ, (1)

where the matrix Z∈Rk×n is the coefficient matrix. The aim of
this model is to learn a lowest rank matrix Z* to represent the
observed data X. In the actual application, the matrix X always
replacesD as the dictionary data (Liu et al., 2010; Liu et al., 2013).
Therefore, Z becomes a square matrix and Z∈Rn×n. The element
zij ∈ Z*n�n can denote the confidence of sample i and j in the
same subspace (Wang et al., 2019b). Hence, the matrix Z* can be
used in subspace clustering that clusters data samples into several
sets, with each set corresponding to a subspace.
Frontiers in Genetics | www.frontiersin.org 3
The problem of min
Z

rank(Z) is a rank function, which is

difficult to optimize with an NP-hard nature. To mitigate this
problem, the best alternative is convex relaxation on problem (1),
and it is written as follows.

min
Z

∥Z ∥*   s : t :    X = XZ, (2)

where ∥⋅∥* is the nuclear norm, and ∥Z∥* is defined as ∥Z ∥* =

on

i di, where di is the singular value of matrix Z∈Rn×n. It has been

confirmed in the literature (Cai et al., 2010) that matrix Z of the
LRR can capture the global structure of the raw data using the
nuclear norm item. Furthermore, to address the real data under
the noise and outliers, a more reasonable formula is applied after
adjustment, and it is expressed as follows.

min
Z,E

∥Z ∥* +l ∥E ∥P   s : t :  X = XZ + E, (3)

where ∥E∥P is the error term, and it selects a different P to model
special noise or outliers based on error prior information, such as
l1-norm (∥E∥1) and l2,1- norm (∥E∥2,1) (Chen and Yang, 2014),
and l > 0 is the parameter that trades off the effect of the
error item.

Many researchers have attempted and proposed variants
based on the original LRR method. The main idea is to
introduce constraint items to optimize or improve existing
methods. For example, the original LRR method is improved
by considering the geometric structures within the data,
including the graph regularization method (Lu et al., 2013) and
k-nearest neighbour graph method (Yin et al., 2016). The
different norm items are used to improve the robustness of the
original LRR method (Wang et al., 2018) and others.

LRR With Graph Regularization
Under certain conditions, the geometric structure within the
data is crucial for the result that we desire. To address this
issue, researchers introduced graph regularization into the
LRR method to create the graph-regularized low-rank
representation (GLRR) method (Lu et al., 2013). The equation
of GLRR is written as follows.

min
Z,E

∥Z ∥� +l1tr ZLZT� �
+ l2 ∥ E ∥2,1  s : t :   X = XZ + E, (4)

where the error item uses the l2,1-norm and ∥E ∥2,1 =on

j=1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

i=1(½E�ij)2
q

, tr(⋅) is the trace of the matrix, L is the graph

Laplacian, and l1 and l2 are two parameters used to balance the
graph-regularized item and the error item. Based on manifold
learning, the graph-regularized item achieves the aim that
representative data points zi and zj can hold the property of
the data points xi and xj of X, which are closed in the intrinsic
manifold. Therefore, the inherent geometric structure in the raw
data is preserved in the low-rank matrix Z.

Non-Negative LRR With Sparsity
The non-negativity constraint ensures that every data point is in
the convex hull of its neighbours. The sparse constraint ensures
that each sample is associated with only a few samples. The non-
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negative and sparse low-rank matrix supplies a well
discriminated weight for the subspace and information group.

Inspired by the above insights, Zhuang et al. proposed the
non-negative low rank and sparse graph (NNLRS) method
(Zhuang et al., 2012). The formula is given as follows.

min
Z,E

∥Z ∥� +l1 ∥Z ∥1 +l2 ∥E ∥2,1  s : t :   X = XZ + E,  Z > 0, (5)

where ∥Z∥1 is the l1-norm to guarantee the sparsity of coefficient
matrix. In real-world applications, the sparsity and non-
negativity matrix Z obtained by the NNLRS method can offer a
basis for semi-supervised learning by constructing the
discriminative and informative graph (You et al., 2016).

Laplacian Score Method
According to the Laplacian eigenmaps (Belkin and Niyogi, 2001)
and the locality preserving projection (He and Niyogi, 2005), the
aim of the Laplacian Score (LS) method is to evaluate features
based on their locality preserving power (He et al., 2006). The LS
is defined as follows.

LS rð Þ =oij xri − xrj
� �2Sij
Var xr,:

� � ,   1 ≤ r ≤ m, 1 ≤ i ≤ j ≤ nð Þ, (6)

where the heat kernel function Sij = e−
∥ xi−xj ∥

2

t is used to obtain
weight matrix S, and t is a suitable constant, which is set
empirically. The matrix S is used to model the local structure of
the raw data space. Additionally,Var(xr,:) is the estimated variance
of the r-th feature in all data points, and the larger theVar(xr,:), the
more information held by the r-th feature. Theoij(xri − xrj)

2 is
the sum of differences in the expression of r-th feature between
all samples. For larger values of Sij and the smaller values ofoij
(xri − xrj)

2, the value of LS(r) tends to be smaller, meaning that the
importance level of the feature is higher. Therefore, the important
features are selected according to LS(r).
METHOD

In this section, we propose a novel feature selection framework to
select the feature genes for cancer clustering. This framework is
set up based on the NSLRG method and the Score function. We
refer to this approach as the NSLRG-S Subsection NSLRG
Method presents the NSLRG method and its optimization
algorithm. In subsection NSLRG With Score Function, we
introduce the NSLRG method with the Score function. The last
subsection Framework of NSLRG-S is devoted to clustering of
cancer samples based on NSLRG-S modelling of gene
expression data.

NSLRG Method
Graph Regularization
Because graph regularization can preserve the intrinsic local
geometric structure in the original data, it has received much
attention from researchers. The theory of graph regularization is
Frontiers in Genetics | www.frontiersin.org 4
based on the principle that the representation of the intrinsic
local geometric structure that is distributed in the original data is
inherited by a graph under the new basis mapping. In the graph,
the vertices correspond to the data points, and the edge weights
represent the relationships between the data points (Du et al.,
2017). Thus far, graph theory has been widely applied and
developed (Chen et al., 2018).

For this paper, in the step of graph construction, we assume
that if data points xi and xj are “close”, an edge exists between xi
and xj. In this work, we use the K-nearest neighbour method to
find the connection of xi and xj. In other words, if xi or xj is
among the K-nearest neighbours of each other, the data points xi
and xj are located on the same edge. This construction strategy is
simpler for determination of connected edges, which tends to
lead to a connected graph. In the next step, the edge weights are
defined to represent the affinity between the data points. In
current study, we define a symmetric weighting matrixW by the
heat kernel weighting function (Cai et al., 2005). The weighting
formula is defined as follows.

Wij =
e−

∥ xi−xj ∥
2

t , if xi and xj are connected

  0  ,   otherwise
,

8<
: (7)

where the parameter t is defined as the mean value of the Euclidean
distance for all data points, which can be automatically adjusted
based on the different dataset. Therefore, the degree matrix D is
defined asDii =ojWij, which is a diagonal matrix. Finally, based
on the connected graph, we obtain the graph Laplacian matrix L,
which is defined as follows.

L = D −W : (8)

Accordingly, a reasonable minimize objective function exists
to satisfy our assumption, and it is defined as follows.

min
z o

ij

∥ zi − zj ∥
2 Wij = min

z
tr Z D −Wð ÞZT� �

= min
Z

ZLZT� �
, (9)

where zi and zj are mappings of xi and xj under the new basis,
which are also close to each other if xi and xj are close. The
objective function is known as the graph regularization item.

Objective Function
We introduce graph regularization and sparse items into the
original LRR. Furthermore, we impose the non-negative and
symmetric constraints on the low-rank matrix Z. This method is
known as the non-negative symmetric low-rank representation
graph regularized (NSLRG) method, and its objective function is
written as follows.
January 2020 | Volume 10 | Article 1353
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min
Z,E

∥Z ∥� +l1tr ZLZT� �
+ l2 ∥E ∥1 +l3 ∥Z ∥0  

s : t :   X = XZ + E,  Z = ZT,  Z > 0:

(10)

In the NSLRG method, we represent a given set of data points
as a linear combination of other points using a low-rank matrix
Z. The low-rank matrix should be sparse to improve the
recognition ability. Therefore, the matrix Z with a sparse
constraint could make the result of the representation more
discriminative. However, the ∥Z∥0 item of problem (10) is NP-
hard. Thus, as suggested by matrix completion methods (Candès
et al., 2011), we use ∥Z∥1, a proper relaxed convex item, to
replace ∥Z∥0, and the objective function of NSLRG can be
rewritten as follows.

min
Z,E

∥Z ∥� +l1tr ZLZT� �
+ l2 ∥E ∥1 +l3 ∥Z ∥1  

s : t :   X = XZ + E,  Z = ZT,  Z > 0:

(11)

The matrix Z* is learned by the NSLRG method, and matrix
Z* is a non-negative symmetric lowest rank matrix. The element
zij of Z* can be treated as the degree of similarity between the
data points xi and xj. In addition, the obtained matrix Z* has
good interpretability, for which the element of matrix Z* can be
directly converted to similar-degree weights. The symmetry
constraint can strictly guarantee the consistency of similarity of
data pairs. The similarity of data points i and j corresponding to
the similar-degree weights elements zij and zji is equal, as shown
as Figure 1. The non-negative constraint is more adaptive for the
property of the gene expression data. In other words, the NSLRG
method avoids the situation in which the lowest rank matrix
might be negative and asymmetric, and it also avoids
symmetrization of itself, as suggested in (Liu et al., 2010), i.e.,
Z^= (jZ*j + jZ*jT)=2. Therefore, we refer to the matrix Z* as the
similar-degree matrix.

Optimization
As we know, many algorithms are based on convex relaxation to
solve the high-dimension optimization problem, such as Singular
Value Thresholding (SVT) (Cai et al., 2010), Accelerated
Proximal Gradient (APG) (Toh and Yun, 2010), Alternating
Direction Method (ADM) (Lin et al., 2009) and Linearized
Alternating Direction Method with Adaptive Penalty
(LADMAP) (Lin et al., 2011). As an extended ADM, the
LADMAP algorithm adds the quadratic penalty term
linearization and the penalty self-adaption change, which leads
to use of fewer auxiliary variables and avoids matrix inversions to
solve the problem. Specifically, LADMAP reduces the complexity
of the LRR from O(n3) to O(rn3), where r is the rank of low-rank
matrix Z. This algorithm makes it possible for LRR to be applied
on large-scale dataset, such as video surveillance, digital images,
and gene expression data. Therefore, the LADMAP algorithm
has been recognized as the most efficient algorithm for solving
the problem of convex relaxation of low-rank and sparse
matrices. Similarly, we also adopt LADMAP to solve (11).

First, to easily and effectively obtain matrix Z, we use an
auxiliary variable Q to separate the variables, i.e., nuclear norm
(∥Z∥*) and l1-norm (∥Z∥1). The objective function can be
rewritten as equation (12) using the Augmented Lagrange
Frontiers in Genetics | www.frontiersin.org 5
Multiplier method (Lin et al., 2010).

‘ Z,E,Q,Y1,Y2,mð Þ = min
Z,E,Q

∥Z ∥* +l1tr ZLZT� �
+l2 ∥E ∥1 +l3 ∥Q ∥1 +Y1,  X − XZ − E + Y2,  Z −Q

+ m
2 ∥X − XZ − E ∥2F +

m
2 ∥Z −Q ∥2F   s : t :    Z = ZT,Z ≥ 0,

(12)

where l1, l2, and l3 are positive weighting parameters; m > 0
is the penalty parameter; Y1,Y2 are Lagrangian multipliers; A,
B=tr(ATB) is the Euclidean inner product between the matrices
A and B; and ∥⋅∥F is the Frobenius-norm. Mathematically,
equation (12) is equivalent to equation (13) after applying a
small transformation. Equation (13) facilitates processing of the
next step.

‘ Z,E,Q,Y1,Y2,mð Þ = min
Z,E,Q

∥Z ∥*

+l1tr ZLZT
� �

+ l2 ∥E ∥1 +l3 ∥Q ∥1

+f Z,E,Q,Y1,Y2,mð Þ     s : t :    Z = ZT,Z ≥ 0:

(13)

Hence, f (Z,E,Q,Y1,Y2,m) = m( ∥X − XZ − E + Y1=m ∥2F + ∥
Z −Q + Y2=m ∥2F )=2:

We divide equation (13) into three subproblems and solve it
in three steps. The three subproblems are written as follows.

‘1 = min
Z

∥Z ∥* +l1tr ZLZT� �
+ f Z,E,Q,Y1,Y2,mð Þ 

s : t :  Z = ZT,Z ≥ 0

(14)
FIGURE 1 | The matrix Z with the symmetry constraint.
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‘2 = min
E

l2 ∥E ∥1 +m ∥X − XZ − E + Y1=m ∥2F =2 (15)

‘3 = min
Q

l3 ∥Q ∥1 +m ∥Z −Q + Y2=m ∥2F =2 (16)

Finally, we solve the above subproblems to find the optimal
solution. The specific steps are given as follows.

Step 1. Update Z: The matrix Z can be obtained by solving
subproblem ℓ1 while keeping E and Q fixed. First, we define the
following formula (17) based on ℓ1.

‘k1 Zk,Ek,Qk,Y
k
1,Y

k
2,mk

� �

= l1tr ZLZT� �
+ f Zk,Ek,Qk,Y

k
1,Y

k
2,mk

� �
: (17)

By setting the first derivative of ‘k1 with respect to Zk, we can
obtain the following formula (18).

∂ ‘k1
∂Zk

= l1 ZkL + ZkL
T� �

+ mkX
T XZk − X + Ek − Yk

1=mk

� �

+ mk Zk − Qk + Yk
2=mk

� �
: (18)

According to LADMAP, subproblem ℓ1 can be replaced by
solving the following problem (19).

min
Z

∥Z ∥* +
∂ ‘k1
∂Zk

,Z − Zk +
h1

2
∥Z − Zk ∥

2
F  

s : t :    Z = ZT,Z ≥ 0,

(19)

where h1 = 2l1 ∥ L ∥2 +mk(1 + ∥X ∥22 ).
Equation (19) can be transformed into the following formula

(20).

min
Z

1
h1

∥Z ∥* +
1
2
∥Z − Zk −

∂ ‘k1
∂Zk

=h1

� �
∥2F  

s : t :    Z = ZT,Z ≥ 0:

(20)

To solve the symmetric and non-negative constraints of low-
rank matrix Z, we adopt Lemma 1 of (Chen et al., 2017) and the
non-negative operator, i.e., equation (24), respectively. Lemma 1
is defined as follows, and the detailed proofs have been given in
the literature (Chen et al., 2017).

Lemma 1: If there is an expression similar to equation (21), its
closed solution is equation (22).

arg min
G

1
b
∥G ∥* +

1
2
∥G −H ∥2F   s : t :    G = GT, (21)

G* = Ur Sr −
1
b
Ir

� �
VT

r : (22)

In this work, Ur, ∑r and Vr are the members of the skinny
singular value decomposition (SVD) of the matrix ~G = USVT;
Sr = diag(d1,d2,…,dr); dr is the singular value for which the positive
singular values are greater than 1

b , i.e., fr : d r >
1
bg; ~G is defined

as ~G = (H +HT)=2; and Ir is an identity matrix with size r × r.
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Based on Lemma 1, we make ~Zk =
1
2 ½(Zk −

∂ ‘k1
∂Zk

=h1) + (Zk −
∂ ‘k1
∂Zk

=h1)
T�. We solve the Zk+1 using the singular value

thresholding operator qϵ(A) = UrSϵ(Sr −
1
h1
Ir)V

T
r , where Sϵ =

sgn(x)max(| x |−ϵ,0). The iterative formula is written as follows.

Zk+1 = q 1
h1

Zkð Þ, (23)

where h1 = 2l1 ∥ L ∥2 +mk(1 + ∥X ∥22 ). After obtaining matrix
Zk+1 by equation (23), the non-negative constraint is imposed
on matrix Zk+1 through a non-negative operator. The non-
negative operator is defined as follows.

F Z*
i,jð Þ

k+1

� �
=

Z i,jð Þ
k+1,          Z

i,jð Þ
k+1 > 0

0,                             otherwise
:

(
(24)

Finally, the non-negative symmetric low-rank matrix Z*k+1
is obtained.

Step 2. Update E: The matrix E can be obtained by solving
subproblem ℓ2 while keeping Z and Q fixed. Analogously,
following equation (18), the first derivative of ℓ2 is set with
respect to Ek, i.e.,

∂ ‘2
∂Ek

, and set ∂ ‘2
∂Ek

= 0. Thus, we obtain equation
(25).

∂ ‘2
∂Ek

= mk Ek − X + XZk+1 − Yk
1=mk

� �
= 0

! Ek = X − XZk+1 + Yk
1=mk : (25)

According to the NSHLRR method (Yin et al., 2016), the
iterative formula of E is given as follows.

Ek+1 = Yl2
mk

X − XZk+1 + Yk
1=mk

� �
: (26)

Step 3. Update Q: The matrix Q can be obtained by solving
subproblem ℓ3 while keeping Z and E fixed. Similar to Step 2, we
set the first derivative of ℓ3 with respect to Qk, i.e., 

∂ ‘3
∂Qk

, and set
∂ ‘3
∂Qk

= 0. Thus, we obtain the following equation.

∂ ‘3
∂Qk

= mk Qk − Zk+1 + Yk
2=mk

� �h i
= 0

! Qk = Zk+1 + Yk
2=mk (27)

According to the NSHLRR method (Yin et al., 2016), the
iterative formula of Q is written as follows.

Qk+1 = max Yl3
mk

Zk+1 + Yk
2=mk

� �
, 0

	 

(28)

Algorithm 1 clearly summarizes the above solution steps. The
initialization parameter values are set based on experimental
experience and the existing relevant research recommendations
(Yin et al., 2016).

NSLRG With Score Function
It is known that both local structure and global structure can
influence the importance of features in raw data. However, the LS
method primarily focuses on the locality preserving power of
data to evaluate the features. Inspired by the lowest rank matrix
January 2020 | Volume 10 | Article 1353
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Z* of the NSLRG method, which can capture the global and local
structure of the raw data, we believe that the important feature of
high-dimension data can be extracted based on the matrix Z*.
Therefore, we propose a Score function that is established on the
lowest rank matrix Z* for selection of the important feature. The
formula is defined as follows.

Score rð Þ =oij xri − xrj
� �2Zij−NSLRG

Var xr,:
� � ,   1 ≤ r ≤ m, 1 ≤ i ≤ j ≤ nð Þ,

(29)

where the Zij-NSLRG is the element of Z* obtained by the NSLRG
method, and Zij-NSLRG denotes the similarity degree of the i-th
and j-th samples and is used to measure the r-th feature between
two samples. The property of the global and local structure
captured by the lowest rank matrix can be used as a constraint for
feature selection. The selected feature results are quite useful for
capturing the subspace structures of raw data. In different classes,
this constraint can guarantee the selected feature with
high discrimination.

Based on the result of the Score function, all features are
arranged in ascending order to form a score curve. The number
of selected features is t (t <m), which occurs before the first
inflection point of the score curve. Thus, we cluster the cancer
samples based on the selected feature genes.

We refer to the NSLRGmethod with the Score function as the
NSLRG-S framework for short. In a nutshell, the NSLRG-S
framework can be divided into four steps. In the first step, the
lowest rank matrix is obtained by the NSLRG method. In the
second step, the Score function is used to evaluate and rank
features based on the lowest-rank matrix of the first steps. In the
third step, the feature genes are selected according to the results
of the Score function. In the fourth step, cancer sample clustering
is processed based on the selected feature genes. This novel
framework delivers better reliability in selection of the most
ALGORITHM 1 | The NSLRG method.

Input: data X; parameters l1, l2 and l3; the number of k-nearest-neighbors.

Initialization: Z0 = E0 = Q0 = Y0
1 = Y0

2 = 0, r0=2.5, m0=10−3, mmax=10
6, ϵ1=10

−6,
ϵ2=10

−2, L.
While not converged do

1. Update Z by Step1.
2. Update E by Step2.
3. Update Q by Step3.
4. Update Lagrangian multipliers Y1 and Y2:

Yk+1
1 = Yk

1 + mk (X − XZk+1 − Ek+1)

Yk+1
2 = Yk

2 + mk (Zk+1 −Qk+1)
5. Update mk+1:
mk+1=min(mmax,rkmk),

where rk = f

r0,     if  max  fh1 ∥Zk+1 − Zk ∥,mk ∥Ek+1 − Ek ∥,    mk ∥Qk+1 −Qk ∥g ≤ ϵ2
1,    otherwise

Checking convergence:
if ||X−XZk+1−Ek+1||/||X||<ϵ1 or
max{ h1∥Zk+1−Zk∥,mk∥Ek+1−Ek∥, mk∥Qk+1−Qk∥ }<ϵ2

End while
Output: The lowest rank matrix Z*.
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important feature for cancer sample clustering according to the
global and local structure of the raw data.

Framework of NSLRG-S
Based on the proposed NSLRG-S framework, our goal is to
model the gene expression data and cluster the cancer samples
according to the selected feature genes.

The modelling process is shown in Figure 2. At the start, the
matrix Xm×n represents the gene expression data with sizem × n,
and one row represents the expression level of a same gene in
different samples. The totals of genes and samples are m and n,
respectively. Usually,m is notably large and n is rather small. The
matrix Z*n�n is the lowest-rank matrix obtained by the NSLRG
method as the basis for the Score function. Second, according to
the score result, all of the genes are ranked in ascending order.
The total number of t (t <m) feature genes are selected based on
the first inflection point of the score curve. Finally, we cluster the
cancer samples based on the selected feature genes to
demonstrate the selected genes with efficient discrimination.
The result is compared with those of different methods,
including the K-means, Graph Regularized Nonnegative
Matrix Factorization (GNMF) (Cai et al., 2011), Robust
Principal Component analysis (RPCA) (Candès et al., 2011),
Sparse Principal Component Analysis (SPCA) (Journée et al.,
2010), Graph-Laplacian PCA (GLPCA) (Jiang et al., 2013), LS
(He et al., 2006), and LLRR (Wang et al., 2016) methods. The
details of the experimental result are described in subsection
Experiments on Gene Expression Data. Algorithm 2 is the
framework of the NSLRG-S for clustering of gene
expression data.
EXPERIMENTS

To evaluate the performance of the NSLRG-S framework, we
compare the NSLRG-S framework with multiple typical
methods, including the K-means, GNMF (Cai et al., 2011),
RPCA (Candès et al., 2011), SPCA (Journée et al., 2010),
GLPCA (Jiang et al., 2013), LS (He et al., 2006), and LLRR
(Wang et al., 2016) methods. In subsection Evaluation and
Quantitative Benchmarks, we select three quantitative
benchmarks to evaluate the experimental results. In
subsection Experiments on Synthetic Data and subsection
Experiments on Gene Expression Data , comparative
experiments are conducted on synthetic data and cancer gene
expression data, respectively.
ALGORITHM 2 | Framework of NSLRG-S for clustering gene expression data.

Input: Gene expression data X clustering number k
Step:
1) Learn a lowest rank matrix Z* by the Algorithm 1;
2) Obtain the ranked feature genes by the Score-function;
3) Obtain the selected feature genes.
4) Obtain the clustering cancer samples results using the K-means method.

Output: Clustering results
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Evaluation and Quantitative Benchmarks
To evaluate the performance of the clustering results based on
comparison methods, we select three quantitative benchmarks:
the clustering accuracy rate (Acc) (Cui et al., 2013), F1
measurement (F1) (Rijsbergen, 1979), and Rand Index (RI)
(Rand, 1971).

Clustering Accuracy Rate
The Acc is defined as follows.

Acc =o
N

i=1X xi,map rið Þð Þ
N

� 100% (30)

where N is the total number of samples, and X(xi,map(ri)) is used
to identify whether xi and ri are matched. The xi and ri are the
actual label and clustering label of the i-th sample, respectively,
and if they are matched, the value of X(xi,map(ri)) is equal to one;
otherwise, its value is equal to zero. The map(ri) is the mapping
function based on the Kuhn-Munkres method (Lovász and
Plummer, 1986).

F1 Measurement
The F1 measurement is a special form of the F-Measure under a
certain parameter. The F-Measure is also referred to as the F-
Score and is the weighted harmonic mean of the Precision rate
and Recall rate of the result of clustering. The F-Measure,
Precision rate, and Recall rate are defined as follows.

F =
f2 + 1
� �� P � R

f2 � P + Rð Þ , (31)

P =
tp

tp + fp
, (32)
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R =
tp

tp + fn
, (33)

where F is the F-Measure, P is the Precision rate and R is the
Recall rate. The tp (true positives) is the item that records the
number of positive samples that are clustered into their own
positive class, fp (false positives) is the item that records the
number of negative samples that are clustered into the positive
class, and fn (false negatives) is the item that records the number
of positive samples that are clustered into negative class. Figure 3
clearly shows tp, fp and fn. The F-Measure can balance the
contribution of fn by weighting Recall through the parameter
f > 0. When the parameter f = 1, F-Measure becomes the most
common form, i.e., F1 measurement, and equation (31) is
rewritten as follows.

F1 =
2� P � R
P + R

: (34)

F1 measurement reaches its best value at 1 and its worst score
at 0. The relative contributions of the Precision rate and Recall
rate to the F1 measurement are equal.

Rand Index
The given data have two partitions: one is the actual
classification, and the other is the clustered result (returned by
our Algorithm 2). The Rand Index (RI) is used to compute how
similar the result of clustering is to the actual classification. The
RI is defined as follows.

RI =
a + b
C2
nsamples

, (35)

where a indicates the number of pairs of data points belonging to
the same class in both the actual classification and the clustered
result, b indicates the number of pairs of data points belonging to
FIGURE 2 | Framework of NSLRG-S for clustering gene expression data.
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the different class in both the actual classification and the
clustered result, and C2

nsamples
represents the total number of data

pairs obtained from the given data. The range of RI is [0,1], and
the larger the value, the more the clustering results are in
accordance with reality.

Experiments on Synthetic Data
In this subsection, comparison experiments are conducted on
synthetic data. In subsection Synthetic Data, we construct the
synthetic data. In subsection Convergence Analysis, we perform
convergence analysis to compare the NSLRG-S framework and
other methods. In subsection Clustering Results, we analyze the
performance of comparison methods on clustering data samples.

Synthetic Data
The synthetic data are constructed by the following steps (1) and
(2). These synthetic data contain ten independent subspaces.

(1.) Construction of 10 original databases by Oi+1 = TOi, 1 ≤
i ≤ 9. The value of the database ranges from 0 to 1, T is the
transform random rotation matrix, and O1 is a random
orthogonal matrix of 1000×100. The rank of each original
database is 100.

(2.) We extract 10 data vectors from each original database by Xi

= OiQi,1 ≤ i ≤ 10, where the matrix Q100�10
i is an indepen-

dent identical distribution matrix N(0,1), and its size is
100×10. All extracted data vectors are combined in synthetic
data X1000�100

Synthetic   data = ½X1,  X2,…,X10�.
Frontiers in Genetics | www.frontiersin.org 9
Convergence Analysis
We define an Error-Values function FE-V(k) based on the loss
function value to calculate the convergence rate. In the same
iterations, the smaller the value of the Error-Values, the faster the
convergence rate. The formula is given as follows.

FE−V kð Þ = ∥X − XZk + Ekð Þ ∥F , (36)

where the minimum value of FE-V(k) is equal to zero. To clearly
characterize the convergence rate, Figures 4A, B show the
convergence trends of the NSLRG-S and the compared
methods GNMF, RPCA, SPCA, and LLRR in 100 iterations. In
Figure 4B, we find that the convergence rate of the NSLRG
method is faster than those of the other methods.

Clustering Results
Table 1 lists the results of the GNMF, RPCA, SPCA, GLPCA, LS,
LLRR, and NSLRG-S methods on the three quantitative
benchmarks as Acc, F1, and RI. The results show that the
performance of NSLRG-S is better than those of other methods.

Experiments on Gene Expression Data
In this subsection, we conduct experiments on gene expression
datasets. The experimental datasets are downloaded from the
famous gene expression database The Cancer Genome Atlas
(TCGA). We cluster the cancer samples based on the feature
genes obtained by the NSLRG-S framework. The experimental
results demonstrate that we can improve the performance in
cancer samples clustering by applying the selected feature genes.
FIGURE 3 | The tp, fp, and fn of the clustering result.
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Gene Expression Datasets
The TCGA database is a source of experimental data and is an
important project for accelerating and comprehensively
understanding cancer genetics using innovative genome
analysis technologies (Tomczak et al., 2015). This database is
one of the invaluable sources for gene expression datasets.
Therefore, we select the TCGA database as the data source to
research the clustering performance of the NSLRG-S framework.

We downloaded five cancer gene expression datasets, namely,
esophageal carcinoma (ESCA), head and neck squamous cell
carcinoma (HNSC), cholangiocarcinoma (CHOL), colon
adenocarcinoma (COAD) and pancreatic adenocarcinoma
(PAAD). Each type of gene expression dataset contains cancer
tissue samples and normal tissue samples. There are 20,502 genes
in each tissue sample. The distribution of each gene expression
dataset is listed in Table 2.

In addition, to find the feature gene with a high recognition
rate between different cancers for cancer sample clustering, we
construct seven mixed datasets. The mixed datasets are HN-PA,
Frontiers in Genetics | www.frontiersin.org 10
ES-PA, CO-ES and HN-CH; HN-PA-CH, ES-PA-CH, and CO-
PA-CH. The construction rule combines tumour tissue samples
that come from different gene expression data, and the combined
datasets contain two or three types of cancers. For example, in
the HN-PA data, HN represents all of the cancer tissue samples
of the HNSC data, and PA represents the total of the cancer
tissue samples of the PAAD data. The cancer tissue samples of
HN and PA are combined to construct the new mixed data, i.e.,
HN-PA, which contain two types of cancers and have 574 cancer
tissue samples. For the other mixed datasets, the distributions are
listed in Table 3.

The five original datasets and seven mixed datasets are used in
experiments. We classify all datasets into three categories
according to the number of cancers they contain. The datasets
that contain one type of cancer belong to Category I. Thus,
Category I contains PAAD, HNSC, ESCA, COAD, and CHOL.
Datasets that contain two types of cancers belong to Category II,
and they are HN-PA, ES-PA, CO-ES, and HN-CH. The datasets
that contain three types of cancers belong to Category III, and the
names of these datasets are HN-PA-CH, ES-PA-CH, and CO-
PA-CH. Table 4 clearly lists the category results.

Parameter Selection
In the experiments, we need to select the optimal parameters of
the different datasets. For the three parameters (l1, l2, l3) of the
FIGURE 4 | (A and B): The convergence analysis of different methods in 100 iterations.
TABLE 1 | The clustering results of compared methods and NSLRG-S method
on synthetic data.

Method Acc (%) F1 (%) RI (%)

GNMF 72.44 68.42 93.01
RPCA 80.68 78.82 95.57
SPCA 70.42 67.6 91.07
GLPCA 67.28 64.45 89.84
LS 80.62 78.37 96.12
LLRR 81.04 78.67 96.12
NSLRG-S 82.00 79.21 96.27
Acc, clustering accuracy rate; F1, F1 measurement; and RI, Rand Index; GNMF, Graph
Regularized Nonnegative Matrix Factorization; SPCA, Sparse Principal Component
Analysis; GLPCA, Graph-Laplacian PCA; LS, Laplacian Score; and LLRR, Laplacian
regularized Low-Rank Representation; NSLRG-S, non-negative symmetric low-rank
representation with graph regularization based on score function.
The bolded texts mean the results are better than the others.
TABLE 2 | The distribution of five gene expression datasets.

Dataset Cancer tissue
samples

Normal tissue
samples

Total
samples

Total
genes

PAAD 176 4 180 20502
HNSC 398 20 418 20502
ESCA 183 9 192 20502
COAD 262 19 281 20502
CHOL 36 9 45 20502
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NSLRG method, we assume that the optimal value of each
parameter exists within an estimation range of 10t(t = { −5,−4,
−3,−2,−1,0,1,2,3,4,5 }). We study the influence of each parameter
on feature selection and select the optimal parameters according
to the different datasets. First, our main task is to determine the
sensitivity of each parameter to the different datasets. We change
one parameter within the candidate interval while holding the
other two parameters fixed to explore the influence degree of this
parameter on the dataset. We find that the parameter l3 is
insensitive for all datasets. Therefore, the NSLRG method is
robust for the parameter l3, and we select the l3 = 10-3 according
to experimental experience. The details of selection of the other
two parameters are listed in Table 5.

Results and Discussion
In this subsection, based on the datasets of subsection Gene
Expression Datasets, we apply the NSLRG-S to cluster the cancer
samples. We adopt seven clustering methods, including K-
means, GNMF, RPCA, SPCA, GLPCA, LS, and LLRR, for
comparison with NSLRG-S.

Typically, gene expression data mining can be recognized as
addressing a small sample size and high-dimensional problem.
The applied methods must face and suffer from what is known as
the curse of dimensionality. This situation occurs because the
more dimensions contained in the data (20,502 in our case), the
more unstable the result. Therefore, in our experiments, we
improve the reasonableness of the result by running the
experiment 50 times. The mean of the results is taken as the
measurement of the clustering results.

Table 6 clearly lists the experimental results of all methods.
Based on Table 6, we obtain the mean metrics of each category
dataset, and they are listed in Table 7. Furthermore, to clearly
show the experimental results on different categories of dataset
Frontiers in Genetics | www.frontiersin.org 11
and different methods, Figure 5 presents a broken-line graph for
the three category datasets corresponding to different methods.
Figure 6 presents a histogram for the different methods
corresponding to the three category datasets.

By comparing the clustering results of NSLRG-S and other
methods, we find that the results of the NSLRG-S method are the
best of all methods in most datasets. According to Table 6, for the
Category I dataset, the clustering performance of NSLRG-S for the
HNSC and ESCA datasets is higher than that of other methods. In
the COAD and CHOL dataset, NSLRG-S achieves the same best
results as the other methods. For the Category II dataset, the
clustering performance of NSLRG-S is the best of all methods.
For the Category III dataset, except for themetrics of Acc and F1 on
HN-PA-CH and Acc on CO-PA-CH, which are obtained by
GNMF, and F1 on HN-PA-CH obtained by LLRR, the clustering
performance of NSLRG-S is better than that of other methods.

In addition to the numerical comparison, we also find that the
NSLRG-S method has different advantages after comparing it
with different comparison methods. In the next section, we
conduct a more detailed comparison and analysis between
NSLRG-S and the other comparison methods.

In the seven comparison methods (K-means, GNMF, RPCA,
SPCA, GLPCA, LS, and LLRR), K-means is the traditional
clustering method; GNMF belongs to matrix factorization
techniques, which extend the nonnegative matrix factorization
with preservation of the intrinsic geometric structure (Cai et al.,
2011); RPCA, SPCA, and GLPCA are variant methods of
principal component analysis, which is a well-established
descending dimension method for mining high dimensional
data (Journée et al., 2010); LS is the feature selection method;
and the LLRR is the subspace clustering method. In addition, the
NSLRG-S framework combines the NSLRG method and Score
function. Therefore, this framework belongs to a mixed method
that combines the advantage of both sides.

First, we compare the NSLRG-S framework with K-means.
Based on Table 6, we find that a higher clustering result is
obtained by NSLRG-S. This comparison result shows that the
proposed NSLRG-S framework is better than the traditional
clustering method in cancer sample clustering. This result
occurs because the NSLRG-S considers the local and global
TABLE 3 | The distribution of mixed datasets.

Dataset Cancer tissue and the number Total number

HN-PA 398 from HNSC; 176 from PAAD; 574
ES-PA 183 from ESCA; 176 from PAAD; 359
CO-ES 262 from COAD; 183 from ESCA; 445
HN-CH 398 from HNSC; 36 from CHOL; 434
HN-PA-CH 398 from HNSC; 176 from PAAD; 36 from CHOL; 610
ES-PA-CH 183 from ESCA; 176 from PAAD; 36 from CHOL; 395
CO-PA-CH 262 from COAD; 176 from PAAD; 36 from CHOL; 474
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.
TABLE 4 | The category result of experimental datasets.

Category I II III

Dataset PAAD HN-PA HN-PA-CH
HNSC ES-PA ES-PA-CH
ESCA CO-ES CO-PA-CH
COAD HN-CH /
CHOL / /
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.
TABLE 5 | The parameter selection.

Dataset l1 l2 l3

PAAD 10-5 10-2 10-3

HNSC 10-3 10-4 10-3

ESCA 104 10-1 10-3

COAD 104 100 10-3

CHOL 10-1 10-1 10-3

HN-PA 10-4 101 10-3

ES-PA 10-2 10-1 10-3

CO-ES 102 105 10-3

HN-CH 10-1 105 10-3

HN-PA-CH 10-5 10-2 10-3

ES-PA-CH 10-4 100 10-3

CO-PA-CH 101 10-2 10-3
January 2020
 | Volume 10 | Article 1
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL,
cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocar-
cinoma.
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structure of the raw data. This framework can select feature genes
with a high recognition rate for cancer sample clustering. In
addition, the K-means method performs cancer sample
clustering based on the raw data, which ignores the contents
considered in NSLRG-S. Figure 5 clearly shows that the NSLRG-
S is superior to the K-means method.
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Second, we compare the NSLRG-S with the GNMF method.
In GNMF, a nearest neighbour graph is constructed by encoding
the geometrical information of the data space. The method seeks
matrix factorization, which incorporates the graph structure (Cai
et al., 2011). Based on Table 5, the GNMF method obtains good
results, and a subset of them are even better than those of
TABLE 6 | The result of comparison experiment.

Category Dataset Measure K-means GNMF RPCA SPCA GLPCA LS LLRR NSLRG-S

I PAAD Acc 69.50% 74.67% 63.49% 56.47% 76.53% 97.78% 81.46% 97.22%
F1 43.28% 46.69% 41.42% 40.31% 45.53% 66.10% 48.45% 49.30%
RI 63.77% 61.96% 55.23% 50.58% 64.45% 95.63% 69.73% 94.57%

HNSC Acc 69.50% 81.72% 64.52% 62.20% 90.71% 93.54% 81.44% 94.37%
F1 46.78% 44.97% 47.34% 46.59% 68.51% 48.33% 48.43% 48.55%
RI 59.44% 70.05% 54.19% 52.86% 83.68% 87.89% 69.69% 89.36%

ESCA Acc 62.01% 54.69% 53.65% 53.97% 84.90% 94.79% 67.47% 94.91%
F1 43.97% 40.00% 40.22% 41.15% 46.74% 48.66% 46.97% 64.18%
RI 58.34% 50.18% 50.01% 50.06% 76.19% 90.07% 56.41% 90.40%

COAD Acc 74.71% 99.29% 86.39% 81.28% 84.42% 87.09% 88.20% 99.29%
F1 60.02% 97.31% 71.08% 65.41% 68.68% 47.54% 73.40% 97.31%
RI 65.22% 98.58% 76.45% 69.48% 73.60% 78.08% 79.15% 98.58%

CHOL Acc 85.72% 97.78% 100.00% 100.00% 100.00% 63.82% 100.00% 100.00%
F1 66.16% 96.66% 100.00% 100.00% 100.00% 44.81% 100.00% 100.00%
RI 75.03% 95.56% 100.00% 100.00% 100.00% 53.36% 100.00% 100.00%

II HN-PA Acc 97.66% 99.83% 99.48% 99.30% 98.95% 68.95% 99.65% 100.00%
F1 95.99% 99.80% 99.39% 99.19% 98.78% 41.77% 99.59% 100.00%
RI 96.38% 99.65% 98.96% 98.61% 97.93% 57.11% 99.30% 100.00%

HN-CH Acc 85.42% 98.39% 82.56% 89.59% 92.06% 90.12% 94.14% 99.54%
F1 73.89% 94.18% 71.16% 77.83% 81.62% 47.40% 86.08% 98.45%
RI 76.94% 96.82% 72.33% 81.36% 85.37% 82.15% 89.46% 99.08%

ES-PA Acc 96.41% 97.21% 98.25% 99.16% 99.16% 50.86% 99.16% 99.72%
F1 73.89% 97.21% 97.95% 99.16% 99.16% 34.37% 99.16% 99.72%
RI 95.44% 94.57% 97.37% 98.34% 98.34% 49.89% 98.34% 99.44%

CO-ES Acc 96.58% 80.67% 97.53% 96.85% 96.18% 59.10% 97.30% 98.65%
F1 96.07% 77.59% 97.45% 96.75% 96.06% 37.65% 97.21% 98.60%
RI 93.95% 68.75% 95.17% 93.89% 92.63% 51.55% 94.74% 97.33%

III HN-PA-CH Acc 81.01% 92.79% 77.20% 78.83% 80.13% 65.25% 87.71% 88.62%
F1 62.79% 63.16% 61.82% 63.15% 65.25% 26.69% 70.03% 63.36%
RI 84.14% 94.79% 81.99% 81.85% 81.76% 51.20% 87.74% 89.98%

ES-PA-CH Acc 81.14% 68.86% 73.91% 72.78% 72.52% 46.51% 86.03% 89.37%
F1 65.98% 52.42% 63.41% 66.55% 66.13% 22.30% 69.23% 72.11%
RI 86.29% 77.41% 82.73% 80.33% 80.29% 42.64% 85.98% 90.58%

CO-PA-CH Acc 80.24% 89.45% 74.04% 74.63% 75.40% 55.59% 85.57% 83.74%
F1 68.56% 63.60% 61.77% 63.27% 64.27% 26.89% 70.44% 73.56%
RI 84.22% 84.00% 82.27% 84.02% 83.65% 45.84% 84.53% 85.52%
J
anuary 2020 |
 Volume 10 | A
ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; CHOL, cholangiocarcinoma; COAD, colon adenocarcinoma; and PAAD, pancreatic adenocarcinoma.
The bolded texts mean the results are better than the others.
TABLE 7 | The mean metrics of result for all methods on Category dataset I, II, III.

Metrics Category K-means GNMF RPCA SPCA GLPCA LS LLRR NSLRG-S

ACC I 72.29% 81.63% 73.61% 70.78% 87.31% 87.40% 83.71% 97.16%
II 94.02% 94.03% 94.45% 96.23% 96.59% 67.26% 97.56% 99.48%
III 80.80% 83.70% 75.05% 75.42% 76.02% 55.78% 86.44% 87.24%

F1 I 52.04% 65.13% 60.01% 58.69% 65.89% 51.09% 63.45% 71.87%
II 84.96% 92.20% 91.49% 93.23% 93.91% 40.30% 95.51% 99.19%
III 65.78% 59.73% 62.34% 64.32% 65.21% 25.29% 69.90% 69.67%

RI I 64.36% 75.27% 67.18% 64.60% 79.58% 81.01% 75.00% 94.58%
II 90.68% 89.95% 90.96% 93.05% 93.57% 60.17% 95.46% 98.96%
III 84.88% 85.40% 82.33% 82.07% 81.90% 46.56% 86.08% 88.70%
Acc, clustering accuracy rate; F1, F1 measurement; and RI, Rand Index; GNMF, Graph Regularized Nonnegative Matrix Factorization; SPCA, Sparse Principal Component Analysis;
GLPCA, Graph-Laplacian PCA; LS, Laplacian Score; and LLRR, Laplacian regularized Low-Rank Representation; NSLRG-S, non-negative symmetric low-rank representation with graph
regularization based on score function.
The bolded texts mean the results are better than the others.
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NSLRG-S method. For most of the datasets, the results of
NSLRG-S are still better than those of GNMF. The reason for
this result is that the NSLRG-S method can obtain the
characteristics of the subspace structure of the raw data, and
the corresponding subspace of different types of cancer can be
satisfactorily distinguished.

Third, we compare the NSLRG-S with the RPCA, SPCA, and
GLPCA methods. RPCA, SPCA, and GLPCA belong to principal
component analysis methods and are suitable for processing
high-dimensional gene expression data by learning a low-
dimensional representation. The results of NSLRG-S are better
than those of three methods, except for the CHOL dataset. We
can conclude that the NSLRG-S method is better than the variant
methods of principal component analysis in clustering of
multiple cancer samples.

Fourth, we compare the NSLRG-S with the LS method. Based
on Figure 5, we find that the performance of LS decreases
gradually on the Category I, Category II and Category III
datasets, and this trend is different with other methods. The
Frontiers in Genetics | www.frontiersin.org 13
reason for this result is that the feature genes selected by the LS
method have locality-preserving power attributes but do not
have good multi-subspace separation attributes. In the
framework of the NSLRG-S, feature genes are obtained under
the Score function based on the low-rank matrix obtained by the
NSLRG method. This low-rank matrix can preserve the global
and local structure of the raw data, and after further processing
the low-rank matrix through the Score function, the selected
genes have a strong discrimination in multi-subspace clustering.
Therefore, the performance of NSLRG-S is better than that of LS.

Finally, we compare the NSLRG-S with the LLRR method.
Based on Figure 5, the broken line of the NSLRG-S is always
above that of the LLRR method except for F1 on the Category III
dataset. The comparison results show that the Score function
plays an important role in further mining of the low-rank matrix
of the NSLRG method.

Furthermore, we note an interesting trend in the results of
three categories of datasets for each method, as shown in
Figure 6. Other than the LS method, which shows a
FIGURE 5 | The mean metrics of experimental result for Category I, II, and III. (A) Accuracy-Category (B) F1-Category (C) Rand Index-Category.
FIGURE 6 | The mean metrics of experimental result for all methods. (A) Accuracy-Method (B) F1-Method (C) Rand Index-Method.
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downward trend, the other methods show an upward trend first
followed by a downward trend. In other words, except for the LS
method, after comparing all of the results of the other methods,
we note that the experimental results of the Category II datasets
are the best, followed by the Category III datasets or the Category
I datasets, and this trend occurs in all metrics. According to
Tables 2–4, the distributions of sample size in the Category II
datasets are more balanced than those in Category I and
Category III. Therefore, the result of the Category II dataset is
more reasonable and stable than the results of Category I and
Category III. However, with an increasing number of subspaces,
the structure of the data is more complex, and the global and
local structures of raw data are more difficult to capture.
Therefore, compared with the experimental results of the
Category II datasets, the experimental results of the Category
III datasets decrease. Fortunately, according to Table 7, the
NSLRG-S is still better than other methods. This observation
demonstrates that the NSLRG-S framework has better
advantages in cancer sample clustering than other methods
when working with unbalanced and multi-subspace datasets.
Based on the above discussion and analysis, we conclude that the
NSLRG-S framework has a good effect for cancer sample
clustering based on a gene expression dataset.
CONCLUSIONS WORK

In this paper, we cluster the cancer samples of multi-cancer gene
expression datasets based on select feature genes obtained by the
NSLRG-S framework. In addition, NSLRG-S simultaneously
considers the local and global structure of the raw gene
expression dataset. The selected feature genes have a high
recognition rate in subspace clustering. The comparison
Frontiers in Genetics | www.frontiersin.org 14
experimental results suggest that the NSLRG-S framework can
significantly improve the cancer samples clustering performance.
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