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Deciphering the code of cis-regulatory element (CRE) is one of the core issues of today’s
biology. Enhancers are distal CREs and play significant roles in gene transcriptional
regulation. Although identifications of enhancer locations across the whole genome
[discriminative enhancer predictions (DEP)] is necessary, it is more important to predict
in which specific cell or tissue types, they will be activated and functional [tissue-specific
enhancer predictions (TSEP)]. Although existing deep learning models achieved great
successes in DEP, they cannot be directly employed in TSEP because a specific cell or
tissue type only has a limited number of available enhancer samples for training. Here, we
first adopted a reported deep learning architecture and then developed a novel training
strategy named “pretraining-retraining strategy” (PRS) for TSEP by decomposing the
whole training process into two successive stages: a pretraining stage is designed to train
with the whole enhancer data for performing DEP, and a retraining strategy is then
designed to train with tissue-specific enhancer samples based on the trained pretraining
model for making TSEP. As a result, PRS is found to be valid for DEP with an AUC of 0.922
and a GM (geometric mean) of 0.696, when testing on a larger-scale FANTOM5 enhancer
dataset via a five-fold cross-validation. Interestingly, based on the trained pretraining
model, a new finding is that only additional twenty epochs are needed to complete the
retraining process on testing 23 specific tissues or cell lines. For TSEP tasks, PRS
achieved a mean GM of 0.806 which is significantly higher than 0.528 of gkm-SVM, an
existing mainstream method for CRE predictions. Notably, PRS is further proven superior
to other two state-of-the-art methods: DEEP and BiRen. In summary, PRS has employed
useful ideas from the domain of transfer learning and is a reliable method for TSEPs.

Keywords: deep learning, pretraining, retraining, tissue-specific enhancers, prediction
INTRODUCTION

One of the core issues of today’s biology is to decipher the code of cis-regulatory element (CRE)
(Yáñez-Cuna et al., 2013). Enhancers are important distal CREs and play significant roles in gene
transcriptional regulation (Bulger and Groudine, 2011). The regulation of gene expression by
enhancers acts as a binding platform for recruiting transcriptional factors and cofactors to activate
transcriptions of target genes (Shlyueva et al., 2014; Li et al., 2016).
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Accurate identification of enhancer locations across the whole
human genome is extremely important and is currently of great
interest based on two facts: (1) ENCODE project indirectly
identified >500,000 putative enhancers (Hoffman et al., 2012;
Ernst and Kellis, 2012) and their total length might reach 12% of
the human genome (Fishilevich et al., 2017), suggesting the
enhancer element is a nonnegligible component of the human
genome, and (2) genome-wide association studies (GWAS) in
the past decade locked over 55% of the disease-associated SNPs
in the non-coding DNA (Maurano et al., 2012). Some of them
were reported to be exactly located within the enhancer regions,
implying strong relationships between human diseases and the
enhancer element. For example, a cancer-associated SNP of
rs6983267 identified by human GWAS of intestinal tumors
was reported to be contained within a Myc enhancer
regulatory element (Sur et al., 2012). However, because of two
hallmarks of enhancers, it is a challenging problem to distinguish
them from other CREs: regulating manners of long-distance and
bidirectionality. Typically, distal enhancers are located more
than 10kb away from the target genes they regulate (Bulger
and Groudine, 2011), and on the other hand, an enhancer can
bidirectionally function both at the upstream and downstream of
the target gene, which doubles the searching difficulty (Li
et al., 2016).

In the past two decades, researchers have developed several
distinct experimental strategies from different viewpoints for
inferring the locations of active enhancers, such as transgenic
mouse assay (Visel et al., 2007), using chromatin features from
ENCODE data (Heintzman et al., 2009; Ernst and Kellis, 2012;
Hoffman et al., 2012), massively parallel report assay (MPRA)
employing barcode-containing transcripts (Melnikov et al., 2012;
Kwasnieski et al., 2014; Shen et al., 2015), STARR-seq using self-
transcribing transcripts (Arnold et al., 2013), and cap analysis of
gene expression (CAGE), utilizing enhancer RNA (eRNA)
(Andersson et al., 2014).

An alternative way for identifying enhancers is by
computational methods, which try to learn intrinsic features
from credible enhancer sequence samples and then build reliable
prediction models for making evaluation and discovery. This
mechanistic approach is feasible because DNA sequence is both
sufficient and necessary for enhancer activity: (1) an enhancer
sequence can still drive gene expressions when being removed
from its endogenous context to upstream of a reporter gene
(Kvon et al., 2012), suggesting its sufficiency; (2) a disruption of
core motif within an enhancer sequence would substantially
reduce enhancer activity (Kwasnieski et al., 2014), implying its
necessity. As a matter of fact, a series of studies have already
addressed this issue in the past decade (Lee et al., 2011;
Kleftogiannis et al., 2014; Liu et al., 2016; Beer, 2017; Yang
et al., 2017). A pioneer finding is that k-mer features of length 6
are predictive sequence features for discriminative enhancer
prediction (DEP) when using ChIP-seq data of P300 (Lee
et al., 2011). An advanced version of k-mer tool named gkm-
SVM, which is one of the most popular method for regulatory
sequence predictions (Ghandi et al., 2014), was recently
employed for DEP (Beer, 2017). iEnhancer-2L proposed to use
pseudo k-tuple nucleotide composition features for identifying
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enhancers and their strengths (Liu et al., 2016). Notably, BiRen
(Yang et al., 2017) recently introduced more advanced tools
including convolutional neural network (CNN) and bidirectional
recurrent neural network (BRNN) for DEP. The above methods
were all developed for DEP and they would give no answers
about tissue-specific enhancer prediction (TSEP). At this point,
DEEP (Kleftogiannis et al., 2014) integrated three resources of
enhancer data, ENCODE, FANTOM5, and VISTA, and
developed an ensemble model for DEP as well as for TSEP.

Although deep learning methods including BiRen were
adopted for DEP, they have some problems that should be
addressed for the task of TSEP. In the past 5 years, deep
learning tools were successfully applied in some areas of
biology from genomics and imaging to electronic medical
records (Webb, 2018). Particularly, CNN has become a
dominating method in various prediction problems, including
predicting transcriptional factor binding sites (TFBS) (Alipanahi
et al., 2015; Quang and Xie, 2016; Zeng et al., 2016) and
predicting chromatin effects of DNA variants (Zhou and
Troyanskaya, 2015; Kelley et al., 2016; Liu et al., 2018; Min
et al., 2017). However, these successful experiences might not be
directly transferred to TSEP by the following dilemma: on the
one hand, a given enhancer for one specific tissue might not be
activated in another tissue, so it is impossible to make multiple
TSEPs only with one deep learning model; on the other hand, if
we divide the whole enhancer dataset into multiple tissue-specific
enhancer datasets and then build multiple prediction models, the
sample size of each tissue is only several hundred or a few
thousands, which is far less than the number of parameters (often
hundreds of thousands) needed to be trained, suggesting that the
built models might take high risks of falling into overfitting.

Here, we proposed a novel deep learning training strategy
named pretraining-retraining strategy (PRS), which is especially
appropriate for the task of TSEP. To address the problem of
multiple TSEPs, we decomposed the training process into two
successive stages: a pretraining stage and a retraining stage. The
pretraining stage is designed for learning an appropriate network
structure with optimal model hyperparameters of one model by
using the whole enhancer data. Subsequently, a retraining stage is
adopted only with a given tissue-specific enhancer dataset based
on the trained pretraining model, suggesting a novel training
pattern of one pretraining model together with multiple retraining
models. To address the problem of overfitting, PRS allows all the
hyperparameters to learn reasonable values when the pretraining
stage is completed. And those reasonable values are good initial
values of the retraining process, which enable the retraining model
to converge very fast even with limited number of tissue-specific
enhancer samples. PRS was tested on FANTOM5 enhancer data
and was proven to be a powerful model for TESP.
MATERIALS AND METHODS

Datasets Preparation
In this work, the FANTOM5 enhancer data was used for
performing prediction tasks. FANTOM consortium released a
January 2020 | Volume 10 | Article 1305
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large-scale enhancer dataset that contains 65,423 enhancer
activities (measured by TPM (tag per million mapped reads) of
their expressions of eRNA) in 1,829 distinct tissues or cell lines in
human (Andersson et al., 2014), which was recorded as a matrix
E65423×1829 with 65,423 rows and 1,829 columns (http://fantom.
gsc.riken.jp/5/datafiles/latest/extra/Enhancers/).

In the pretraining stage, we used the following strategy for
constructing a large-scale enhancer dataset: at first, we took a
cut-off criterion of TPMmin ≥ 0.08 (presents the minimal nonzero
value of TPM across all tissues and cell lines of a given enhancer)
to select most active enhancers, leaving only 5386 enhancers
passing this criterion. Secondly, we excluded enhancers shorter
than 100bp and fixed the enhancer sequence length at 1000bp
with 4667 enhancers. Finally, we employed a redundancy
reduction procedure CD-HIT (Huang et al., 2010) with a
cutoff threshold of 0.8 and 4653 enhancers were remaining as
the final positive samples. The length distribution of all 4,653
enhancer positive samples can be found in Supplementary
Figure 1. We randomly selected 46,530 DNA sequences with
length of 1,000 bp as negative samples from non-enhancer
intergenic regions (obtained from the GRCh37 reference
genome by excluding exon, intron and known enhancers) to
meet a consensus of recent studies (Kleftogiannis et al., 2014; Liu
et al., 2016; Yang et al., 2017).

In the retraining stage, 23 representative tissues or cell lines
were chosen for showing cell-specific enhancer prediction
performances. We also took a cut-off criterion of TPM 0.8.0.8
is the 75% quantile of the whole TPM distribution, implying that
the condition of larger than 0.8 guarantees activity of enhancer)
to select most active enhancers for each tissue or cell line. Ten
times of the amount of each positive sample were selected as the
corresponding negative samples.

Learning Subsequence Features With CNN
CNN is a modern combination of convolutional operator and
classic neural network by introduction of some advanced
techniques including rectified linear unit (ReLU), pooling and
dropout. Convolutional operator is very powerful for detecting
significant local features that are further denoised by ReLU and
pooling. When performing prediction with neural network,
CNN was proven efficient and successful in various image
recognition tasks including handwriting recognition, face
recognition (LeCun et al., 2015). Here, we adopted a similar
framework with DeepBind (Alipanahi et al., 2015) to perform
CNN model, which in turn includes three layers: a convolution
layer (Conv), a activation layer (ReLU), a pooling layer (Pool),
where the outputs of the final layer are regarded as selected
features of the inputs (Figure 1).

Learning Dependencies With
Bidirectional GRU
Recurrent neural network (RNN) is one kind of the advanced
ANN model that has a “memory” which could capture the
previous information, which is appropriate to analyze the
sequential data (Schuster and Paliwal, 1997). Over the years,
more advanced architectures of RNNs were developed to
overcome shortcomings of the classic RNN model. Among
Frontiers in Genetics | www.frontiersin.org 3
them, bidirectional RNN (BRNN) is designed for those
situations where output at time step is not only associated with
the previous states, but also with future information. Because of
the forward and inverse strand in enhancer sequences with
bidirectional regulation function, BRNN model was proven to
be very efficient to deal with regulatory sequence prediction
problems (Quang and Xie, 2016).

However, BRNN still suffers a vanishing gradient problem
that makes it hard to capture the long-term dependencies in the
sequential data. For solving this problem, a gated recurrent units
(GRU) was proposed by Bahdanau et al. (2014) by introducing
some new concepts including update gate, reset gate and
candidate “memory” layer. In this study, the bi-directional
gated recurrent unit (Bi-GRU) was designed to connect with
the last layer of CNN (the dropout layer) and six matrices WU
will be learned by data (Figure 1).

Model Design and PRS
Previous studies on TFBS predictions reported that the
convergent filter matrices of the CNN layer are exactly
consistent with TF binding motif (Alipanahi et al., 2015; Zhou
and Troyanskaya, 2015; Kelley et al., 2016; Quang and Xie, 2016),
suggesting CNN is efficient for learning local subsequence
features. More importantly, a recent study (Quang and Xie,
2016; Yang et al., 2017) had used RNN layer to effectively
address the dependence of the adjacent features in a sequence.
Here, we adopted a similar deep learning model of BiRen (Yang
et al., 2017) that added an RNN layer following the CNN layer
(Figure 1). We expect to firstly learn local subsequence features
(TF motifs) of an enhancer sequence with CNN, and then to
learn how to combine these motifs (dependence of motifs) to
form an enhancer sequence with RNN.

To solve the problem of TSEP, we proposed a novel PRS.
Our idea is that we firstly use the whole FANTOM5 enhancer
data (containing all tissues and cell lines) to determine an
optimal network structure and all the model parameters,
based on which we construct and record the pretraining
model. Theoretically, such a pretraining model is only valid
for discriminating enhancer from non-enhancers. For a given
tissue, we will then take a retraining strategy by redoing training
process with its tissue-specific enhancer data based on the
pretraining model.

Pretraining With the Whole FANTOM5
Enhancer Data
We performed a pretraining process with the whole FANTOM5
enhancer data of Enhancer4653, which contains 4653 enhancer
sequences and 46530 non-enhancer sequences. Firstly, we
divided the whole dataset into three portions: 10/12 as training
set E_train for training model), 1/12 as validation set E_va (for
determining an optimal epoch) and 1/12 as testing set E_test (for
evaluating model). To begin with a CNN structure, the initial
values of model hyperparameters including filter number M,
filter length m and pooling size p were set to be 64, 5 and 3
respectively. Subsequently, the output of CNN is turned as the
input of RNN. Finally, a neural network with 32 neurons
(a weight matrix of WM) was designed to be followed with the
January 2020 | Volume 10 | Article 1305
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RNN layer and the output of the neural network NN will further
be processed by a sigmoid function for mapping the predicted
values into interval [0,1] (Figure 1):

ŷ = sigmoid NNð Þ = 1
1 + e−NN

which is considered as the final predicted value of each
sample. This is the end of forward computation.

Here we took a rational strategy for preventing overfitting,
which aims to find an optimal epoch minimizing objective va as:
Frontiers in Genetics | www.frontiersin.org 4
objectiveva = crossentropyva

+ l1 ‖M‖1 + l2 ‖WU‖1  + l3 ‖WM‖1,

crossentropyva = −
1
n o

yi∈E_va
yi log ŷ i + (1 − yi) log (1 − ŷ t)½ �,

where those yi ∈ E_va belong to the validation set E_va and they
never appeared in the training process. The strategy of minimizing
objective va not objective train, will effectively prevent overfitting and
FIGURE 1 | Flow chart of hybrid deep learning architecture.
January 2020 | Volume 10 | Article 1305
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finally obtain the pretraining model (we call it the FANTOM
model) with all the model parameters and hyperparameters
determined. We finally evaluated effectiveness of the FANTOM
model with predicting accuracy on all elements belonging to the
testing set E_test.

Retraining With Specific Tissue (Cell Lines)
Enhancer Data
Once we have the FANTOM model, we next implement a
retraining strategy to predict tissue-specific enhancer based on
it. A hypothesis of the retraining strategy is that a specific tissue
enhancer dataset has similar pattern with the whole FANTOM5
enhancer dataset, which implies that the predicting model of
tissue-specific enhancer might share the same network structure
and all the model hyperparameters of FANTOM model. The
only differences between them are the updated values of those
parameters including filter matrices M and weight matrix WM.

Being different from regular training process that starts with
random initial parameters, our novel retraining strategy will start
with the convergent values of parameters obtained in the FANTOM
model.The retraining strategyhas someadvantageswhencomparing
with regular training: (1) it will rapidly reach optimal prediction
accuracy with only dozens of epochs, implying it is time-saving; (2)
theoptimalpredictionaccuracywillbesignificantlybetterthanthatofa
direct training (not beginwith the pretrainingmodel).

Evaluation of the Prediction Performance
Here, we used five indices for evaluating the prediction
performance of models: sensitivity (Sens or recall), specificity
(Spec), precision, accuracy (ACC), geometric mean (GM) value
and Matthew’s correlation coefficient (MCC):

Sens = recall =
TP

TP + FN
,

Spec =
TN

TN + FP
,

precision =
TP

TP + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

GM =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
precision � recallp

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
p

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

To test the balance between true positive and false positive
rates, another evaluating index is the Area Under the ROC Curve
(AUC). Because of the imbalance between the positive and
negative dataset, we applied GM as an important index to
assess the performance.
RESULTS

Predicting Housekeeping Enhancers
With the FANTOM Model
Wefirst determinedoptimalvaluesof threemodelhyperparameters
includingfilter numberM,filter lengthm, andpooling size pwithin
Frontiers in Genetics | www.frontiersin.org 5
theCNN layerwith the training data E_train the validation set E_va
and the testing set E_test When considering the optimal filter
number, some previous works reported their choices. DeepBind
(Alipanahi et al., 2015) used 16 filters for learning TF motifs;
DeepSEA (Zhou and Troyanskaya, 2015) adopted three layers of
CNN and took 320, 480, and 960 filters for learning chromatin
features respectively; Basset (Kelley et al., 2016) employed three
layers of CNN of 300, 200, 200 filters for chromatin accessibility
prediction. Based on these existing experiences, we executed a
parameter optimization strategy using grid search on the
combinations of filter number (32, 64, 128, 256) and filter length
[all odd numbers in (5, 25)] (Figure 2). Although researchers often
usedACC orAUCvalue for evaluating predictionmodel (Liu et al.,
2016; Beer, 2017; Yang et al., 2017), we here employed GM for
evaluation because assessment with GM is more appropriate for
extremely imbalance dataset (Kleftogiannis et al., 2014) (1:10 in this
study). As a result, amaximalGMvalue of 0.821was achieved at the
combination offilter number of 64 andfilter length of 23.Although,
another high GM value of 0.815 was also achieved at the
combination of filter number of 64 and filter length of 21, we
finally determined the optimal filter number as 64.

After fixing filter number of 64, we then took a further grid
search on the combinations of filter length with all odd numbers
in [5,25] and pooling size of 3, 5, 8, 11, 14 and 17. We here
employed GM value (Figure 2) together with AUC value (Figure
2) for a comprehensive evaluation. As a result, a maximal GM
value of 0.815 was achieved at the combination of filter length of
15 and pooling size of 3 and the combination offilter length of 23
and pooling size of 8 achieved the second rank with GM value of
0.796. We noted that GM values exhibit a decreasing trend when
pooling size is increasing (the column means of 3, 5, 8 and 11 are
0.750, 0.738, 0.732 and 0.731 respectively). In addition of the fact
that larger pooling size would lose more information, we
discarded the situations when pooling size is larger than 8 and
only considered the situations with pooling size of 3, 5 and 8. We
next focus on another evaluation indicator, AUC, for further
searching. Interestingly, AUC values perpetuate an opposite
trend when pooling size is increasing: the column means of 3,
5 and 8 are 0.912, 0.931 and 0.942 respectively, indicating that we
should choose pooling size with 8. Although the maximal AUC
value of 0.954 was achieved at filter length of 11 when fixing
pooling size with 8. A comprehensive evaluation both using GM
value and AUC value finally confirmed that the optimal filter
length is 23 and the optimal pooling size is 8 because GM value of
filter length of 11 was only 0.707 (significantly lower than 0.796
of filter length of 23).

In summary, we successively determined three important
model hyperparameters as follows: filter number of 64, filter
length of 23 and pooling size of 8. After confirming them, the
FANTOM model was reevaluated via a 5-fold-cross-validation
for a more objective assessment (Table 1). In the large-scale
imbalanced enhancer dataset, the FANTOM model achieved a
great AUC value of 0.922 (Supplementary Figure 3), an
acceptable MCC value of 0.527, and an acceptable AUPRC
value of 0.619 (Supplementary Figure 2) for this imbalanced
dataset. In a word, the FANTOM model is a reliable prediction
model on dataset of Enhancer4653, which consists of 4653
January 2020 | Volume 10 | Article 1305
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housekeeping enhancers (Zabidi et al., 2015) and 46530 non-
enhancers, implying it has potential to be a reliable model for
housekeeping enhancer prediction.

Predicting Tissue-Specific Enhancers With
a Retraining Strategy
Next we proposed to predict tissue-specific enhancers with a
retraining strategy, which aims to build an updated model based
on the pretraining model when adding a given tissue-specific
enhancer dataset. Similar as before, a training epoch containing a
cycle of forward computation and backpropagation was adopted
to perform updating.

Next two specific problems which arise are: how many
epochs is at least required and how many epochs is optimal?
To answer these, based on the FANTOM model, we designed
four groups of retraining with four distinct numbers of epochs:
10 epochs named FANTOM-ep10, 20 epochs named
FANTOM-ep20, 50 epochs named FANTOM-ep50 and 100
epochs named FANTOM-ep100. Meanwhile, we performed
another four groups of ab initio training (not based on the
FANTOM model): 10 epochs named None-ep10, 20 epochs
named None-ep20, 50 epochs named None-ep50, and 100
epochs named None-ep100. Training on 23 selected groups of
Frontiers in Genetics | www.frontiersin.org 6
tissue-specific enhancer datasets (Materials and methods), a
total of eight boxplots representing their GM values is given in
Figure 3, from which we found two interesting facts: (1) GM
values of four pretraining-retraining models (starting with
FANTOM-) are far greater than those of ab initio training
models (starting with None-), suggesting the importance and
necessity of PRS; (2) among four pretraining-retraining
models, GM values of FANTOM-ep20 are relatively higher,
though no significant difference was found between
FANTOM-ep20 and FANTOM-ep10 (one-sided t-test, p-
value = 0.31). However, significant difference was found
between FANTOM-ep20 and FANTOM-ep50 (one-sided t-
test, p-value = 0.036), suggesting FANTOM-ep50 (and
FANTOM-ep100) model might fall into a problem of
overfitting. In a word, retraining with 10 epochs is at least
required and retraining with 20 epochs might be a good
choice. It is not necessary to retrain with epochs larger than
50, which is not only time-consuming but also is easy to fall
into overfitting.

After determining the optimal retraining epochs as 20, let
us show the superiority of FANTOM-ep20 model by precisely
comparing it to None-ep100 model (the best model within
None models). From Figure 3, it is obvious that all the points
FIGURE 2 | Determining optimal model hyperparameters of filter number, filter length, and pooling size. (A) GM values of grid search on the combinations of filter
number and filter length. (B) GM values of grid search on the combinations of filter length and pooling size. (C) AUC values of grid search on the combinations of
filter length and pooling size.
TABLE 1 | Prediction performances of pretraining stage with large-scale FANTOM5 enhancer data via a five-fold-cross-validation.

Enhancer dataset Sample size ACC AUC SEN SPE MCC GM

FANTOM5 enhancer data 4653 + 46530 0.929 0.922 0.499 0.972 0.527 0.696
January 2020 |
 Volume 10 | Article
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located below the line y = x, suggesting that FANTOM-ep20
model is superior to None-ep100 model at each tissue.
Furthermore, 23 FANTOM-ep20 models take their GM
values between 0.606 and 0.822 (with a mean of 0.746),
whereas 23 GM values of None-ep100 models distribute
from 0.122 to 0.634 with a mean of 0.345. A statistical t-test
showed that the former is extremely greater than the latter (p-
value = 1.44e-12), suggesting the difference between these two
is huge. Without a pretraining stage, TSEPs using deep
learning model are bad due to very low Sens values. It is
widely accepted that positive sample predictions are hard
when training on an extremely imbalanced dataset. The
mean of 23 Sens values of None-ep100 models has a very
low mean of 0.141, suggesting only 14% of positive samples
were accurately predicted. By contrast, when taking PRS, 23
Sens values of FANTOM-ep20 models has a mean of 0.580,
implying FANTOM-ep20 model accurately identified about
60% of positive samples. In summary, the prediction on tissue-
specific enhancer will be unreliable if a pretraining stage was
absent, whereas it will be much better and more acceptable by
adding a pretraining stage.

We investigated the resource consumption of prediction of
enhancer samples by running our script on a test computer with
Ubuntu 18.04 on processors of Intel(R) Core(TM) i7-7700 CPU
@ 3.60GHz, GPU of GeForce GTX 1080 Ti and 24 GB RAM.
When running on 4616 testing sequences with a length of
1000 bp, a total of 1.28s was needed for such predictions,
implying that the average computation time of each DNA
sequence was about 2.77 × 10-4 second.

Comparisons With Other Existing Methods
To further show the superiority of our method, comprehensive
comparisons with three state-of-the-art methods, gkm-SVM
(Ghandi et al., 2014; Ghandi et al., 2016; Beer, 2017), DEEP
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(Kleftogiannis et al., 2014), and BiRen (Yang et al., 2017), were
performed. There are two distinct strategies for such a
comparison: one is to run other tools on our dataset; the
other is to run our method on existing dataset that other
method used.

We first adopted the former comparison strategy for gkm-
SVM. Gkm-SVM is one of the most popular methods for
regulatory sequence prediction (Ghandi et al., 2014) and has
gradually become a dominating method in this area (Ghandi
et al., 2016). We downloaded its R package from the website
https://cran.r-project.org/web/packages/gkmSVM/index.html
and then run it on our 23 tissue-specific enhancer datasets with
its default parameters of L=10, K=6. A direct comparison with
our best model of FANTOM-ep20 can be found in Figure 4,
which shows the point-to-point comparisons of GM values on 23
tissues or cell lines. It is obvious that all the blue points
representing those GM values (a mean of 0.806) achieved by
FANTOM-ep20 models are above the orange points (a mean of
0.528) by gkm-SVM, suggesting our FANTOM-ep20 model is
superior to gkm-SVM on GM values. This is further confirmed
by the box-plots of these two and a t-test between them with a p-
value of 1.725e-15 in Figure 4, though AUC values of gkm-SVM
(a mean of 0.969) are slightly greater than those of our
FANTOM-ep20 model (a mean of 0.957).

We next applied the later comparison strategy for DEEP
and BiRen. DEEP (Kleftogiannis et al., 2014) trained many
individual models for 36 different tissues from FANTOM
enhancer data but it only provided the detailed prediction
results on three specific tissues: heart, liver, and brain, which
were chosen for comparisons. Using the latest version of
FANTOM5 enhancer data, we set the cutoff thresholds with
TPM > 1;TPM >4;TMP >1 to select three groups of tissue-
specific enhancers whose numbers are closest to those
numbers provided by DEEP (Table 2). To be consistent with
FIGURE 3 | Determining optimal pretraining-retraining model and comparison with classic model with no pretraining stage. (A) Comparison analysis determines
FANTOM-ep20 model to be the optimal pretraining-retraining model. (B) Comparison of GM values between FANTOM-ep20 models and None-ep100 models on 23
different tissues or cell lines.
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DEEP, the negative samples were chosen from random
intergenic regions with 10 times number of positive samples
of each tissue. After performing the optimal testing strategy
(40% for training and 60% for testing) of DEEP, ACC values of
FANTOM-ep20 models of heart, liver, and brain were 0.946,
0.982, and 0.906, respectively, which are greater than 0.822,
0.745, and 0.853 of DEEP (Table 2), suggesting our model has
higher prediction accuracy compared with DEEP. In their
article, DEEP claimed that great superiority of their model is
prediction balance on imbalance dataset, which is measured by
GM value. While comparing GM values, our FANTOM-ep20
models of heart, liver and brain achieved 0.805, 0.946 and
0.766, which are comparable with 0.812, 0.741and 0.843 of
DEEP respectively (Table 2).

For comparison with BiRen, we applied our FANTOM-ep20
model on VISTA enhancer data that BiRen used. We visited the
updated version of VISTA enhancer browser https://enhancer.
lbl.gov/ and downloaded 959 positive human enhancer
sequences and 889 negative ones, summing 1,848 human
enhancer sequences. To be consistent with BiRen, a non-
enhancer dataset containing 10 times the number of random
Frontiers in Genetics | www.frontiersin.org 8
genomic fragments (18,480 non-enhancer sequences) were
selected from the whole genome (the GRCh37 reference
genome) by excluding exon, intron and known enhancers. As a
result, our FANTOM-ep20 model achieved an average AUC
value of 0.958, which is slightly larger than 0.957 of BiRen by
evaluating via a five-fold cross validation test. Moreover,
additional evaluation indices including ACC, GM, Sens, and
Spec of our FANTOM-ep20 model are also provided in Table 2,
from which we found that a GM value of 0.796 was achieved,
suggesting our FANTOM-ep20 model remains robust prediction
performance on VISTA enhancer data.
DISCUSSION

Enhancers are important CREs and play significant roles in
gene transcriptional regulation. Majority of enhancers have
strong cell or tissue specificity, which highlights the
importance of TSEP. In this paper, we developed a novel
training strategy of deep learning named with PRS, which was
proven to be a reliable prediction model for TSEP. Finally, we
FIGURE 4 | Comparisons between our FANTOM-ep20 model and gkm-SVM tool on 23 different tissues or cell lines. (A) One-to-one direct comparison of GM value
on each tissue or cell line. (B) Distribution comparisons of GM values and AUC values with box plots.
TABLE 2 | Comprehensive comparisons of FANTOM-ep20 model with DEEP and BiRen.

Comparison targets Data source Sample size Method ACC AUC Sens Spec MCC GM

DEEP Heart 295 + 2950 DEEP 0.822 NA 0.802 0.824 NA 0.812
239 + 2390 FANTOM-ep20a 0.946 0.963 0.664 0.976 0.669 0.805

Liver 84 + 840 DEEP 0.745 NA 0.740 0.755 NA 0.741
75 + 750 FANTOM-ep20 0.982 0.990 0.905 0.989 0.891 0.946

Brain 639 + 6390 DEEP 0.853 NA 0.832 0.855 NA 0.843
619 + 6190 FANTOM-ep20 0.906 0.915 0.630 0.933 0.501 0.766

BiRen VISTA 1747 + 17470 BiRen NA 0.957 NA NA NA NA
VISTA 1848 + 18480 FANTOM-ep20 0.946 0.958 0.650 0.975 0.655 0.796
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conclude that PRS brings some new contributions or findings
into the area of TSEP:

New contribution to training strategy: a specific cell or tissue
type has only hundreds or a few thousands of specific enhancer
samples, which might make existing deep learning methods to fall
into overfitting problem. PRS employs a large scale FANTOM
enhancers data to construct a pretraining model with optimal
model hyperparameters, and then uses each small sample dataset
of tissue-specific enhancers to retrain, based on the trained
pretraining model. Testing results on 23 different cell or tissue
types demonstrate that PRS is superior to classic training strategy
without pretraining, which enable us to conclude that PRS is a
reliable method for TSEP.

New findings on optimal retraining epochs: we found that 20
additional epochs are optimal when retraining a new source of
tissue-specific enhancer samples based on the trained pretraining
model. Either too few or too many additional epochs are not the
good choices, because too few epochs like FANTOM-ep10 has
not fully learned features of the new source data, whereas too
many epochs like FANTOM-ep50 might has a big problem
of overfitting.

New contribution to transfer learning: when comparing the
best model of PRS named with FANTOM-ep20 with existing tool
names with BiRen, we noted an interesting fact: FANTOM-ep20
achieved a greater AUC value with a different enhancer data
source of VISTA enhancer data in the retraining stage. VISTA
enhancer data was generated with a totally different biological
assay and has distinct distribution or source domain with
FANTOM enhancer data. Our FANTOM-ep20 model took
pretraining with FANTOM enhancer data and then performed
retaining with VISTA enhancer data. This shows that our PRS
model has good performance of transfer learning, which implies
that PRS might provide helpful ideas for transfer learning studies.

Although notable successes were achieved in the current
study, some drawbacks or limitations still need further
investigations in the future works. For example, this method is
not appropriate for enhancers with sequences shorter than 100bp
Frontiers in Genetics | www.frontiersin.org 9
and greater than 1000bp. In addition, there are totally three main
sources of enhancer data: FANTOM, Vista, and ENCODE. In the
current study, we only trained on FANTOM enhancer data and
tested on Vista enhancer data. The comprehensive combinations
of training and testing between three sources are the future
directions of DEP and TSEP.
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