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The interactions between RNAs and RNA binding proteins (RBPs) are crucial for 
understanding post-transcriptional regulation mechanisms. A lot of computational tools 
have been developed to automatically predict the binding relationship between RNAs 
and RBPs. However, most of the methods can only predict the presence or absence 
of binding sites for a sequence fragment, without providing specific information on the 
position or length of the binding sites. Besides, the existing tools focus on the interaction 
between RBPs and linear RNAs, while the binding sites on circular RNAs (circRNAs) have 
been rarely studied. In this study, we model the prediction of binding sites on RNAs as 
a sequence labeling problem, and propose a new model called circSLNN to identify the 
specific location of RBP-binding sites on circRNAs. CircSLNN is driven by pretrained 
RNA embedding vectors and a composite labeling model. On our constructed circRNA 
datasets, our model has an average F1 score of 0.790. We assess the performance 
on full-length RNA sequences, the proposed model outperforms previous classification-
based models by a large margin.

Keywords: RNA–protein binding sites, sequence labeling, convolutional neural network, bidirectional LSTM neural 
network, deep learning

INTRODUCTION
Benefitting from the rapid development of high-throughput experimental technologies, 
transcriptome, proteome, epigenome and other omics data have accumulated in an unprecedented 
speed. The multi-omics data have enabled large-scale studies on gene regulation at different levels. 
Especially, the interactions between RNAs and RNA binding proteins (RBPs) are crucial for 
understanding post-transcriptional regulation mechanisms (Filipowicz et al., 2008). The RNA–RBP-
interactions play important roles in protein synthesis, gene fusion, alternative mRNA processing, 
etc. (Bolognani and Perrone-Bizzozero, 2008). The aberrant expression of RBPs and disruption of 
RNA–RBP-interactions are closely related to various diseases of human beings (Khalil and Rinn, 
2011). In the early stage of RNA–RBP-interaction studies, the recognition of binding sites mainly 
relies on the analysis of RNA–protein complexes via biophysical methods. As the experimental 
process is costly and laborious, it is increasingly important to develop automatic tools to predict 
binding sites.

As for protein–protein-interactions, both structures and amino acid sequences are commonly 
used for identifying binding sites, including POCKET (Liu and Hu, 2011), Fpocket (Le Guilloux 

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1184

ORIgINAL ReSeARCh

doi: 10.3389/fgene.2019.01184
published: 22 November 2019

https://creativecommons.org/licenses/by/4.0/
mailto:yangyang@cs.sjtu.edu.cn
https://doi.org/10.3389/fgene.2019.01184
https://www.frontiersin.org/article/10.3389/fgene.2019.01184/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01184/full
https://www.frontiersin.org/article/10.3389/fgene.2019.01184/full
https://loop.frontiersin.org/people/812206
https://loop.frontiersin.org/people/789658
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2019.01184
https://www.frontiersin.org/journals/genetics#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2019.01184&domain=pdf&date_stamp=2019-11-22


CircSLNNJu et al.

2

et al., 2009) LIGSITE (Hendlich et al., 1997), etc. The structural 
feature-based prediction methods exploit protein 3D structures 
and appropriate geometries to locate potential binding regions. 
Most structure-based methods assume that proteins bound to 
the same ligand have similar overall structure and biochemistry 
characteristics, while some researchers found that proteins having 
the same binding site may have diverse sequences or structures 
(Muppirala et al., 2011). Sequence-based methods usually utilize 
amino acid composition, function domain, secondary structure 
and solvent accessibility information (Shen et al., 2007).

Due to the lack of solved structures for RNA-protein complexes, 
most of the existing studies have turned to sequence information 
and machine learning methods for predicting RBP-binding sites 
on RNAs, like support vector machines (SVMs) (Kumar et al., 
2008) and random forest (RF) (Liu et al., 2010). Moreover, deep 
learning models have emerged in this field (Alipanahi et al., 2015; 
Pan and Shen, 2017). Deep learning is a data-driven approach 
that allows automatic learning of the advanced features from data 
without the need for domain knowledge, by stacking multiple 
layers of neural networks (LeCun et al., 2015). Compared to 
traditional machine learning models, it does not require feature 
engineering and can achieve better performance. A few deep 
learning methods, including convolutional neural network (CNN) 
and recurrent neural network (RNN), have been developed to 
predict RBP-binding sites (Pan and Shen, 2017; Pan et al., 2018).

Although researchers have made some progress in predicting 
RNA–protein binding sites, current mainstream prediction 
methods have some limitations.

First, most prediction methods simplify the prediction task as 
a binary classification problem, i.e. they assign a positive/negative 
label to a segment of RNA, where the positive label denotes the 
presence of a binding site. Actually, binding sites on RNAs are 
sequence fragments that range from tens to hundreds of nucleotides 
in length. Thus, the prediction based on fixed-length fragments may 
be inaccurate, as it only yields approximate locations of binding 
sites and could not specify the length that the sites span.

Second, most of the existing methods predict the interaction 
between linear RNAs and RBPs, while circular RNAs (circRNAs) 
have been rarely studied. CircRNAs play an important role 
in gene regulation, and they also play crucial roles in the 
development of many complex diseases (Fan et al., 2018). Thanks 
to the advances of new sequencing technology, circRNAs have 
been identified on the whole genome scale (Song et al., 2016). 
Moreover, the interplay between circRNAs and proteins or 
microRNAs has attracted more and more research interests from 
biomedical field, resulting in large-scale data of circRNA–RBP 
interactions using high-throughput experiments, like CLIP-Seq 
(Dudekula et al., 2016). Thus, the models for predicting binding 
sites on circRNAs are in great demand.

In this study, we propose a sequence labeling neural 
network model to predict circRNA–protein binding sites, called 
circSLNN, which is composed of a long-short-term memory 
(LSTM) network, a convolutional neural network (CNN) and a 
conditional random field (CRF) model. Instead of performing 
a binary classification on the whole fragment, it assigns a label 
(bound or unbound) to each position on the fragment. Compared 
with traditional classifiers, it can not only predict whether the 

input segment is bound to a given RBP, but also predict the 
specific location of binding sites on the segment. Besides, in order 
to fully utilize the sequence information of circRNAs, we propose 
to use RNA embeddings learned via a similar word embedding 
algorithm for processing natural languages, where the corpus 
is extracted from the whole human genome. To the best of our 
knowledge, this is the first predictor for RNA–protein binding 
sites using a sequence labeling scheme. The contributions of this 
study are listed in the following.

 1. We construct the sequence labeling network of LSTM-CNN-
CRF for predicting RBP-binding sites on RNA sequences. 
Compared to previous methods, it has the advantage in 
identifying location and length of binding sites.

 2. We apply RNA embeddings to the prediction of RNA–RBP 
interaction, and demonstrate the effectiveness of continuous 
dense feature vectors trained by word embedding and whole-
genome corpus.

 3. We propose a predictor, circSLNN, trained on circRNA 
binding sites, which may help researchers reveal the 
interaction mechanisms of circRNAs and proteins.

ReLATeD WORK

Prediction Based on Traditional Machine 
Learning Methods
The prediction of molecular interactions has been a hot topic 
in bioinformatics over the past decades. Especially, the protein–
protein-interactions (PPIs) have been well-studied due to the 
abundant information that can be utilized in the prediction, 
e.g. amino acid sequences, function domains, gene ontology 
annotation (Ashburner et al., 2000). The machine learning-
based predictors usually consist of two parts, i.e. the feature 
extraction and classification. Similar to PPI, the prediction of 
RNA–RBP-interaction is a typical machine learning problem. 
However, due to the lack of functional annotation of RNAs, the 
feature extraction mainly relies on RNA sequences or secondary 
structures. For some types of RNAs, like circRNAs which 
have constrained structures, i.e. covalently closed continuous 
loops, the effective feature extraction from sequences are 
more important.

Traditional feature representation of RNA sequences include 
k-tuple composition, pseudo k-tuple composition (PseKNC) 
(Chen et al., 2013), etc. The features are discrete vectors, working 
with shallow learning models. For instance, Muppirala et al. 
(2011) used the SVMs and random forest methods to predict the 
RNA–RBP-interactions. As the rise of deep learning, sequence 
encoding schemes and deep neural networks have been emerging 
and achieved better prediction performance.

Prediction Based on Deep Neural 
Networks
DeepBind (Alipanahi et al., 2015) is a pioneer work in 
developing deep learning models for RNA–RBP-interactions. 
The model is based on a convolutional neural network, which 
not only improves prediction accuracy but also reveals new 
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sequence patterns at the binding area. Later, Pan et al. released 
a series of computational tools, including iDeep (Pan and Shen, 
2017), iDeepS (Pan et al., 2018) and iDeepE (Pan and Shen, 
2018), which have different feature representation and model 
architecture. iDeep utilizes five different information sources, 
i.e. secondary structure information, motif information for 
describing the conserved region of sequences, CLIP co-binding, 
region type, and sequence information, to extract high-level 
abstraction features via deep learning models. Especially, the 
sequence information is processed by a CNN (Krizhevsky 
et  al., 2012), while other four data sources are processed by 
deep belief networks (Zou and Conzen, 2004). Compared with 
iDeep, iDeepS reduces the types of data sources and only retains 
sequence information and secondary structure information. The 
authors added bi-directional long short-term memory (BiLSTM) 
(Schuster and Paliwal, 1997) to integrate the data, which better 
reserves contextual information based on relative position 
relationship of nucleotides.

Generally, the performance of deep learning-based methods 
depends on informative feature representation and powerful 
model architecture. In this study, we explore both the two parts 
to improve prediction accuracy.

MATeRIALS AND MeThODS

Data Source
To construct a predictor for circRNA–RBP-interactions, we 
collect a standard dataset of RBP-binding sites on circular RNAs 
from the circRNA Interactome database (Dudekula et al., 2016), 
which contains sequence information for more than 100,000 
human circRNAs, as well as specific locations of binding sites for 
different RBPs. Each binding site is represented as an interval from 
the start index to the end index on the circRNAs. We extend 50-nt 
upstream and downstream respectively by taking the midpoint of 
each interval as the center. In this way, 101-nt fragments can be 
obtained as positive samples. Then we randomly extract 101-nt 
segments from the remaining fragments as negative samples. In 
order to avoid the issue caused by repeated sequences, we remove 
redundant sequences using CD-HIT (Li and Godzik, 2006). The 
positive-to-negative ratio is 1:1, and the training-to-test ratio is 
5:1.

Then we generate standard labels for all samples. For 
positive samples, we label all the symbols within the binding 
sites as “I” and all the other locations as “O”, meanwhile we 
mark all symbols as “O” for negative samples. Here we use the 
IO tag scheme, where “I” is short for inside (a binding site) and 
“O” is short for outside, i.e. not a binding site. As it is known 
that, the BIO format (short for inside, outside, beginning) is 
a common tagging format in natural language. As there are a 
lot of adjacent labeling objects in text, it is hard to distinguish 
between different labeling objects using only the IO scheme. 
By contrast, in the sequence labeling problem of binding sites, 
the distribution of binding sites is extremely sparse, and usually 
binding segments are far from each other. Thus, we use the 
IO labeling scheme to reduce the types of labels and make the 
training model easier to converge.

Data encoding
As mentioned in the Related Work section, feature representation 
can have a substantial impact on the performance for both 
shallow learning and deep learning models. To work with deep 
models, RNA sequences need to be encoded into numerical 
vectors, like one-hot vectors. In recent years, more and more 
studies on biological sequence analysis have adopted word 
embedding-based encoding schemes to replace one-hot encoding 
(Harris and Harris, 2010), as embedding vectors are continuous 
and high-dimensional, which may capture more context and 
semantic information in sequences. In our previous studies, we 
propose the RNA2Vec method to get RNA embeddings (Xiao 
et al., 2018). We regard 10-mer segments as words and train the 
word embeddings using Glove (Pennington et al., 2014).

Model Architecture
In this study, we design a sequence labeling model based on deep 
neural networks to predict RBP-binding sites on RNAs. We first 
feed the embedding vectors to a convolutional neural network 
(Krizhevsky et al., 2012) to extract local features, and then learn 
the long-distance dependency information among bases through 
a BiLSTM layer. Finally, the label identification of the entire RNA 
sequence is completed by the CRF layer (Lafferty et al., 2001). 
The network structure is shown in Figure 1.

CNN Layer
Convolutional neural network (CNN) (Krizhevsky et al., 2012) 
is a widely used deep learning architecture. CNN generates 
feature maps at different abstract levels by stacking convolutional 
layers. In circSLNN, the CNN serves as a feature extractor from 
the initial input vectors. As sequence labeling models predict a 
label for each symbol in the sequence, whereas the embedding 
vectors are trained for 10-mers, we adopt CNN to extract high-
level features for each nucleotide in RNA sequences based on 
the embedding vectors of its surrounding 10-mers, i.e. a window 
centered by the nucleotide.

Specifically, for each individual nucleotide (except for the first 
9 nucleotides), there are 10 fragments of length 10 containing 
it. Based on the vectors of the 10 fragments, we perform 
feature extraction via a one-dimensional CNN. Suppose the 
dimensionality of embedding vectors is m, then each nucleotide 
can be represented as a matrix of size 10×m, which is fed to 
the CNN. Before using CNN, we need to expand the 101-nt 
fragments to 110-nt (101 + 10 − 1), which is passed through a 
sliding window of size 10. Here we pad the matrix by zero vectors.

Let hj be the size of the jth convolutional kernel, Xi be the matrix 
of the sliding window at the ith time step, which consists of the ith 
to the (i + hj − 1)th columns of the original input. Thus, the features 
learned by the convolutional layer can be expressed in Eq. 1,

 

c f

i N h
ij j

j

= ∗ +

∈ − + ∈
+ −( )

{ , , , }, j { , ,
:w X bi i hj j1

1 2 1 1 2 nn}  (1)

where n is the number of filters, f(.) is the activation function, 
and wj and bj are the weight matrix and the offset, respectively.
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BiLSTM Layer
Till now, the mechanism of RNA–RBP-interaction has not been 
fully understood yet, and various factors impact the binding 
between RNAs and RBPs, include not only the local structural 
motifs and binding domains but also long-term dependencies 
of nucleotides. In our model, the CNN component serves 
as a feature extractor from raw input and learn the context 
information in local regions. To further exploit sequence 
information, we adopt bi-directional long short-term memory 
(BiLSTM) (Schuster and Paliwal, 1997) network. BiLSTM is a 
combination of forward LSTM and backward LSTM, which is a 
special type of recurrent neural network (RNN). It is often used 
to model context information in natural language processing 
tasks. BiLSTM was designed to learn the relationship between 
base before and after the current position, and to capture longer 
distance dependencies.

Let xt be the input vector of the tth time step, and st and sʹt be 
the hidden states of the forward and backward calculations of the 
tth time step. Then the calculations of st and sʹt depend on st-1 and 
sʹt+1, respectively, as shown in Eqs. 2 and 3.

 s gt t t= + −( )Ux Ws 1  (2)

 ′ = ′ + ′ ′+s gt t t( )U x W s 1  (3)

where U and W are the weight matrices of the input and hidden 
states in the forward pass. U′ and W′ are the weight matrices of 
the input and hidden states in the backward pass.

The final output ot of step t is a combination of a forward 
hidden layer and a backward hidden layer, defined as follows.

 o ht t t= + ′ ′(Vs V s )  (4)

where V and V′ are the weight matrices of the hidden layers to 
the output layer in forward pass and backward pass, respectively.

CRF Layer
As mentioned in the CNN Layer and BiLSTM Layer sections, 
CNN and RNN have their respective advantages. The hybrid 
CNN-RNN architecture has been proposed in previous studies 
and achieved much better performance than using CNN or RNN 
alone. For instance, both CRIP (Zhang et al., 2018) and iDeepS 
(Pan et al., 2018) are hybrid CNN-RNN models, and both use 
LSTM for classification. CRIP feeds the outputs for all time-
steps of the LSTM to a fully-connected layer and get the decision 
result, while iDeepS uses the output of the last time-step for 
classification. Actually, based on the output on each time-step of 
LSTM, it is straightforward to get the sequence labeling results. 
However, the raw outputs without any constraint are often 
meaningless, e.g. OIOI … OOI, as it is known that binding sites 
are continuous regions on RNA sequences. In order to avoid such 
cases, we add a conditional random field (CRF) layer to process 
the output of BiLSTM. The purpose of the CRF layer is to predict 
the probability of the entire sequence rather than the probability 
of each individual tag. The CRF layer can add some constraints 
to the predicted labels to ensure that the output labels are legal. 
During the data training process, these constraints can be 
automatically learned through the CRF layer, so the probability 
of occurrence of illegal sequences in the prediction phase will 
be greatly reduced. Specifically, the CRF layer calculates the 
conditional probability shown in Eq. 5

 P x xn n n n( , , | , , ) P( , , | ), ( , , )y y x y y x x x1 1 1 1   = =  (5)

where P(y|x) is the probability that the prediction label is y 
if the input is x, where xi is the output of ith time-step by the 
LSTM layer.

In order to estimate the probability, CRF makes two 
assumptions. First, the distribution is an exponential family 
distribution. Second, the association between the outputs occurs 

FIgURe 1 | The overall architecture of CircSLNN.
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only at adjacent locations, and the association is exponentially 
additive. This allows the probability to be calculated by the 
probability density function as shown in Eq. 6.

 

f
g

( , , ; ) ( ; ) ( ; ) ( ; )
( ,

,y y x h y x g y y x h y x
y y

n1 1 1 2 2

2 3
 = + + +

;; ) ( ; ) ( , ; ) ; )nx h y x g y y x h y xn+ + + +−3 1 ( n  (6)

where f, g, h are probability density functions and can be 
considered as scoring functions. The overall score f of all tags can 
be broken down into the sum of the score h of each individual 
tag and the score g of each pair of adjacent tags. Since LSTM 
is capable to learn the mapping from input x and its output y, 
we assume that the function g is independent of x and the final 
probability distribution can be formulated in Eq. 7,
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 (7)

where the single-label scoring function h(yi; x) is fitted by the 
BiLSTM layer, thus completing the construction of the CRF layer.

eXPeRIMeNTAL ReSULTS

experimental Settings
In circSLNN, the number of convolution kernels in the CNN 
layer is 128, the convolution window size is 10, the hidden layer 
size of the BiLSTM layer is 256, and the activation function 
used by the middle layer is ReLU. The optimization algorithm 
is RMSProp, with batch size 512 and epoch number 20, using 
the early stopping mode. The performance metrics include 
precision, recall and F1, which are computed based on the labels 
of individual nucleotides.

Prediction Performance of circSLNN
We perform experiments on all 37 datasets described in the 
Data Source section. For each dataset, we perform a 6-fold 
cross-validation. The original datasets are divided into 6 folds 
with approximately equal size (5 folds for training and validation, 
and one fold for test). The accuracies shown in Table 1 are 
averaged over 6 times of independant test.

As can be seen, circSLNN achieves high prediction accuracy 
for most RBPs. The F1 scores are higher than 0.8 on 24 out 
of the 37 datasets, showing the effectiveness of the sequence 
labeling model.

Data encoding Analysis
In circSLNN, the inputs are pretrained embedding vectors for 
k-mers, while most of the existing methods for predicting RBP-
binding sites use one-hot encoding, e.g. iDeep and DeepBind. 
In order to investigate the impact of encoding scheme on model 
performance, we compare one-hot and our embedding vectors 

on the same datasets. We randomly choose 5 RBPs. Figure 2 
depicts the comparison results.

Apparently, the pretrained embedding vectors perform 
much better than the one-hot vectors. The average F1 score 
is increased by 0.087. This result suggests that the word 
embedding encoding method can effectively extract the feature 
information of RNA sequences from the human genome 
database, and can effectively improve the performance of the 
binding site predictor.

The Role of CNN Layer
Compared to ordinary text sequence labeling tasks, we introduce 
the CNN layer to extract local features from RNA sequences. The 
purpose of the CNN layer is to characterize the local sequence 
pattern surrounding the base to be labeled, and encode each 
individual base with richer information. Here we assess the 
contribution of CNN by removing it from the model. The inputs 
of the LSTM-CRF model are the pretrained k-mer embedding 
vectors. Specifically, for each base, we choose the embedding 
vector of the fragment that centered by the base as its feature 

TABLe 1 | Prediction accuracies on 37 different protein datasets.

Protein Precision Recall F1-Measure

AGO1 0.820 0.853 0.836
AGO2 0.804 0.429 0.559
AGO3 0.840 0.773 0.805
ALKBH5 0.908 0.928 0.918
AUF1 0.908 0.938 0.923
C17ORF85 0.889 0.926 0.907
C22ORF28 0.847 0.828 0.838
CAPRIN1 0.881 0.789 0.833
DGCR8 0.794 0.863 0.827
EIF4A3 0.520 0.749 0.614
EWSR1 0.892 0.912 0.902
FMRP 0.473 0.679 0.557
FOX2 0.999 0.925 0.961
FUS 0.583 0.566 0.575
FXR1 0.958 0.951 0.955
FXR2 0.799 0.825 0.812
HNRNPC 0.841 0.892 0.866
HUR 0.542 0.609 0.573
IGF2BP1 0.522 0.716 0.604
IGF2BP2 0.691 0.660 0.675
IGF2BP3 0.533 0.618 0.572
LIN28A 0.543 0.702 0.613
LIN28B 0.764 0.636 0.694
METTL3 0.774 0.806 0.790
MOV10 0.805 0.808 0.806
PTB 0.609 0.597 0.603
PUM2 0.910 0.988 0.948
QKI 0.982 0.971 0.976
SFRS1 0.797 0.704 0.748
TAF15 0.916 0.968 0.941
TDP43 0.864 0.760 0.809
TIA1 0.915 0.863 0.888
TIAL1 0.836 0.824 0.829
TNRC6 0.952 0.841 0.893
U2AF65 0.848 0.796 0.821
WTAP 0.976 0.953 0.964
ZC3H78 0.848 0.790 0.818
Average 0.794 0.795 0.790
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vector. The following training on LSTM and CRF is the same as 
circSLNN. We compare the performance of the two methods on 
five randomly selected data sets, as shown in Figure 3.

As can be seen, the average F1 is increased by 0.021 by introducing 
CNN layer. Although the overall improvement seems not significant, 
we find that CNN has larger contribution for the difficult datasets, 
e.g. HUR and LIN288, compared with easy datasets, indicating the 
importance of further feature learning from raw inputs.

Comparison of Different Sequence 
Labeling Schemes
The sequence labeling scheme used in this study is IO tag, not 
the BIO or BME (BME is short for begin, middle and end) 
that commonly used in text labeling tasks (Carpenter, 2009), 
as binding sites generally span tens of bases in length, whereas 
common text labeling objects only consist of several words, such 
as a typical place name in the named entity recognition mission 
(NER), ‘Shanghai Jiao Tong University’. In order to assess the 

performance of these three tag systems, we conduct experiments 
on five randomly selected protein datasets, as shown in Figure 4.

As can be seen, the IO tag system outperforms BIO and BME 
by a large margin. BIO and BME have close performance. We find 
that the B-coded labeling systems can hardly find tag B in the test 
set, i.e. their results contain only tag I and tag O. The reason is 
that the B tag is extremely sparse due to the long binding sites, 
which leads to an imbalanced distribution of tags, and it is very 
hard to recognize tag B.

Investigation on Positive-to-Negative Data 
Ratio
In our experiments, the positive-to-negative ratio for all datasets 
is 1:1, which is the same as previous studies (Pan and Shen, 2017), 
(Zhang et al., 2018). However, the length of human circRNAs could 
be tens of thousands bases, including 1–5 exons (Memczak et al., 
2013), while the binding sites are small regions and very sparse on 
the sequences. That is to say, the true ratio between positive and 
negative data is very small, leading to an extremely imbalanced 
problem, thus most studies adopt a sampling strategy to control 
the ratio. Here, to get closer to the actual situation, we compare 
the performance of circSLNN under different positive-to-negative 
ratios, i.e. 1:1, 1:2, and 1:4. The results are shown in Figure 5.

Note that although adding negative samples results into data 
imbalance, the increase in data volume is beneficial for training 
the model. As shown in Figure 5, the accuracies on some datasets, 
e.g. LIN28B, LIN28B, and TDP43, have even been increased 
by using expanded negative set. Generally, the performance of 
circSLNN has little variance when expanding negative set several 
times, showing the model robustness.

Comparison With the existing Methods 
on Sequence Labeling for Full-Length 
circRNAS
In order to assess the performance of circSLNN in real cases, we 
conduct experiments on full-length circRNAs instead of sampled 

FIgURe 2 | F1 Score for Different Coding Methods.

FIgURe 3 | Performance comparison between models with and without the 
CNN layer. FIgURe 4 | Performance comparison on three sequence labeling schemes.
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segments in the datasets, and compare it with the state-of-the-art 
predictors for RNA–RBP binding sites.

To the best of our knowledge, circSLNN is the first 
sequence labeling model for identifying RBP-binding sites 
on circRNAs. Therefore, for the convenience of comparison, 
we need to process the output of the existing classification 
models, i.e. converting the labels for segments into labels for 
individual nucleotides. Specifically, for a full-length RNA, we 
divide it from beginning to end into 101-nt fragments. For 
each fragment, the circSLNN model is used to predict whether 
each base belongs to the binding site. If it belongs, it is marked 
as 1; otherwise, it is marked as 0. For the classification model, 
whether the fragment belongs to the binding site is predicted. 
If the fragment is predicted as positive, then all the bases in 
the sequence are labeled by 1, otherwise all bases are labeled 
by 0. In this way, we obtain the label sequences of full-length 
RNAs predicted by two different models. By comparing 
the predicted sequence labels with the actual labels, we can 
calculate the F1 score.

We collect a dataset of 100 full-length circRNAs that are 
bound to different RBPs. They are first segmented into 101-nt 
segments, and then fed to the classification models and sequence 
labeling model, respectively, to predict the binding sites. F1 scores 
are computed based on individual bases. The results are shown 
in Figure 6.

As can be seen from the results, circSLNN achieves the highest 
F1 on almost all circRNAs in the dataset. The average F1 score of 
circSLNN reaches 0.568, while the average F1 scores of iDeepE 
(Pan and Shen, 2018) and CRIP (Zhang et al., 2018) are 0.504 
and 0.494, respectively. This suggests that the sequence labeling 
model can more accurately identify the position of the binding 
site, which is important for further verification of the interaction 
regions using biological experiments.

Despite the advantages over other methods, we can find that 
the overall accuracy is much lower than that computed on the 
short segments (the average F1 of 37 test sets is 0.790 as shown 
in Table 1). It is mainly due to the extremely imbalanced class 

distribution in this new test set. In training sets, the positive-
to-negative ratio is 1:1, while when the full-length circRNAs are 
segmented, most of them contain no binding site at all. Although 
the model can handle imbalanced distribution to some extent as 
described in the Investigation on Positive-to-Negative Data Ratio 
section, the performance decreases greatly when the data set is 
severely imbalanced.

DISCUSSION
This study aims to develop a machine learning model 
for identifying RBP-binding sites on RNAs. The existing 
prediction methods consider this problem as a classification 
problem, which divide RNA sequences into fragments and 
predict whether or not binding sites exist in the fragments. 
To further predict the location and length of binding sites, 
we propose a sequence labeling model, circSLNN, which 
assigns a label to each base in fragments instead of the whole 
fragments, so as to provide more information of the binding 
regions. Besides, considering the lack of tools designed for 
circRNAs, circSLNN is specially trained by circRNA datasets. 
Although trained on circRNAs, circSLNN provides a general 
sequence labeling framework that can be applied to all types 
of RNAs.

Despite the enhancement of performance, this study is 
still a preliminary exploration on characterizing binding sites 
on circRNAs. The first limitation lies in the input features. 
As it is known that the interaction between RNAs and other 
molecules has complex mechanisms, especially the circRNAs 
that have not been well studies, the prediction of circSLNN 
is based only on circRNA sequences, which is a very limited 
information source. One future research direction is to 
incorporate more biological properties or domain knowledge 
related to circRNAs.

Second, although we have used a hybrid neural network, the 
proposed model structure is relatively simple. In recent years, not 
only new embedding training methods but also deep architecture 

FIgURe 5 | Performance on datasets with different positive-to-negative 
data ratios.

FIgURe 6 | F1 score on 100 full-length RNAs.
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have emerged in the field of natural language processing (Devlin 
et al., 2018), (Peters et al., 2018), which have achieved substantial 
improvement on a variety of tasks. Many of them could be 
adapted to biological sequence analysis, thus our network 
structure still has a lot of room for improvement.

Third, because the lengths of circular RNA sequences vary 
greatly, ranging from a few hundred to several millions, which 
seriously affects the training of the model. Most of the predictors 
including circSLNN are trained on short segments of RNAs, 
which may lose some information of whole RNAs and lead to 
high false-positive-rate. Better predictions based on full-length 
RNAs or longer segments are the focus of our future work.

CONCLUSION
This study proposes a sequence labeling neural network for 
predicting RBP-binding sites on circRNAs, called circSLNN. 
To fully exploit sequence information, we train continuous 
embedding vectors for 10-mers of RNAs using the whole 
human genome sequences, and we construct a hybrid CNN–
LSTM–CRF network to perform the sequence labeling task. 
The purpose of using a hybrid model is to combine the 
advantages of two deep architectures and to obtain better high-
level abstract feature representations for classification. We 
train circSLNN on 37 datasets of circRNA fragments, and the 
average F1 score is 0.790. The experimental results show that it 
is feasible to use the sequence labeling method for identifying 
binding sites on circRNAs. Both the RNA fragment embedding 

vectors and the hybrid architecture contribute to improved 
performance. Compared with the classification model, it can 
more accurately label the position of the binding site on the 
full-length RNAs. The proposed model will help researchers 
study the circRNA–RBP-interactions and reveal regulatory 
functions of circRNAs.
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