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The microbiome-wide association studies are to figure out the relationship between 
microorganisms and humans, with the goal of discovering relevant biomarkers to guide 
disease diagnosis. However, the microbiome data is complex, with high noise and 
dimensions. Traditional machine learning methods are limited by the models' representation 
ability and cannot learn complex patterns from the data. Recently, deep learning has 
been widely applied to fields ranging from text processing to image recognition due to 
its efficient flexibility and high capacity. But the deep learning models must be trained 
with enough data in order to achieve good performance, which is impractical in reality. In 
addition, deep learning is considered as black box and hard to interpret. These factors 
make deep learning not widely used in microbiome-wide association studies. In this work, 
we construct a sparse microbial interaction network and embed this graph into deep 
model to alleviate the risk of overfitting and improve the performance. Further, we explore 
a Graph Embedding Deep Feedforward Network (GEDFN) to conduct feature selection 
and guide meaningful microbial markers' identification. Based on the experimental results, 
we verify the feasibility of combining the microbial graph model with the deep learning 
model, and demonstrate the feasibility of applying deep learning and feature selection 
on microbial data. Our main contributions are: firstly, we utilize different methods to 
construct a variety of microbial interaction networks and combine the network via graph 
embedding deep learning. Secondly, we introduce a feature selection method based on 
graph embedding and validate the biological meaning of microbial markers. The code is 
available at https://github.com/MicroAVA/GEDFN.git.

Keywords: graph embedding, deep learning, feature selection, biomarkers, microbiome

INTRODUCTION
A large number of microorganisms are parasite on various parts of the human body, mainly 
concentrated in the intestine, oral cavity, reproductive tract, epidermis and skin. The microbial 
communities existing in different parts of the body or in different host environments are very 
different (Turnbaugh et al., 2007; Lloyd-Price et al., 2017). These microorganisms include bacteria, 
fungi, viruses and protozoa. All genetic material in the particular microbial community is called 
the microbiome. Recent studies have shown that microorganisms are directly or indirectly 
related to many diseases. For example, the gut microbiome may be closely related to irritable 
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bowel syndrome and its imbalance may lead to chronic 
kidney diseases. Microorganisms may also be closely related 
to digestive tract diseases, endocrine diseases, circulatory 
diseases, reproductive system diseases, respiratory and 
psychiatric diseases (Kho and Lal, 2018). Since the microbiome 
plays a central role in the hosts' health, understanding the 
distribution and composition of microbial communities in 
humans, especially under different diseases or physiological 
conditions, is of great significance for disease diagnosis, 
prevention and treatment. The microbiome-wide association 
studies are to find disease-associated microbial markers to 
guide disease diagnosis and treatment (Gilbert et al., 2016; 
Wang and Jia, 2016). Compared with the human genome, the 
microbiome is an ideal target and more convenient to regulate. 
Therefore, the microbiome is often named “the second human 
genome” (Brüls and Weissenbach, 2011). However, there are 
many types of microorganisms and most of them cannot be 
cultured. Therefore, a high-throughput sequencing method 
is a feasible means of understanding microbial communities. 
Through high-throughput sequencing, we can understand 
the types of microorganisms and even their functions in the 
community (Ranjan et al., 2016).

The microbiome data is from high-throughput sequencing 
methods such as 16s or shotgun sequencing, which is often 
with high dimensions with noise. As a result, it is difficult 
to mine microbial signatures from these data. Traditionally, 
statistical-based methods identify markers mainly through 
microbial abundance differential expression (Paulson et  al., 
2013). However, the statistical approaches often have strong 
assumptions and the real data often do not satisfy these 
assumptions (Hawinkel et al., 2017; Weiss et al., 2017). Other 
machine learning methods are widely explored (Pasolli et al., 
2016). Recently, deep learning has received great attention, 
especially its end-to-end automatic learning ability. At 
present, deep learning is widely used in automatic driving, 
image recognition and text processing, which has received 
exciting results (LeCun et al., 2015). The deep models can 
learn specific patterns directly from the data, thus avoiding 
the artificial feature engineering (Goodfellow et  al., 2016; 
Kong and Yu, 2018). In the analysis of biomedical data, 
especially the analysis of various omics data, deep learning has 
achieved good improvement, but still faces many problems 
and challenges (Angermueller et al., 2016; Camacho et al., 
2018; Eraslan et al., 2019). First, deep learning requires a large 
amount of training data to learn useful information while the 
biological sample size is often limited and cannot fully utilize 
its capabilities. Second, the training process is often considered 
a black box and people can only control the input and models' 
parameters. More specifically, deep learning involves complex 
network structures and nonlinear transformations, as well 
as a large number of hyperparameters, which hinder people 
from understanding how deep neural networks are making 
predictions. Although deep neural networks perform well on 
some classification tasks, biological problems should be paid 
more attention to which features lead to better classification 
(Ching et al., 2018).

In this paper, we propose a feature selection method based 
on Graph Embedding Deep Feedforward Network (GEDFN) 
to conduct microbiome-wide association studies. Firstly, we 
construct three different microbial co-occurrence interaction 
networks. We utilize a graph embedding method to embed 
the network as a priori knowledge into Deep Feedforward 
Neural Network to reduce parameters, alleviate the overfitting 
problem and improve the models' performance. Secondly, 
we propose a feature selection approach based on GEDFN. 
Experiments show the microbial feature markers obtained via 
this method have biological significance. In other words, our 
results demonstrate graph embedding deep learning could 
guide feature selection.

RELaTED WORK

Microbial Interaction Network
Because of the various relationships between microorganisms, 
such as symbiosis, competition and so on, as well as the complex 
structure and function of microorganisms due to their dynamic 
properties, the network is a good way to represent complex 
relationships. Understanding microbial interaction can help us 
understand microbial functions. System-oriented graph theory 
can facilitate microbial analysis and enhance our understanding 
of complex ecosystems and evolutionary processes (Faust et al., 
2012; Layeghifard et  al., 2017). However, most microorganisms 
are uncultured, we can only construct microbial interaction 
networks from high-throughput sequencing data. At present, 
there are many computational methods to construct microbial 
interaction networks. In theory, any method of calculating features' 
relationships can be used. For example, Bray–Curtis can be used 
to measure species abundance similarity (Bray and Curtis, 1957). 
The Pearson correlation coefficient is used to evaluate the linear 
relationship and the Spearman correlation coefficient can measure 
the rank relationship (Mukaka, 2012). CoNet uses an ensemble 
approach and combines with different comparison metrics to 
detect different relationships (Faust and Raes, 2016). Maximum 
mutual information is designed to capture broader relationships, 
not limited to specific function families (Reshef et al., 2011). 
MENA applies random matrix theory to conduct microbial analysis 
and experiments show it is robust to the noise and threshold (Deng 
et al., 2012). Sparse Correlations for Compositional data (SparCC) 
is a tool based on Aitchison's log ratio transformation to conduct 
microbial composition analysis (Friedman and Alm, 2012). SParse 
InversE Covariance Estimation for Ecological Association Inference 
(SPIEC-EASI) combines data logarithmic transformation with 
graph model inference framework to build a correlation network 
(Kurtz et al., 2015).

Feature selection
Real biomedical data, especially various omics data with high 
dimensions and noise, often has feature redundancy problem. 
Feature selection is a step of data preprocessing, which involves 
selecting related features from a large number of features to 
improve subsequent learning tasks (Li et al., 2017).

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1182

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Graph Embedding for Microbial BiomarkersZhu et al.

3

There are mainly three kinds of feature selection methods, 
including filter, wrapper and embedded method. The filter 
approach selects subset features and then trains the learner. 
The feature selection process is independent of the subsequent 
learner. This is equivalent to filter the initial feature with the 
feature selection process and train the model with the filtered 
features. However, filter methods often ignore some features 
that are helpful for classification. At the same time, many filter 
methods are based on a single-featured greedy algorithm. The 
assumption is that each feature is independent while this 
is often not the case in microbiological data. The wrapper 
feature selection directly takes the performance of the learner 
to be used as the evaluation criterion of the feature subset. In 
other words, the purpose of the wrapper feature selection is to 
select a feature subset that is most efficient in its performance 
for a given learner. Compared to the filter method, the 
wrapper method can evaluate the result of feature selection to 
improve the classification performance; however, the feature 
selection process requires to train the learner iteratively and 
the calculation is huge (Li et al., 2017). The embedded feature 
selection combines the feature selection in the learning 
and training process, both of which are completed in the 
same optimization. In other words, the feature selection is 
automatically performed during the training.

Feature selection is a traditional machine learning research 
field with many methods. For more information, please refer 
to the literature (Li et al., 2017). The previous work proposed a 
feature selection method based on Deep Forest (Zhu et al., 2018); 
however, there is less work on microbiome-wide association 
studies via Deep Neural Network and less research is done from 
the perspective of embedding approach for feature selection. 

The challenge of feature selection based on microbial network 
is that there is no microbial network available at present. The 
commonly used statistical-based interaction network methods 
may lead to high false positive rate due to the compositional bias 
(Gloor et al., 2017).

MaTERIaLs aND METhODs
We mainly explain the feature selection method based on GEDFN 
from the following three aspects (Figure 1). First, we will introduce 
the construction method of microbial interaction network, including 
sparcc, SPIEC-EASI and Maximal Information Coefficient (MIC) 
then, we will introduce a deep embedding structure to embed the 
graph into Deep Feedforward Network. Finally, we will propose a 
feature selection approach for GEDFN.

Microbial Correlation Network
The total amount of genetic material extracted from the microbial 
community and the sequencing depth will affect the whole reads. 
It is often necessary to normalize the reads in the sample. As a 
result, the microbial abundance obtained by 16s sequencing 
is relative rather than absolute, which is not independent. 
The traditional statistical measures for detecting microbial 
interactions, for example, Pearson correlation, will lead to false 
positives (Gloor et al., 2017).

Sparcc
Assuming that the network is sparse, sparcc constructs the 
association network by using standard logarithmic ratio 
transformation and iteratively calculates the variance matrix of 

FIGURE 1 | The workflow of graph embedding deep network to conduct feature selection. 1. Construct microbial interaction network. The input is Operational 
Taxonomic Unit (OTU) abundance. Different approaches are adopted to obtain different interaction networks. The vertexes are species and the edges are correlation 
coefficient. 2. Graph embedding and model training. The feature graph is embedded into the first hidden layer in order to achieve sparse connection instead of 
fully-connected between the input layer and the first hidden layer. The first hidden layer (graph embedding layer) has the same neurons as the input layer. 3. Feature 
selection. The neurons (features) are ranked according to their importance score which is calculated via each neuron's connection weights.
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compositional dependence. For details of the algorithm, please 
refer to the literature (Friedman and Alm, 2012).

SPIEC-EASI
SPIEC-EASI assumes the network is sparse and combines 
logarithmic transformation of compositional data with graph 
inference framework to construct the network. It consists of 
two steps: first, logarithmic ratio transforms the data; then, 
SPIEC-EASI uses the neighborhood selection and sparse inverse 
covariance selection to infer the interaction graph from the 
transformed data (Kurtz et al., 2015).

Maximal Information Coefficient
The maximal information coefficient (MIC) is used to measure 
the degree of linear and nonlinear correlation between two 
variables (Reshef et al., 2011). The main idea of the MIC method 
is based on the recognition that if there is some correlation 
between two variables, the distribution of the data in the grid 
can be reflected after meshing the scatter plots formed by the 
two variables. The MIC divides the scatter plot of the variable 
pair (x, y) and uses dynamic programming to calculate and 
search for the maximum mutual information value that can 
be achieved under different split modes. Finally, the maximum 
mutual information value is normalized and the result is MIC.

The Framework of Graph Embedding 
Deep Feedforward Network
Deep Feedforward Neural Network
Deep Feedforward Network, also known as feedforward neural 
network or multilayer perceptron, is a typical deep learning 
model. In this model, the information moves only in one 
direction from the input nodes to the output nodes through the 
hidden nodes. There is no loop in the network. A feedforward 
neural network structure with l hidden layers is:

 P y|X,θ( ) = +( )f Z W bout out out  (1)

 Z Z W bout l l l= +( )   σ  (2)

… …

 Z Z W bk k k k+ = +( )1    σ  (3)

… …

                    Z XW bin in1 = +( )σ  (4)

where X∈Rnxp is an input matrix with n samples and p features, 
y∈Rn is the output label for the classification task. In this work, 
it is a binary classification. The label for each sample is normal 
or disease. Zout and Zk,(k=1,…,l-1) are the neurons in the hidden 
layer. Wk is the weight matrix. bk is the bias. θ is the parameters. 
σ(·)is the activation function(such as, sigmoid, tanh, rectifiers). 
F(·) is a softmax function which is used to convert the output 
layer value into the predicted probability.

The model uses a stochastic gradient descent (SGD) 
algorithm to minimize the cross entropy loss function to 
update the parameter θ. When a feedforward neural network 
is used to receive input x and produce an output  y  . During 
training, forward propagation can continue until it produces 
a scalar cost function J(θ). The backpropagation algorithm 
runs information from the cost function and flow backward 
through the network to calculate the gradient in order to 
update the weight parameters (Goodfellow et al., 2016).

 J
n

y logp y pi i i i
i

n
θ( ) = − + −( ) −( )( )

=∑  ˆ ˆ1 1 1
1

log  (5)

Graph Embedding Deep Feedforward Network
The fully connected deep feedforward neural network has 
many parameters and requires a large number of training data, 
but often the biological sample size is limited, which often 
leads to overfitting. Therefore, we construct a microbial sparse 
network and embed this graph network into the model. There 
are two main advantages. First, the sparse graph embedding 
will greatly reduce the parameters of deep feedforward 
network and mitigate the overfitting risk. Second, the sparse 
graph structure is derived from existing prior information 
and combining the priori information into the network can 
improve the reliability of the model. The main idea of graph 
embedding is to replace the full connections between the 
input  layer and the first hidden layer with a sparse graph 
(Figure 2).

Consider a graph G=(V,E), V is the vertical set with p features. E 
is a collection of all edges. A common way of representing a graph 
is to use an adjacency matrix. Given a graph G with p vertices, a 
pxp adjacency matrix A is:

 

A
if and i j p

ij =
∀ = …1 1

0

,         , , , ,

,     

V Vi j connected

                                                       .otherwise





  

G is an undirected graph and A is a symmetric matrix. At 
the same time, we consider Aii=1 which indicates that the vertex 
itself is connected. We construct a feedforward neural network in 
which the first hidden layer has the same dimensions as the input 
layer, hin=p, similarly,Win is a pxp matrix. The input X is sparsely 
connected with Z1 (Figure 2). In other words, the original fully 
connected layer:

 Z XW bin in1 = +( )σ  (6)

is changed to:

 Z X W A bin in1 = ( ) +( )σ   (7)

Where    is element-wise product. Therefore, the connection 
between the input and first hidden layer of the feedforward 
network is filtered by the graph adjacency matrix. Each feature is 
corresponding to a hidden neuron. All features have corresponding 
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hidden neurons in the first hidden layer. The feature can only 
provide information to the connected graph. In this way, the graph 
helps to achieve the sparsity of the connection between the input 
layer and the first hidden layer (Kong and Yu, 2018).

Feature selection Based on GEDFN
In addition to improving classification, it is also meaningful to find 
features that contribute significantly to classification because they 
reveal potential biological mechanisms. However, Deep neural 
network is a “black box”, the interpretability of deep learning hasn't 
been well-defined (Guidotti et al., 2019). In our experiment, we 
focus on how the input features influence the prediction and we 
borrow the idea from Olden and Jackson (2002) and Kong and Yu 
(2018). The feature importance score is the quantification values 
of the contributions of features to a model prediction, which links 
the input features and output prediction. They highlight the parts 
of a given input that are most influential for the model prediction 
and thereby help to explain why such a prediction was made. The 
feature selection is based on feature score, which means the score 
is high if the feature is important. As a result, we develop a feature 
ranking method based on the feature relative importance score, 

similar to the connection weights method introduced by Olden and 
Jackson (2002) and Kong and Yu (2018). What is learned by neural 
networks is contained in the connection weights. Based on idea of 
connection weight, we propose a graphical connect weight method 
that emphasizes the importance of the features of our proposed 
neural network architecture.

The main idea of a graphical connect weight is: the contribution of 
a particular variable directly reflects the magnitude of the connection 
weights associated with the corresponding hidden neurons in the 
graph embedding layer. The sum of the absolute values of the directly 
related weights for a neuron (or feature) gives its relative importance:

 s w I A wj j kj
in

m
h

kj
k

p

jm= = + =
=∑γ ( ) ( )( ) ,1 1

1

11Σ  (8)

 γ j kj
k

p
c A j p= =( )





= …
=∑min / , ,  ,  , .1 1 1

1
 (9)

Where sj is importance score of the feature j w(in) indicates 
the weights between the input layer and the first hidden layer, 
while w(1) indicates the weights between the first and second 

FIGURE 2 | Graph embedding deep feedforward network (GEDFN). The graph embedding layer (first hidden layer) has same neurons with the input layer. The 
sparse connect between the input layer and the first hidden layer is marked as black. Other hidden layers are fully-connected.
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hidden layer. The constant c is to penalize vertices with too many 
connections so that they don’t over impact the result. In the 
following experiments, we set the parameter c = 50.

EXPERIMENTs aND REsULTs

Data set
Inflammatory bowel diseases (IBD) are a group of specific 
chronic intestinal diseases, mainly including Crohn's disease 
and ulcerative colitis. The occurrence and development of IBD 
are closely related to intestinal microorganisms (Gevers et al., 
2014). In our experiment, OTU BIOM files and metadata were 
downloaded from the QIITA (https://qiita.ucsd.edu/) database 
(study id: 1939). The detailed experiment was described in Gevers 
et al., 2014. The IBD data set consists of 1,359 metagenomic 
samples, including rectal, ileal biopsy and fecal samples (Gevers 
et al., 2014). We retained samples of mucosal tissue biopsies 
(terminal ileum and rectum) samples under the age of 18. The 
control group were without inflammatory conditions, such 
as abdominal pain and diarrhea. The final data set consisted 
of 657 IBD samples and 316 normal samples, respectively. We 
used QIIME's taxa collapse to filter the strain's species, limiting 
features at genus level.

Results
The Hyperparameters of Graph Embedding Deep 
Feedforward Neural Network
The structure of the graph embedding deep feedforward neural 
network (GEDFN) is shown in Figure 2. The most important 
part of GEDFN is that the number of neurons in the first hidden 
layer is the same as the number of neurons in the input layer and 
they are sparsely connected, which is different with normal fully 
connected feed forward neural network. The second layer, third 
and fourth hidden layers are consisting of 128, 64 and 16 neurons 
respectively and they are fully connected.

We use three different methods to construct a microbial 
co-occurrence interaction network from microbial abundance 
data. When the sparcc method is used to build the network, we 
reserve the vertexes if the correlation of two vertexes is larger 
than 0.3. We get an adjacency network with 63 vertexes and 315 
edges. We adopt the mictools (Albanese et al., 2018) to build the 
MIC relevant network and we get 279 vertexes and 3230 edges 
when the correlation threshold is 0.2. The network constructed 
by sparcc and SPEC-EASI methods is sparse while MIC gets 
relatively a dense network. Different methods get different 
interaction networks. We find the higher the threshold, the more 
reliable is the network. However, the high threshold will make 
the network too sparse. As a result, we combine three kinds of 
networks to get a larger network with 736 vertexes and 18,034 
edges. In this way, the connections between the input layer and 
the first hidden layer are more reliable and less dense than the 
fully connected approach.

Other hyperparameters of GEDFN are as follows: the learning 
rate is 0.0001, the activation function is Rectified Linear Unit 
(ReLU) and the weight initializer is he_uniform, the drop out 

is 0.2. the code is implemented in keras and available at https://
github.com/MicroAVA/GEDFN.git.

The Evaluation of Classification
Traditional classification methods such as Random Forest has 
been shown to be the best performers in omics data classification 
tasks and the results show that Random Forest has achieved the 
best performance on microbial classification (Pasolli et al., 2016). 
Therefore, we compare GEDFN with Deep Forest (DF), Random 
Forest (RF) and Support Vector Machines (SVM). For the 
binary classification, we calculate the Area Under the Receiver 
Operating Characteristics (AUROC) and classification accuracy 
for each method (Figure 3).

AUROC curve is a performance measurement for classification 
problem at various thresholds settings, which can evaluate 
classifiers considering all true positives (TP), false positives (FP), 
true negatives (TN) and false negatives (FN). Receiver Operating 
Characteristics (ROC) is a probability curve and Area Under the 
Curve (AUC) represents degree or measure of separability. It tells 
how much a model is capable of distinguishing between classes. 
The higher the AUC, the better the model is at predicting 0s as 
0s and 1s as 1s. By analogy, the higher the AUC, the better the 
model is at distinguishing between patients with disease and no 
disease. The ROC curve is plotted with true positive rate (TPR) 
against the false positive rate (FPR) where TPR is on the y-axis 
and FPR is on the x-axis.

 
TPR =

+
=

+
TP

TP FN
FPR FP

TN FP
 ,   

 

The classification accuracy means the percentage of correct 
predictions from the total number of predictions made.

   

 
ACC  = =( )

=
∑1

1
m

I y y
i

m

ˆ

 

Where ŷ  is the predicted label and yi is the true label for the 
sample i. The m means the sample size and I(·)is the indicator 
function.

In this experiment, we adopt a five-fold cross-validation. We 
use the implementation of Random Forest in python's scikit-
learn package. We set the estimator parameter to 300. The Deep 
Forest is based on the work (Zhu et al., 2018). From the AUC 
value, we find that the Graph Embedding Deep Feedforward 
Network (GEDFN) is much better than SVM (AUC = 0.663). 
Compared with Deep Forest and Random Forest, GEDFN is also 
very competitive. GEDFN achieves an AUC value of 0.843, which 
is slightly better than Deep Forest (AUC = 0.834) and Random 
Forest (AUC = 0.823). In terms of classification accuracy, 
GEDFN achieves an average accuracy of 79.52%, Deep Forest 
achieves 76.6% and Random Forest achieves 75.16%. GEDFN 
outperforms 2–4% than Deep Forest and Random Forest. These 
methods are much better than SVM (67.5%).
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The Evaluation of Feature Selection
In our experiment, we compare GEDFN with traditional feature 
selection methods, such as minimum redundancy and maximum 
Relevance (mRMR) (Ding and Peng, 2005), Random Forest and 
Deep Forest respectively. Each method selects 50 features. We 

want to know if the features obtained by the traditional machine 
learning feature selection method can also be selected by GEDFN. 
As can be seen from the Venn diagram (Figure 4), most of the 
features selected by the mRMR are different from those selected 
by the other three methods. Among these 50 features selected by 

FIGURE 3 | The Area Under Receiver Operating Characteristic curve (left) and accuracy of classification (right) for GEDFN, Deep Forest (DF), Random Forest (RF) 
and Support Vector Machines (SVM). Left: the grey dash line is the chance discrimination that located on diagonal line (AUC = 0.5). The maximum AUC = 1 means 
the classifier could discriminate the diseased and non-diseased perfectly while AUC = 0 means the classifier incorrectly classified all subjects with diseased as 
negative and all subjects with non-diseased as positive. The AUC is averaged through a five-fold cross validation. Right: the boxplot for classifiers’ classification 
accuracy.

FIGURE 4 | The feature selection based on Graph Embedding Deep Feedforward Network (GEDFN). The Venn diagram for top the 50 features selected via 
minimum Redundancy and Maximum Relevance (mRMR), Random Forest (RF), Deep Forest (DF) and GEDFN.
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GEDFN, there are 25 and 21 features which are consistent with 
the Random Forest and Deep Forest respectively.

In addition, we compare the performance of GEDFN + SVM, 
RF + SVM, RF + SVM and RF + DF. Our approach is to select top 
10, top 15, top 20,…, top 50 feature subsets from GEDFN and 
RF respectively, and test them on SVM and Deep Forest (DF) 
classifiers with five-fold cross-validation (Table 1). GEDFN  + 
SVM, means GEDFN is utilized to conduct feature selection and 
SVM is the classifier. RF + SVM, means RF is utilized to conduct 
feature selection and SVM is the classifier. GEDFN + DF, means 
GEDFN is utilized to conduct feature selection and DF is the 
classifier. RF + DF, means RF is utilized to conduct feature selection 
and DF is the classifier.

From Table 1, the combination of GEDFN and SVM 
achieves the best f1 score, while RF + SVM gets the worst 
performance. Meanwhile, GEDFN + SVM and GEDFN + 
DF have consistent performance. We find GEDFN prefers 
the sparse features while RF prefers the dense features. In 
other words, RF has a bias in the feature selection process 
where multivalued features are favored (Nguyen et al., 2015). 
In addition, RF is biased in the presence of correlation and 
often identifies non-predictive features that are independent 
from each other (Nicodemus and Malley, 2009). Actually, the 
microbial data is sparse and the features are dependent, which 
makes RF not the best choice to conduct feature selection in 
microbiome. However, GEDFN is to embed the priori sparse 
correlation network and find biomarkers as a whole, which 
makes it more suitable for microbiome-wide association 
studies than RF-based models.

The cophenetic similarity or cophenetic distance of two objects 
is a measure of how similar those two objects have to be in order 
to be grouped into the same cluster (Sokal and Rohlf, 1962; Saraçli 
et al., 2013). We calculate the cophenetic distance of the feature 
subsets. The specific process is as follows: we select different 
feature subsets obtained by Random Forest, Deep Forest and 
GEDFN, such as top 10–50 features, and then calculate node-node 
pairwise distance. The distance is characterized by the leaf nodes 
of the phylogenetic tree. We use the cophenetic method of the 
ape package in R to calculate the node-node pairwise cophenetic 
distance. The value in the matrix is the sum of the branch lengths 

separating each pair of species. We compare the top 50 features of 
Random Forest, Deep Forest and GEDFN respectively. We find 
the feature subsets of GEDFN has smallest cophenetic distances 
among these methods, which means that the subset of these 
features is better cohesive and we speculate that this cohesion may 
be functional meaningful (Figure 5). Deep Forest and Random 
Forest have similar cophenetic distance because Deep Forest is a 
cascade structure based on Random Forest.

In addition, we utilize interactive Tree Of Life (iTOL) (Letunic 
and Bork, 2016) to visualize the top 20 features selected by 
GEDFN (Figure 6). The features are ranked according to their 
importance score. We average each species' relative abundance 
for diseased and normal groups respectively. We find that 
Neisseria, Pasteurellaceae, Bamesiellaceae, S24-7, Fusobacterium, 
Anaeroplasma and Gemellaceae had high abundance compared 
to the normal group, while other microorganisms are lowly 
expressed in the disease group. The Neisseria, Pasteurellaceae, 
Fusobacterium and Gemellaceae increased in Crohn's disease, 
which was reported in the research (Gevers et al., 2014). 
The Clostridiales, Eubacterium, Erysipelotrichaceae and 
Peptostreptococcaceae, Christensenellaceae were found in lower 
relative abundance in Crohn's disease (Gevers et al., 2014; 
Matsuoka and Kanai, 2015; Pascal et al., 2017). However, there 
is no unified option on the Crohn's disease-related microbial 
biomarkers. As a result, our findings must need further 
experiments to explore and verify.

CONCLUsIONs
In this work, we propose a method of embedding a microbial 
graph into a Deep Feedforward Network to achieve feature 
selection purpose. We have verified the feasibility of this method 
through experiments. The main contributions of our work are as 
follows: Firstly, the feasibility of this method is verified through 
combining microbial interaction structure and deep learning, 
and a sparse network structure is proposed. Secondly, the feature 
selection method is introduced into the microbial sparse network 
and the reliability of the feature selection results is verified, 
indicating that deep neural networks can also conduct feature 

TaBLE 1 | The performance among GEDFN + SVM, RF + SVM, GEDFN + DF and RF + DF.

# GEDFN + sVM RF + sVM GEDGN+DF RF+DF

P R F1 P R F1 P R F1 P R F1

10 0.733 1 0.846 0.675 1 0.806 0.733 1 0.846 0.785 0.871 0.825
15 0.745 1 0.854 0.675 1 0.806 0.745 1 0.854 0.722 0.909 0.800
20 0.752 1 0.858 0.675 1 0.806 0.750 0.991 0.854 0.717 0.927 0.805
25 0.706 1 0.828 0.675 1 0.806 0.705 0.991 0.824 0.765 0.907 0.829
30 0.707 1 0.828 0.675 1 0.806 0.707 0.983 0.823 0.718 0.957 0.821
35 0.698 1 0.822 0.675 1 0.806 0.698 1 0.822 0.692 0.977 0.810
40 0.704 1 0.826 0.675 1 0.806 0.709 0.985 0.824 0.706 0.962 0.813
45 0.707 1 0.828 0.675 1 0.806 0.707 1 0.828 0.687 0.991 0.811
50 0.697 1 0.822 0.675 1 0.806 0.697 1 0.822 0.695 0.974 0.810

#, number of top features; P, precision; R, recall; F1= 
2 P R

P + R

× ×
. The best F1 scores are marked as bold.
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selection. We hope our work will bring another perspective to 
the interpretability of deep learning.

The problems still exist in the research work. First of all, 
our work does not compare the influence of various methods 
of constructing microbial networks on feature selection (Weiss 

et al., 2016). The networks constructed by various methods are 
varying. We found that the reliability of the microbial network 
directly affected the subsequent results. Secondly, the threshold 
of association network was traded off and there was no relevant 
guidance suggestion. In general, the higher the threshold, the 

FIGURE 6 | The top 20 species selected via Graph Embedding Deep Feedforward Network (GEDFN). The species in red circle are higher relative abundance while 
species in blue star are lower relative abundance in diseased group. These species are visualized on the phylogenetic tree.

FIGURE 5 | The cophenetic distance for top 50 features selected via Random Forest (RF), Deep Forest (DF) and Graph Embedding Deep Feedforward Network 
(GEDFN) respectively (The cophenetic distance is the sum of the features' pair-wise distance.). The cophenetic distance of two objects is a measure of how similar 
those two objects have to be in order to be grouped into the same cluster.
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more reliable the network, but it would make the network too 
sparse. It would be required to balance the threshold and the 
network's sparseness. Finally, we only consider the influence of 
the weight parameters of the Deep Neural Network on the feature 
selection without considering the threshold of the neuron. 
Because it would involve the nonlinear transformation which 
could make the problem complicated and difficult. Therefore, our 
future work will focus on how to build a more reliable microbial 
interaction network and get more meaningful microbial markers.
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