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Non-negative matrix factorization (NMF) is a matrix decomposition method based on 
the square loss function. To exploit cancer information, cancer gene expression data 
often uses the NMF method to reduce dimensionality. Gene expression data usually have 
some noise and outliers, while the original NMF loss function is very sensitive to non-
Gaussian noise. To improve the robustness and clustering performance of the algorithm, 
we propose a sparse graph regularization NMF based on Huber loss model for cancer 
data analysis (Huber-SGNMF). Huber loss is a function between L1-norm and L2-norm 
that can effectively handle non-Gaussian noise and outliers. Taking into account the 
sparsity matrix and data geometry information, sparse penalty and graph regularization 
terms are introduced into the model to enhance matrix sparsity and capture data manifold 
structure. Before the experiment, we first analyzed the robustness of Huber-SGNMF and 
other models. Experiments on The Cancer Genome Atlas (TCGA) data have shown that 
Huber-SGNMF performs better than other most advanced methods in sample clustering 
and differentially expressed gene selection.

Keywords: non-negative matrix factorization, Huber loss, sample clustering, graph regularization, robustness

INTRODUCTION
Cancer is considered to be the number one killer of human health. The development of high-
throughput sequencing technology has enabled researchers to obtain more comprehensive 
information about cancer patients (Chen et al., 2019). The gene expression data of cancer patients 
can be more used for effective data mining through computational methods (Chen et al., 2018). In 
general, cancer gene expression data are characterized by high dimensionality, which is extremely 
difficult for data analysis. How to effectively reduce the dimensionality of data is the key to analyzing 
cancer data. Principal component analysis (PCA) (Feng et al., 2019), locally linear embedding (LLE) 
(Roweis and Saul, 2000), and non-negative matrix factorization (NMF) (Yu et al., 2017) are common 
methods for reducing the data dimensionality. Unlike several other methods, NMF can find two 
non-negative matrices and its product can effectively restore the original matrix. The non-negative 
constraint guarantees additive combinations between different elements. NMF demonstrates its 
advantages in facial recognition, speech processing, document clustering, and recommendation 
systems (Guillamet and Vitrià, 2002; Xu et al., 2003; Schmidt and Olsson, 2006; Luo et al., 2014).
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NMF has developed rapidly in recent years, and several 
variants of NMF have been proposed to improve the effectiveness 
of the decomposition. Cai et al. proposed graph regularized 
NMF (GNMF) for data representation (Cai et al., 2011). GNMF 
considers the association between points to preserve the internal 
structure of the data. Kim et al. applied the L1-norm constraint 
on the coefficient matrix to introduce sparse NMF for clustering 
(SNMF) (Kim and Park, 2007). Sparseness is more likely to 
remove redundant features of data. The most of cancer data have 
noise and outliers, and the original NMF cannot solve this. Wang 
et al. introduced Characteristic Gene Selection Based on Robust 
GNMF (RGNMF) (Wang et al., 2016a) to improve the robustness 
of the algorithm. RGNMF assumes that the loss follows Laplacian 
distribution and uses the loss function of the L2,1-norm (Kong 
et al., 2011) constraint. The L2,1-norm combines the advantages 
of the L2-norm and the L1-norm, which impose an L2-norm 
constraint on the entire data space and an L1-norm constraint on 
the sum of the different data points (Ding et al., 2006).

The original NMF model is simple to understand and 
computationally fast, but the squared loss function is too 
sensitive to outliers and noise. Mao et al. proposed the 
correntropy induced metric based GNMF (CGNMF) (Mao et al., 
2014) that changed the original loss function. The correntropy 
uses L0-norm approximation for large outliers and noise through 
kernel function filtering, and the normal data is constrained by 
the L2-norm (Liu et al., 2007), so it is not sensitive to outliers and 
noise. Du et al. proposed Huber-NMF (Du et al., 2012), which 
is also a loss function that is insensitive to outliers and noise. It 
uses approximate L1-norm processing for outliers and noise, and 
L2-norm for valuable data. Correntropy uses kernel functions 
to control weights, and Huber loss uses a different function 
approximation for different data through threshold adjustment. 
The robustness analysis of these several non-square loss models 
is given in the experimental part. To compare the performance of 
the NMF algorithm, the robust PCA (RPCA) based method for 
discovering differentially expressed genes proposed by Liu et al. 
(2013) is added to the experiment.

In this paper, we propose a model called sparse graph 
regularization NMF based on Huber Loss Model for Cancer Data 
Analysis (Huber-SGNMF). It effectively combines Huber loss, 
manifold structure, and sparse constraint. Huber loss is based on the 
relationship between L1-norm and L2-norm to approximate different 
data. In detail, Huber loss adjusts the square loss or linear loss to the 
data according to the threshold to enhance the robustness of the 
model to outliers. Geometric information in high-dimensional data 
should remain locally constant in low-dimensional representations 
(Cai et al., 2011), so graph regularization is added to preserve the 
manifold structure of the data. Sparse constraints in the model can 
remove redundant features contained in the data to reduce the 
amount of model calculations and improve clustering performance 
(Kim and Park, 2007).

The contributions of this article are as follows:

1.  The squared loss of the original NMF is too sensitive to outliers 
and noise; so, we use a more robust Huber loss combined with 
NMF. The Huber loss considers the relationship between the 
L1-norm and the L2-norm to effectively handle non-Gaussian 

noise and large outliers. For the update rules of Huber loss, 
we use the multiplicative iterative algorithm based on semi-
quadratic optimization to find the optimal solution.

2. The NMF model fits the data in Euclidean space but does 
not consider the intrinsic geometry of the data space. If 
the data is related in high-dimensional space, then we 
believe that the data represented by the low-dimensional 
should also be closely related. Considering the manifolds 
embedded in the high-dimensional environment space, we 
add graph Laplacian as a regularization term to the model. 
Graph regularization takes into account the impact of recent 
neighbors on data, and retaining graph structure can make 
NMF more distinguishable.

3. Sparse matrices can remove redundant data, reducing data 
complexity and model computational difficulty. In data 
analysis, sparsity can improve clustering performance by 
reducing the difficulty of feature selection. The L2,1-norm as a 
sparse constraint is added to the model because the L2,1-norm 
is robust and can achieve row sparse effect.

The remainder of this paper is organized as follows. The 
introduction of related work is shown in Section 2. Models and 
solution optimization are presented in Section 3. The experiment 
and analysis are arranged in Section 4. Section 5 summarizes the 
entire paper.

ReLATeD WORK

Non-Negative Matrix Factorization
NMF is a dimensionality reduction method based on partial 
representation. For a given dataset X = …  ∈ ×x x xn

m n
1 2, ,  , 

NMF can decompose it into the basic matrix U ∈m k×  and the 
coefficient matrix V ∈ ×k n , with the purpose of approximating 
the original matrix by two matrix products. In general, the rank 
of matrix factorization k is selected by the number of larger 
singular values.

For gene expression data matrix X ∈m n× , each row represents 
a gene corresponding to n samples, and each column represents 
a sample composed of m genes. Moreover, U contains m rows of 
metagene and V contains n rows of metapattern (Liu et al., 2018). 
Each column of V is a projection of a corresponding sample 
vector in X according to the basic matrix U (Li et al., 2017). NMF 
is visualized on gene expression data as shown in Figure 1.

The NMF loss function is minimized as follows:

 
min , . . , ,X UV U V− ≥ ≥

2
0 0s t  (1)

where ⋅  represents the application of the Frobenius norm to the 
matrix.

Lee and Seung proposed the use of multiplicative iterative 
update rules to solve the optimal solution of NMF (Lee and 
Seung, 1999). Its update formula is as follows:

 
u uik ik

ik
T

ik

=
( )

( )
XV

UVV
,  (2)

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1054

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Non-Negative Matrix FactorizationWang et al.

3

 
v vkj kj

T
kj

T
kj

=
( )

( )
U X
U UV

,  (3)

where uik and vkj are elements belonging to U and V, respectively. 
The non-negative constraints of U and V only allow additive 
combinations between different elements, so NMF can learn 
part-based representations (Cai et al., 2011).

Huber Loss
Data usually contain a small amount of outliers and noise, which 
can have a worse effect on model reconstruction. For noise 
and outliers in the dataset, Huber loss uses weighted L1-norm 
processing because the L1-norm is robust and can effectively 
handle outliers and noise (Guofa et al., 2011; Yu et al., 2016). For 
other valuable data in the dataset, Huber losses still use L2-norm 
loss to fit the data. Huber loss function δ(·) is defined as follows:

 

δ e
e if e c

c e c if e c
( ) =

<

− ≥

 2

22

,

,




 (4)

where c represents the threshold parameter of the data using the 
L1-norm or the L2-norm. This function is a bounded and convex 
function that minimizes the effects of a single anomaly point 
(Chreiky et al., 2016). Huber losses often apply to the insensitive 
outliers and noise contained in the data, which are often difficult 
to find using the squared loss function (Du et al., 2012).

Manifold Regularization
The manifold learning theory (Belkin and Niyogi, 2001) shows 
that the internal manifold structure of the data can be effectively 
simulated by the nearest neighbor of the data points. Each data 
point finds its nearest p neighbors and connects the data points 
to the neighbors with edges. There are many ways to define the 
weight of an edge, most commonly 0–1 weighted: Wij=1, if and 
only if nodes i and j are connected by edges. The advantage of this 
weighting method is that it is easy to calculate.

Weight matrix Wij is only used to measure the intimacy 
between data points. For the low-dimensional representation 
sj of the high dimensional data xj, the Euclidean distance 
O s s s s( , )j l j l= −

2
 is typically used to measure the similarity 

between two low-dimensional data points. According to the 
intimacy weight W, the smoothness of the two low-dimensional 
vectors can be measured as follows:

 

R j l
j l

N

jl

j
T

j jj
j

N

j
T

l jl
j l

N

= −

= −

∑
∑ = =

1
2

2

1 1

s s W

s s D s s W

,

,∑∑
= ( ) − ( )
= ( )

tr tr

tr

VDV VWV

VLV

T T

T ,

 (5)

where tr(·) denotes the trace of a matrix. The matrix D is defined 
as a diagonal matrix with diagonal elements D Wii jl

jj
= ∑  The 

graph Laplacian (Liu et al., 2014) matrix L is defined as L=D-W.
We hope that if the high-dimensional data xj and xl are very 

intimate, then sj and sl should be close enough in low-dimensional 
representations (Cai et al., 2011). Therefore, minimizing R is 
added to our model to encode the internal geometry of the data.

MeTHOD

The Huber-Sgnmf Model
Based on the Huber loss function, we proposed a novel model that 
preserves the manifold structure and sparsity simultaneously. The 
Huber loss is combined with NMF to enhance NMF robustness. 
To further optimize the model, the graph regularization term and 
the L2,1-norm are added to the loss function as constraints. L2,1-
norm mathematical expression is as follows:

 
X 2 1

2

11 21
, , .= =

==
∗

=∑∑ ∑x xij
j

n

i

m

i
i

m
 (6)

FIGURe 1 | The gene expression data matrix X ∈m n×  is decomposed into a low-dimensional basic matrix U ∈m k×  and a low-dimensional coefficient 
matrix V ∈ ×k n . The product of two low-dimensional matrices can approximate the original matrix.
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The Huber-SGNMF final model OHuber−SGNMF is as follows:

 
min ( ) ,,

U ,V
X-UV VLV V

≥ ≥
+ ( ) +

0 0
2 1trδ α βT

 (7)

where tr(·), α, and β represent the trace of the matrix, the 
regularization term parameters, and the sparse constraint 
parameters, respectively. In the experiment, the basic matrix 
U and the coefficient matrix V are used for differential gene 
selection and cluster analysis, respectively.

Optimization
Obviously, the loss function is a non-quadratic optimization 
problem, and finding the optimal solution is not simple. 
Fortunately, the semi-quadratic optimization technique that has 
been proposed can effectively optimize the loss function. The 
loss function can be reconstructed to find the optimal solution 
by introducing auxiliary variables. According to the conjugate 
function and the semi-quadratic technique (Nikolova and 
Chan, 2007), the fixed loss function σ(Z) can be constructed 
as follows:

 
σ τ φZ Z W W

Wij ij ij ij( ) = ( ) + ( )
∈

min , ,


 (8)

where Z X - U Vij ij ik kj
k

K
=

=∑ 1
 represents the difference between 

the NMF predicted value and the actual value. σ(·) indicates the 
noise or normal data, which is processed using different loss 
functions. W ∈ ×



m n  is the introduced auxiliary variable. ϕ(Wij) 
is the conjugate function of Zij. τ ⋅ ⋅( ),  is a quadratic term for Zij 
and Wij. The NMF model only needs to consider the quadratic 
term of the multiplication form:

 
τ Z W W Zij ij ij ij, .( ) = 1

2
2  (9)

Combine Equation (8) and Equation (9) with the loss function 
(7):

min tr
U V

U V

X UV VLV V
≥ ≥

≥ ≥

( ) + ( ) +

=

0 0 2 1

0 0

, ,

,

-δ α βT

min W X UV W tr VLV V⊗ ( ) + ( ) + ( ) +- ,
,

2

2 1
φ α βT

 (10)

where ⊗ represents the Hadamard product, which is the product 
between two matrices’ elements. Operator ⊗ takes precedence 
over other matrices operators. Its Lagrangian function expansion 
is expressed as follows:

 
Huber SGNMF i i i i i i i

T

i

m

− ∗ ∗ ∗ ∗ ∗ ∗
=

( ) −( ) −( )=U X U V Q X U V
1

∑∑ + ( )tr ψψUT ,

  
  (11)

and

 

Huber SGNMF j j j j j j j
T

j

n

− ∗ ∗ ∗ ∗ ∗ ∗
=

( ) −( ) −( )=V X U V R X U V
1

∑∑
+ + +( ) + ( ) ( ) ( )tr tr trα VLV VGV U VT T T Tβ tr ψψ ϕϕ ,

  
  (12)

where Qi and Rj are defined as Qi=diag(Wi*) and R=diag(W*j), 
respectively. ψψ =  ψ ik  and ϕϕ =  ϕkj  are Lagrangian multipliers 
of non-negative constraints U 0 and V 0, respectively. G is a 
diagonal matrix with diagonal elements, which is given by:

 G vjj mj
m

k
= +

=∑1 2

1
/ ω  (13)

where ω is a number that is very close but not equal to zero.
Let ψU=0 and φV=0 by using Karush–Kuhn–Tucher (KKT) 

(Qi and Jiang, 1997) conditions. The loss function (10) can be 
iteratively optimized by the following schemes:

Update W when U and V are fixed. The weight matrix W 
according to equation (8) is defined as follows:

 
wij

ij

ij
=

′( )σ Z
Z

,  (14)

where the elements of weight matrix is wij ϵ W Combine the loss 
function (7) with the equation (14) are as follows:

 

w

if x u v c

cij

ij ik kj

ij

=

≤

−

1 - ,

X UV
otherwise,










 (15)

Update U and V when W is fixed. The update rules for U and 
Vare as follows:

 

u u

u

ik ik
i i

T

ik

i i
T

ik

ik

T

ik

=
( )

( )

=
⊗( )

∗

∗

X Q V

U VQ V

W XV

WW UV V⊗ ( )( )T

ik

,

 (16)

 

v v

v

kj kj

T
j j kj

T
j j kj

kj

=
( )

+ +( )

=

∗

∗

U X R

U R UV VL VG

U

α β

TT

kj
T

kj

W X

U W UV VL VG

⊗( )( )
⊗( ) + +( )α β

,

 (17)
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The threshold parameter c is set to the median of the 
reconstruction error,

 
c median

ij
= −( ).X UV  (18)

The corresponding algorithm is shown in Algorithm 1.

ALGORITHM 1 | Huber-SGNMF.

Data input: XX ∈ ∈× × mm nn nn nn,, LL
Data output: UU ∈ ×mm kk ,,  VV ∈ ×kk nn  and weight matrix WW ∈ ×mm nn

Parameters: α,β
Data initialize: U≥0, V≥0
Repeat
Update G by (13);
Update W by (15);
Update uik by (16);
Update vjk by (17);
Update c by (18);
End convergence

Convergence Analysis
According to the update rules of Huber-SGNMF, the loss 
function OHuber-SGNMF can converge to the local optimum through 
theorem 1.

Theorem 1. The loss function (7) is guaranteed to be non-
increasing under the update rules (16) and (17). The loss function 
is constant when the elements uik and vkj have fixed values.

To prove theorem 1, we introduce the auxiliary function H in 
Algorithm.

Lemma 1. Suppose H (r, r′) is an auxiliary function of F (r). 
If the conditions H (r,r′) F(r) and H (r,r)=F(r) are satisfied, then 
it can be concluded that F(r) is non-increasing from iteration t 
to t+1:

 
r r rt

r

+ = ′1 arg min ( , )H  (19)

Proof:

 F F( ) ( , ) ( , ) ( ).r r r r r rt t t t t t+ +≤ ≤ =1 1H H  (20)

Suppose loss function OHuber-SGNMF has a suitable auxiliary 
function HHuber If the minimum updates rule for HHuber is equal to 
(16) and (17), then the convergence of OHuber-SGNMF can be proved. 
Furthermore, the parts of the loss function OHuber-SGNMF associated 
with the elements uik ϵ U and vkj ϵ V are represented by Fik and Fkj, 
respectively. The partial derivative equation of OHuber-SGNMF can be 
derived as follows:

 
F'ik Huber SGNMF

ik
i i

T
i i

O= ∂
∂







= − +−
∗ ∗U

2 2X Q V U VQ VTT

ik
( ) ,  (21)

 
′′ = ∂

∂






= ( )−F ,ik

Huber SGNMF

ik

i
T

kk

O2

2 2
U

VQ V  (22)

 

′ = ∂
∂







= − ( )
+

−
∗Fkj

Huber SGNMF

kj

T
j j k

T
j

O
V

U X R

U R

2

2 UUV VL VG∗( ) + +j k
2 2α β ,

 (23)

 

′′ = ∂
∂







= ( ) + (−Fkj

Huber SGNMF

kj

T
j kk

O2

2 2 2
V

U R U Lα )) + ( )jj jj
2βG .

  
  (24)

Essentially, the algorithm updates each element, which means 
that if the elements Fik and Fkj are non-increasing, then OHuber-

SGNMF is also non-increasing.
Lemma 2. Define HHuber ik

tu u,( )  and HHuber kj
tv v,( )  as auxiliary 

functions for uik and vkj, respectively. The expansion items are as 
follows:

 

HHuber ik
t

ik ik
t

ik ik
t

ik
tu u u u u u, F F( ) = ( ) + ′ ( ) −( )

+
( )

−( )∗U VQ Vi i
T

ik

ik
t ik

t

u
u u

2
,

 (25)

 

HHuber kj
t

kj kj
t

kj kj
t

kj
tv v v v v v, F F( ) = ( ) + ′ ( ) −( )

+
+ +( )

−
∗U R UV VL VGT

j j kj

kj
t kj

t

v
v v

α β
(( )2

.
 (26)

Proof:
According to the lemma 1, HHuber (u,u)=Fik(u) and HHuber 

(v,v)=Fkj(v) can be obtained. We have the following formulas 
through the Taylor series expansion of the auxiliary function.

 

F F Fik ik ik
t

ik ik
t

ik
tu u u u u( ) ≈ ( ) + ′ ( ) −( )

+ 11
2

2
′′( ) −( )F ,ik ik

t
ik
tu u u

 (27)

 

F F Fkj kj kj
t

kj kj
t

kj
tv v v v v( ) ≈ ( ) + ′ ( ) −( )

++ ′′ ( ) −( )1
2

2
F .kj kj

t
kj
tv v v

 (28)

Next, HHuber ik
t

iku u u, F( ) ≥ ( )  and HHuber kj
t

kjv v v, F( ) ≥ ( )  need 
to be guaranteed.

According to (25) and (27), expand HHuber ik
t

iku u u, F( ) ≥ ( )  is 
as follows:

 

U VQ V
VQ V

i i
T

ik

ik
t i

T

u
∗( )

≥ ,  (29)
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since

 
U VQ V VQ V VQ Vi i

T

ik ia i
T

ka
a

K

ik i
T

kk
u u∗

=

( ) = ( ) ≥ ( )∑
1

.  (30)

According to (26) and (28), expand HHuber kj
t

kjv v v, F( ) ≥ ( )  is 
as follows:

 

U R UV VL VG
U R U L G

T
j j kj

kj
t

T
j kk jj jv

∗ + +( )
≥ ( ) + ( ) + ( )

α β
α β

jj
,

  
  (31)

since

 
U R UV U R U U R UT

j j kj

T
j bk

b

K

bj
T

j kk kjv v∗
=

( ) = ( ) ≥ ( )∑
1

,  (32)

 
β β βVG G G( ) = ≥

=
∑kj kb bb
b

N

kj jjv v
1

,  (33)

and

 

α α α

α

VD D D

D

( ) = ≥

≥

=
∑kj kc cc
c

N

kj jj

kj

v v

v

1

−−( ) =W L
jj kj jjvα .

 (34)

So, HHuber ik
t

iku u u, F( ) ≥ ( )  and HHuber kj
t

kjv v v, F( ) ≥ ( )  can be 
obtained. In other words, the auxiliary functions Fik (u) and Fkj 
(v) of the updated rules (16) and (17) are non-increasing, and the 
derivation of theorem 1 is completed. Finally, the convergence of 
the loss function OHuber-SGNMF is proved.

The corresponding convergence analysis curve is shown in 
Figure 2.

ReSULTS AND DISCUSSION

Datasets
Five gene expression datasets downloaded from TCGA are used 
in the experiment. TCGA is a gene data sharing system that 
contains information on thousands of cancer patients and has 
made great contributions to the path of human exploration of 
cancer genomics. The experiment used five datasets including 
cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), 
head and neck squamous cell carcinoma (HNSC), pancreatic 
cancer (PAAD), and esophageal cancer (ESCA).

To explore the association between genes and multiple cancers, 
diseased samples from multiple datasets are integrated into one 
dataset. In detail, the detesteds PAAD, HNSC, and COAD  are 
integrated into one dataset, which is represented as PHD. The 
detesteds PAAD, HNSC, and COAD are integrated into one 

dataset, which is represented as PHD. These two integrated datasets 
contain only diseased samples of different diseases. Datasets are 
standardized before using, and the data normalization scales data 
to specific time intervals. Pre-processing data speeds up searching 
for the best solution and optimizes convergence speed. Since 
high-dimensional gene expression data contains a large amount 
of redundant information, PCA (Wu et al., 2017) is used to reduce 
the dimensions to 2,000 genes in the pre-processing.

Model Robustness
To analyze the robustness of RGNMF, CGNMF, and Huber-
SGNMF, we apply these methods to a composite dataset consisting 
of 200 two-dimensional data points (Figure 3A). All data points 
are distributed in one dimensional space. In Figure 3A, there 
is only one contaminated point, and each model can restore 
the original data normally. The contaminated points in Figures 
3B–D are 50 points, 100 points, and 150 points, respectively. In 
the case where a part of the data is contaminated, only Huber-
SGNMF successfully restores the original data. CGNMF and 
RGNMF are affected by some noise or outliers when restoring 
data, while NMF is most affected by noise or outliers.

Parameter Selection
In the experiment, we consider the effect of each parameter on the 
solution model. A grid search method is used to find the optimal 
parameters of the model. The grid search range is [10-2~102]. 
As shown in Figure 4, the PHD dataset is used as an example 
to find the optimal parameters of the Huber-SGNMF model. 
Specifically, the two datasets are set to the same parameters α = 
100 and β = 0.01 Other methods in the experiment are set up with 
prior parameters or grid searches to find the optimal parameters.

FIGURe 2 | Convergence analysis curve of Huber-SGNMF model. Each 
curve represents a dataset. PHD and PHDEC are the datasets used in 
the experiment.
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Performance evaluation and Comparisons
To prove the validity of the performance of the model, six states of 
the art methods including RPCA (Liu et al., 2013), NMF (Lee and 
Seung, 1999), SNMF (Kim and Park, 2007), GNMF (Cai et al., 2011), 
RGNMF (Wang et al., 2016a), CGNMF (Mao et al., 2014), and 
Huber-NMF (Du et al., 2012) are compared with Huber-SGNMF. 
In the experiment, the basic matrix and the coefficient matrix are 
used to differentially gene selection and cluster analysis, respectively.

Feature Selection Results and Analysis
Feature selection is the selection of representative features 
from multiple feature values (Yu and Liu, 2003). In the analysis 
of cancer data, the feature selection is to find differentially 
expressed genes for cancer (that is, pathogenic genes). This is of 
great significance in exploring the link between cancer and genes 
(Chen et al., 2017). For each method, the top 500 genes with the 
greatest differential expression are analyzed.

The GeneCards (https://www.genecards.org/) system is 
used to download all gene libraries associated with the disease. 
The selected genes are compared with the gene bank to select 
overlapping genes and obtain a corresponding relevance score. 
The relevance score is the indicator that GeneCards assesses  
the association between the gene and the disease. The higher the 
relevance score is, the greater the intimacy of the gene and the 
disease. The average relevance score (ARS) and the maximum 
relevance score (MRS) are used to evaluate the performance of 
the model.

The specific experimental results of the seven methods are 
listed in Table 1. The results show that the genes selected by 
Huber-SGNMF model have higher ARS and MRS. This means 
that the model can effectively find the genes associated with 
cancer. Table 2 lists the genes for the top 10 largest relevance 
scores selected by the Huber-SGNMF model on the PHD dataset. 
The detailed genetic analysis is as follows. 

FIGURe 3 | In the case of different data points are contaminated, NMF, RGNMF, CGNMF, and Huber-SGNMF restore 200 synthetic two-dimensional data points: 
(A) the data contains 1 noise or outlier, (B) the data contains 50 noise or outliers, (C) the data contains 100 noise or outliers, (D) the data contains 150 noise 
or outliers.
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CTNNB1 is a protein-coding gene from which the protein 
encoded by the gene forms part of an adhesion-linked protein 
complex. Mutations in the CTNNB1 proto-oncogene are associated 
with most human colorectal epithelial tumors, and a significant 
increase in expression in the same tumor may indirectly or directly 
lead to intestinal adenocarcinoma (Wang et al., 2011). Moreover, 
deep sequencing of patients with pancreatic ductal adenocarcinoma 
also found CTNNB1 mutations (Honda et al., 2013; Javadinia 
et al., 2019). Multiple studies have shown that CTNNB1 mutation 
analysis is important for PAAD and COAD (Kubota et al., 2015).

ERBB2, commonly referred to as HER2, may be critical for 
enhancing the synergistic effect of PI3K inhibitors in HNSC 
patients (Michmerhuizen et al., 2019). It is generally believed that 
dysregulated ERBB2 signaling plays a key role in the development 
of pancreatic cancer (Lin et al., 2019). For the treatment of 
intestinal adenocarcinoma, ERBB2 mutations and amplification 
in small intestinal adenocarcinoma patients also make a great 
contribution (Adam et al., 2019). Recent studies have shown 
that HER2 targeted therapy has significantly improved outcomes 
in patients with breast and stomach problems with ERBB2 
mutation/amplification (Meric-Bernstam et al., 2019).

The CDH1 gene plays a regulatory role in cell growth (Nagai 
et al., 2018), and the CDH1 gene located on chromosome 16q22.1 
is considered to be a tumor suppressor of diffuse gastric cancer. 
By measuring the methylation profile of gastric cancer and breast 
cancer patients, it is found that CDH1 is closely related to low 
protein expression (Wang et al., 2016b; Wang et al., 2016c). 
Studies have shown that abnormal expression of CDH1 gene 
leads to uncontrolled growth of tumor cells (Dial et al., 2007; 
Chen et al., 2012).

The above experimental results show that Huber-SGNMF 
model can find pathogenic genes more effectively. Although 
some genes have not been confirmed, they may be a key part of 
solving cancer problems in the future.

Clustering Results and Analysis
After the Huber-SGNMF model reduces the dimensions of 
the data, the coefficient matrix is used for k-means clustering. 
Sample clustering is a common analytical method for cancer 
diagnosis and molecular subtype discrimination (Xu et al., 2019). 
Moreover, multiple evaluation criteria accuracy (ACC), recall 
(R), precision (P), and F-measure (F) are adopted to judge the 
model to be feasible and effective. ACC is an evaluation standard 

FIGURe 4 | Optimal parameter selection for the Huber-SGNMF model on the 
PHD dataset. Huber-SGNMF is set with parameters α = 100 and β = 0.01.

TABLe 1 | Relevance scores for seven methods.

NMF SNMF GNMF RGNMF RPCA CGNMF Huber-NMF Huber-SGNMF

PHD MRS 116.4 113.99 116.4 164.03 194.01 113.99 164.03 164.03
ARS 22.64 21.75 22.03 22.16 26.03 21.75 25.56 27.19

PHDEC MRS 92.51 96.36 153.66 124.37 172.9 164.91 145 172.9
ARS 29.18 30.05 36.58 27.87 37.83 35.07 35.93 44.97

Bolded texts denoted best experimental results.

TABLe 2 | Detailed analysis of the differentially expressed genes in PHD dataset.

Gene name Relevance score Gene official name Related diseases

CTNNB1 164.03 Catenin beta 1 Colorectal cancer and pilomatrixoma
ERBB2 152.33 Erb-B2 receptor tyrosine kinase 2 Lung cancer and ovary adenocarcinoma
CDH1 149.92 Cadherin 1 Gastric cancer and breast cancer
TGFBR2 102.74 Transforming growth factor beta receptor 2 Colorectal cancer and esophageal cancer
CDK4 93.35 Cyclin dependent kinase 4 Myeloma and melanoma
EPCAM 86.79 Epithelial cell adhesion molecule Pancreatic cancer and gastrointestinal carcinoma
GNAS 76.17 GNAS complex locus Osseous heteroplasia
ERBB3 74.35 Erb-B2 receptor tyrosine kinase 3 Transitional cell carcinoma
CEACAM5 59.9 Carcinoembryonic antigen related cell Adhesion molecule 5 Colorectal cancer and lung cancer
MAP2K2 51.51 Mitogen-activated protein kinase kinase 2 Head and neck squamous cell carcinoma
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that can visually reflect the clustering of samples. It is defined as 
follows:

 
ACC

a b

n
i i

i

n

=
( )( )

=∑ δ ,map
,1  (35)

Where δ (•) and map (•) represent function permutation and 
delta mapping function, respectively. The actual sample label, 
the predicted sample label, and the total number of samples are 
denoted by a, b and n, respectively.

Considering clustering accuracy alone does not fully 
demonstrate clustering performance, and more evaluation criteria 
need to be introduced. The clustering results can be divided into 
true positive (TP), true negative (TN), false positive (FP) cases, 
and false negative (FN) according to real and predictive labels. 
These four measures are listed in Table 3. The detailed evaluation 
criteria are as follows.

 
R TP

TP FN
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Since R, P, and F can only reflect the clustering performance 
of a certain sample categories, for multi-category problems, 
the average of each category of indicators is usually used as the 
evaluation criterions:
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where n represents the number of sample categories.
According to the above evaluation criterions, each algorithm 

is performed 50 times to get an average result. Since the 
initialization matrix is random, the average value can reduce the 
chance of the algorithm. Table 4 lists the comparative experiments 
of seven methods based on four evaluation criterions. Compared 
with the other six methods, our proposed model has the excellent 
clustering performance under the four evaluation criterions. The 
specific analysis of the clustering results is as follows:

1. Since the squared loss of the original NMF is sensitive to 
noise and outliers, the squared loss is replaced by Huber loss 
to improve the robustness of the algorithm. The experimental 
results show that the clustering performance of RPCA, 
CGNMF, RGNMF, Huber-NMF, and Huber-SGNMF is higher 
than standard NMF and GNMF. The reason is that both NMF 
and GNMF use square loss while other methods use more 
robust loss function. Moreover, the experimental results show 
that the robustness of the Huber loss model is higher than the 
L2,1 -norm loss and correntropy loss. The RPCA model has 
higher performance as a state-of-the-art algorithm and is still 
lower than Huber-SGNMF. The Huber loss use L1 -norm or 
L2 -norm to different data, which can effectively reduce the 
influence of noise and outliers and enhance the robustness of 
the algorithm. Compared with NMF, the clustering accuracy 
of Huber-SGNMF model on the two datasets increased by 
4.90 and 5.68%, respectively.

2. Assuming that data points are related in a high-dimensional 
state, they should also be relevant in low-dimensional 
representations. However, the association between data 
points is difficult to preserve when the data is mapped to 
low-dimensions. The manifold structure preserves the spatial 
structure of high-dimensional data in low-dimensional 
representations, enhancing the correlation between data 
points. Constructing a sample association graph of gene 
expression data to preserve the relationship between the 
samples. The experimental results of several models (NMF 

TABLe 3 | Clustering result confusion matrix.

The true 
situation

Clustering result

Positive Negative

Positive TP (true positive) FN (false negative)
Negative FP (false positive) TN (true negative)

TABLe 4 | Clustering effect for seven methods.

Dataset evaluation NMF SNMF GNMF RGNMF RPCA CGNMF Huber-NMF Huber-SGNMF

PHD ACC (%) 85.38 ± 1.24 88.93 ± 0.58 86.05 ± 1.97 86.50 ± 1.84 86.37 ± 2.04 87.18 ± 1.43 88.55 ± 0.98 90.36 ± 0.91
Macro-R (%) 82.99 ± 1.57 86.86 ± 0.82 81.02 ± 1.09 84.28 ± 2.40 84.10 ± 2.79 85.00 ± 1.79 86.41 ± 1.27 88.50 ± 1.19
Macro-P (%) 84.88 ± 1.74 89.08 ± 0.86 83.55 ± 3.76 85.68 ± 2.74 85.58 ± 2.96 86.77 ± 2.02 88.32 ± 1.36 90.18 ± 1.28
Macro-F (%) 83.92 ± 1.65 87.95 ± 0.84 82.25 ± 3.51 84.92 ± 2.60 84.83 ± 2.88 85.87 ± 1.90 87.35 ± 1.31 89.33 ± 1.23

PHDEC ACC (%) 69.84 ± 0.26 71.51 ± 0.31 70.15 ± 0.08 71.86 ± 0.69 75.02 ± 0.32 73.81 ± 0.27 72.53 ± 0.21 75.52 ± 0.20
Macro-R (%) 63.95 ± 0.18 65.33 ± 0.14 61.98 ± 0.38 64.45 ± 0.87 68.37 ± 0.28 66.74 ± 0.15 67.09 ± 0.07 69.02 ± 0.07
Macro-P (%) 61.34 ± 0.26 62.45 ± 0.19 58.77 ± 0.10 62.80 ± 0.97 65.81 ± 0.50 64.47 ± 0.27 63.92 ± 0.25 65.56 ± 0.25
Macro-F (%) 64.17 ± 0.20 63.79 ± 0.21 60.24 ± 0.27 63.49 ± 0.87 66.92 ± 0.29 65.51 ± 0.17 65.34 ± 0.12 67.17 ± 0.10

Bolded texts denoted best experimental results.
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and GNMF, Huber-NMF, and Huber-SGNMF) show that 
the clustering performance of the model with the addition 
of graph regularity constraints is improved. Compared 
with Huber-NMF, Huber-SGNMF has improved clustering 
accuracy by 1.73 and 2.99% in the two datasets, respectively.

3. Matrix sparseness removes redundant data and simplifies 
model calculations. The sparsity constraint of the coefficient 
matrix removes redundant features and improves clustering 
performance. The experimental results of SNMF and Huber-
SGNMF prove this. Compared with SNMF, since Huber-
SGNMF improves the loss function and manifold structure, 
the clustering accuracy in the two datasets is increased by 1.35 
and 4.02%, respectively.

In summary, the experimental results based on the four 
evaluation indicators demonstrate the excellent clustering 
performance of the Huber-SGNMF model. Compared with NMF, 
the clustering performance of Huber-SGNMF has improved 
5.30 and 4.49% on average in PHD dataset and PHDEC dataset, 
respectively. Huber-SGNMF clustering performance improves 
1.93 and 2.07% on average compared to Huber-NMF. The above 
experimental results strongly prove the effectiveness of Huber-
SGNMF in clustering performance.

CONCLUSION
In this paper, we propose a novel model based on Huber loss: 
Huber-SGNMF, which is dedicated to samples clustering and 

differentially expressed gene selection. On the one hand, the 
squared loss is replaced by Huber loss to enhance algorithm 
robustness. On the other hand, sparse penalty and graph 
regularization terms are added to the model to enhance the 
sparsity of the matrix and preserve data geometry information. 
Numerous experimental results confirm that the Huber-SGNMF 
method is more effective. In the future work, we will actively 
explore more effective constraints based on the traditional NMF 
method to improve the robustness and sparsity of the method.
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