
1

Edited by: 
Zhengqing Ouyang, 

Jackson Laboratory for 
Genomic Medicine, 

United States

Reviewed by: 
Sungwon Jung, 

Gachon University, 
South Korea 

Frank Emmert-Streib, 
University of Tampere, 

Finland

*Correspondence: 
Zhaohui S. Qin 

zhaohui.qin@emory.edu

Received: 29 May 2019
Accepted: 29 August 2019

Published: 25 September 2019

Citation: 
Yang G, Ma A and Qin ZS (2019) An 
Integrated System Biology Approach 

Yields Drug Repositioning Candidates 
for the Treatment of Heart Failure. 

Front. Genet. 10:916. 
 doi: 10.3389/fgene.2019.00916

An Integrated System Biology 
Approach Yields Drug Repositioning 
Candidates for the Treatment of 
Heart Failure
Guodong Yang 1,2, Aiqun Ma 1 and Zhaohui S. Qin 2*

1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China, 2 Department of 
Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States

Identifying effective pharmacological treatments for heart failure (HF) patients remains critically 
important. Given that the development of drugs de novo is expensive and time consuming, 
drug repositioning has become an increasingly important branch. In the present study, we 
propose a two-step drug repositioning pipeline and investigate the novel therapeutic effects 
of existing drugs approved by the US Food and Drug Administration to discover potential 
therapeutic drugs for HF. In the first step, we compared the gene expression pattern of 
HF patients with drug-induced gene expression profiles to obtain preliminary candidates. In 
the second step, we performed a systems biology approach based on the known protein–
protein interaction information and targets of drugs to narrow down preliminary candidates 
to obtain final candidates. Drug set enrichment analysis and literature search were applied 
to assess the performance of our repositioning approach. We also constructed a mode 
of action network for each candidate and performed pathway analysis for each candidate 
using genes contained in their mode of action network to uncover pathways that potentially 
reflect the mechanisms of candidates’ therapeutic efficacy to HF. We discovered numerous 
preliminary candidates, some of which are used in clinical practice and supported by the 
literature. The final candidates contained nearly all of the preliminary candidates supported by 
previous studies. Drug set enrichment analysis and literature search support the validity of our 
repositioning approach. The mode of action network for each candidate not only displayed 
the underlying mechanisms of drug efficacy but also uncovered potential biomarkers and 
therapeutic targets for HF. Our two-step drug repositioning approach is efficient to find 
candidates with potential therapeutic efficiency to HF supported by the literature and might 
be of particular use in the discovery of novel effective pharmacological therapies for HF.

Keywords: heart failure, drug repositioning, gene signature, systems biology, connectivity map

INTRODUCTION

Heart failure (HF) remains a worsening global public health problem with high mortality (Mosterd 
et al., 2001; Askoxylakis et al., 2010). Although the use of neuro-hormonal interventions in the 
forefront of HF treatment has substantially reduced mortality and improved the prognosis, 
morbidity and mortality remain unacceptably high (Mosterd et al., 2001; Askoxylakis et al., 2010; 
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Lewis et al., 2017). The mortality of HF patients within 5 years is 
>50%, higher than most malignancies (Askoxylakis et al., 2010). 
Thus, there is an urgent need to identify new effective therapeutic 
treatments functioning through different mechanisms compared 
to existing treatments in order to improve the prognoses of 
HF patients.

However, developing drugs de novo is expensive and time 
consuming. To bring a new drug to market, it takes an average 
of 10 years and at least $1 billion in research and development 
(Xue et al., 2018). Given the time and cost of developing novel 
drugs, drug repositioning has become an increasingly important 
strategy, and many different computational methods have been 
developed to facilitate this process (Lamb et al., 2006; March-
Vila et al., 2017; Subramanian et al., 2017; Peyvandipour et al., 
2018). Drug repositioning aims to identify new applications 
for existing drugs to treat different diseases (Novac, 2013), 
which eliminates the need for preclinical development and 
optimization, hence saving effort, expense, and avoiding the 
high rate of failures that are typically associated with the new 
drug discovery process.

Classical drug repositioning methods include ligand-based 
approaches (Keiser et al., 2009; Liu et al., 2010; Vasudevan et al., 
2012; Anighoro et al., 2015; Iwata et al., 2015; Mervin et al., 2015; 
Sawada et al., 2015) and structure-based approaches (Manning 
et al., 2002; Zhang et al., 2004; Kinnings et al., 2009; Defranchi 
et al., 2010; Jalencas and Mestres, 2013; Bowman et al., 2015; 
Hall et al., 2015; Ehrt et al., 2016). The concept for ligand-
based approaches is that similar compounds are likely to have 
similar biological properties. Structure-based approaches are 
based on the concept that proteins with similar structures tend 
to have similar functions and to bind similar compounds. These 
two approaches are based on existing information regarding 
drugs and proteins. Drugs identified using these two types of 
methods share the same mechanisms as the template drugs. For 
a certain disease, if the template drugs have already been used 
as treatments, these approaches will play a limited role, and 
thus, other types of drug repositioning approaches able to find 
therapeutic drugs with different mechanisms compared to the 
existing treatments are required.

As we enter the “big data” era, given the generation and wide 
access of disease and drug-induced gene expression profiling 
data, such as the Library of Integrated Network-based Cellular 
Signatures (LINCS) L1000 dataset (Subramanian et al., 2017) 
as an eminent repository for pharmacogenomics and the 
expansion of the Connectivity Map (Cmap) (Lamb et al., 2006), 
noval, data-driven approaches have been developed to explore 
the possibility of drug repositioning through intelligent data 
mining to find drugs that function through different mechanisms 
compared to existing treatments (Lamb et al., 2006; Hu and 
Agarwal, 2009; Chang et al., 2010; Jin et al., 2012; Iskar et al., 
2013; Subramanian et al., 2017; Peyvandipour et al., 2018). The 
first class of approaches is based on transcriptomic data. By 
comparing the gene expression patterns of diseases and drugs, 
therapeutic relationships between known drugs and new disease 
indications can be established (Lamb et al., 2006; Subramanian 
et al., 2017). Another class of methods aims at organizing the 
relationships among disease-related genes and drug targets in the 

form of a network to visualize the potential therapeutic efficiency 
of a drug (Peyvandipour et al., 2018). The approaches based on 
data mining can be used to find drugs that function through 
different mechanisms compared to existing treatments, but how 
to increase the likelihood of identifying actual disease-related 
candidate drugs remains a critical point.

In the present study, we constructed a two-step drug 
repositioning pipeline by combining a transcriptome-based 
approach and a network-based approach to find candidate drugs 
approved by the US Food and Drug Administration (FDA) for 
HF. Drug-set enrichment analysis and literature search were 
applied to validate our approach. We also constructed a mode 
of action (MOA) network for each candidate to investigate 
their potential MOA. Then, a pathway analysis was performed 
using genes contained in the MOA network of each candidate 
to uncover the potential mechanisms of candidate’s therapeutic 
efficacy to HF (Figure 1).

MATERIALS AND METHODS

Date Sources
HF Gene Expression Data
Gene expression data comparing HF and healthy human left 
ventricular tissues with a minimum sample size of 10 were 
downloaded from Gene Expression Omnibus (GEO). Twenty-one 
datasets, representing two HF subtypes: dilated cardiomyopathy 
(DCM) and ischemic cardiomyopathy (ISCM), satisfied the 
selection criteria (Supplemental Tables 1 and 2).

Drug-Induced Gene Expression Data and Drug 
Target Data
Drug-induced gene expression profiles were derived from 
the Library of Integrated Network-Based Cellular Signatures 
(LINCS) L1000 dataset (Subramanian et al., 2017), an eminent 
pharmacogenomics repository used for diverse purposes 
(Wang et al., 2016; Musa et al., 2018; Musa et al., 2019). 
The data are available in GEO (GSE92742), which contains 
transcriptional gene expression data from cultured human 
cells exposed to over 20,000 small molecules including 
most of the FDA-approved drugs. The LINCS L1000 dataset 
compares two groups of samples (control vs. treatment) and 
provides differentially expressed genes (DEGs) in terms of 
z-score signatures. Drug targets were retrieved from the 
database DrugBank, which combines detailed drug data with 
comprehensive drug target information (Wishart et al., 2018). 
Overall, we extracted 762 FDA-approved drugs with both 
gene expression signatures and known targets to perform the 
subsequent drug repositioning analysis.

Protein–Protein Interaction Network
Protein–protein interaction (PPI) network information was 
derived from the BioGRID database, one of the largest repositories 
of experimentally verified PPIs (Chatr-Aryamontri et al., 2017). 
We extracted all genetic and protein interactions for humans to 
build the global PPI network. In the global PPI network, each 
node is a gene, and the edges represent PPIs between nodes.
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Known HF-Related Genes
HF-related genes were retrieved from the Comparative 
Toxicogenomics Database, a robust and publicly available 
database containing gene–disease association information 
(Mattingly et al., 2006). Genes associated to systolic HF were 
extracted for underlying analysis.

Data Analysis
Detection of DEGs
For HF gene expression data collected from microarray, R/
Bioconductor package Limma was applied (Smyth, 2004); 
for HF gene expression data collected from RNAseq, R/
Bioconductor package edgeR was used (Robinson and Smyth, 
2007). The definition of DEGs was set to an adjusted P value 
(<0.05). We used the top (K-most up- and downregulated) 
DEGs according to the fold change to represent the most 
significant and important DEGs of HF and perform the 

subsequent drug repositioning analysis. Different values of K 
(150, 250, and 350) were attempted.

Articulation DEGs Selection
We constructed a global network based on all BioGRID PPIs. 
For each HF-related dataset, we extracted a subgraph from the 
global network using the function induced_subgraph built in 
the R/Bioconductor package igraph. The nodes of the subgraph 
represent all DEGs, and the edges of the subgraph refer to 
the experimentally verified PPIs among the DEGs. Then, 
the articulation points of each subgraph were defined as the 
articulation DEGs using the function articulation_points built in 
the R/Bioconductor package igraph. Articulation points are key 
vertices in a network, whose removal increases the number of 
connected components in a graph. The way of finding articulation 
DEGs is to remove all nodes of a network one by one, and the 
nodes whose removal results in disconnected graph are selected 
as articulation DEGs. The articulation DEGs were considered as 

FIGURE 1 | Framework overview. (A) We compared the gene expression profile of heart failure (HF) and normal human left ventricular (LV) tissues to obtain the 
differential expression genes (DEGs). The K-most top (up- and downregulated) DEGs were obtained according to the fold change values. We then extracted 
a HF subnetwork from the global protein–protein interaction network using all DEGs. Articulation DEGs of the subnetwork were extracted as inputs to perform 
subsequent drug repositioning analysis along with top K genes (K was set as 150, 250 and 350). (B) A pattern matching analysis was applied on input HF DEGs 
and drug-induced gene expression signatures. Connectivity score (τ) was calculated to assess the reversal of gene expression patterns and to select the preliminary 
candidates. Then, the interaction between the targets of preliminary candidates and HF-related network was investigated. Preliminary candidates whose targets 
located in the HF-related network were selected as final candidates. (C) Drug-set enrichment analysis was applied to determine whether known HF drugs are 
located higher in the whole drug list ranked by τ. Results across all datasets were aggregated using meta-analysis.
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another subset of the most significant and important DEGs of HF 
besides top DEGs and were used to conduct the subsequent drug 
repositioning analysis.

Drug Repositioning Analysis
Step 1: Obtain Preliminary Candidates Using a 
Transcriptome-Based Approach
In this step, we follow the same strategy as in Cmap (Lamb et al., 
2006; Subramanian et al., 2017).

Step 1a. Calculate the Weighted Connectivity Score
First, we conducted a pattern-matching analysis (Lamb et al., 
2006) to evaluate the reversal of gene expression patterns 
between HF DEGs and drug-induced gene signature. HF 
DEGs comes from one of the four kinds of HF gene expression 
patterns, that is top 150 DEGs, top 250 DEGs, top 350 DEGs, 
and articulation DEGs. Drug-induced gene signature refers to 
the gene expression profile of a certain cell type treated by drugs. 
For the HF DEGs, we compared the sorted upregulated and 
sorted downregulated DEGs, respectively, with drug-induced 
gene signatures sorted by z-scores of which upregulated genes 
are located at the top and downregulated genes are located at 
the bottom. For a given pair of HF DEGs and drug-induced 
gene signature, if upregulated HF DEGs enrich at the bottom 
of the sorted drug-induced gene signature and downregulated 
DEGs of HF enrich at the top of the sorted drug-induced gene 
signature, they are assumed to have the reversed gene expression 
patterns and thus have therapeutic potential. The Kolmogorov–
Smirnov (KS) statistic presented in the original Cmap paper 
(Lamb et al., 2006) was used to quantitatively assess the reversal 
of gene expression patterns.
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where KS is divided into KSup and KSdown referring to 
the enrichment score for the sorted upregulated and sorted 
downregulated genes in a list of HF DEGs, respectively. The 
sorted upregulated HF DEGs were compared with drug-
induced gene signatures sorted by z-scores to get KSup, and the 
sorted downregulated HF DEGs were compared with drug-
induced gene signatures sorted by z-scores to get KSdown. Let n 
be the total number of genes in an ordered drug-induced gene 
signature and t be the number of the up- or downregulated 
genes in a list of HF DEGs. V(j) is the position of gene j in the 
ordered drug-induced gene signature. Gene j is any gene in 
the sorted up- or downregulated gene list of HF DEGs, where 
j = 1, 2, …, t.

The weighted connectivity score was calculated based on the 
KS statistic as in the original Cmap paper (Lamb et al., 2006). For 
a given HF DEGs (r) and drug-induced gene signature (q), the 
weighted connectivity score Wq,r is calculated as follows:
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where KSup is the enrichment of upregulated HF DEGs 
in the sorted drug-induced signature, and KSdown is the 
enrichment of downregulated HF DEGs in the sorted drug-
induced signature. The sign of KS will be negative if the 
upregulated DEGs of HF enrich to the bottom of the drug-
induced signature or the down-regulated HF DEGs enrich to 
the top of the drug-induced signature. Otherwise, the sign of 
KS will be positive. Zero is assigned for cases where KSup and 
KSdown are the same sign.

Step 1b. Calculate the Normalized Connectivity Score
Since the drugs’ perturbations are profiled in several cell lines, 
to each candidate, we calculated the weighted connectivity score 
for every pair of drug-induced gene signature and HF DEGs 
and then normalized the vector of weighted connectivity scores 
following the strategy of Cmap to allow for comparing across 
different cell types and different drug types (Subramanian et al., 
2017). To a given vector of the weighted connectivity scores 
(W), we normalized W using the formula described previously 
(Subramanian et al., 2017) to obtain normalized connectivity 
scores (NCS):
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where NCSc,t is the normalized connectivity score for a certain 
pair of cell type (c) and perturbation type (t), Wc,t is the weighted 
connectivity score, and μ+

c,t and μ−
c,t are the separately evaluated 

signed means of the positive and negative values of the weighted 
connectivity scores.

Step 1c. Calculate the Terminal Connectivity Score (τ)
While NCS can be used to make meaningful comparisons of 
the reversal between drug-induced signatures and disease-
related gene sets, it is also useful to assess if the reversal between 
different combinations of drug-induced signature and disease-
related gene set are significantly different. Tau (τ) (Subramanian 
et al., 2017) was used to compare the reversal of a certain pair of 
HF and drug with other pairs.τ was calculated as follows:

τ q q r i r q r
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where NCSq,r is the normalized connectivity score for a certain 
pair of drug-induced signature (q) and disease-related gene set 
(r). NCSi,r is the normalized connectivity score for the disease-
related gene set (r) and any other drug-induced signature (i). N is 
the total number of drug-induced signatures. τ ranges from -100 
to 100, and a | τ | of 90 indicates that to a certain drug-induced 
signature, 10% of the total drug-induced signatures showed 
stronger connectivity with the disease-related gene set than the 
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certain drug-induced signature. The negative sign of τ refers to 
reversed gene expression patterns of drug and disease, while a 
positive sign indicates nonreversed gene expression patterns.

As each drug was profiled using several cell lines in Cmap, 
to find drugs most likely having therapeutic potential to HF, we 
used the minimum τ (the most negative τ) of all the cell lines as 
the connectivity score. The τ of the four lists of HF DEGs (top 
150 genes, top 250 genes, top 350 genes, and articulation DEGs) 
used as inputs were averaged as the final score. For each dataset, 
we chose the top 5% (38) drugs with the most negative τ values 
as the candidate drugs. We then combined the top 5% drugs of all 
datasets and chose the 38 most common drugs as the preliminary 
candidate drugs.

Step 2: Narrow Down Preliminary Candidates 
Applying a Network-Based Approach
First, we built a HF-related network. To obtain representative 
DEGs of HF to build the network, we obtained the DEGs of 
each dataset and chose the most common DEGs across the 
majority of all datasets (three or more) as the final DEGs. Using 
the final DEGs, we extracted the HF-related network from the 
global network established previously. Then, we analyzed the 
relationship between candidates’ targets and the HF-related 
network. There are generally three different types of relationship 
between drug targets and disease network: (1) drug targets have 
no interactions with the disease network, (2) drug targets do not 
belong to the disease network but can interact with the nodes, 
and (3) drug targets are contained in the disease network. In 
our study, preliminary candidate drugs were selected as final 
candidate drugs, only if some of their targets are located in the 
HF-related network.

Drug-Set Enrichment Analysis of Known 
HF Drugs
To assess the performance of our drug repositioning method, 
we performed a drug-set enrichment analysis as previously 
described (So et al., 2017) to determine if known HF drugs are 
ranked significantly higher than they would have been by chance 
in the whole drug list ranked by τ. We performed the enrichment 
analysis for each dataset separately. First, we ranked drug list of 
each HF dataset by τ. Then, we did rank-sum test to compare the 
difference of ranks of drugs being used in clinical practice with the 
ranks of the rest drugs. Finally, we aggregated the results across all 
datasets using meta-analysis. We applied three different methods 
to summarize the results: the inverse-variance method, Fisher’s 
method, and Tippett’s minimum P method (So et al., 2017).

Manual Curation of the Final Candidate 
Drugs
To assess the results obtained from our method, we also 
performed a literature search with predefined search strategies 
to locate evidence of the therapeutic potential of candidate drugs 
for HF. Details regarding the query are as follows: DCM, Drug_
name AND (DCM OR heart failure OR dilated cardiomyopathy 
OR dilated cardiomyopathies); ISCM, Drug_name AND (ISCM 

OR heart failure OR ischemic cardiomyopathy OR ischemic 
cardiomyopathy).

Investigating the Mode of Action Network 
of Candidate Drugs
In order to discover the potential MOA of candidate drugs, we 
built a MOA network for each candidate using a systems biology 
approach. The foundation of the MOA network is a previously 
described drug-disease network (DDN) (Peyvandipour et al., 
2018) that considers the interactions between known drug 
targets and known HF-related genes. The construction of this 
MOA network was based on the HF-related network constructed 
in step 2 of our repositioning approach. Known HF-related genes 
extracted from Comparative Toxicogenomics Database were 
used to form the HF-related gene set as Sdisease = (x1…xn). Then, 
given the set of targets of a certain drug that were involved in 
the disease network as Sdrug = (y1…ym), we extracted DDN from 
the HF-related network as the MOA network of the drug. The 
DDN consists of all of the shortest paths in which a gene from 
either Sdisease or Sdrug can be a source or destination. To ensure the 
authenticity of the interaction between known drug targets and 
known HF-related genes, the steps from source to destination 
were limited to less than three.

Discovering Potential MOAs Using KEGG 
Pathway Analysis
We used genes involved in each MOA network as an input to 
perform Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis to uncover potential pathways through which 
the candidate may perform its therapeutic efficiency to HF. The 
KEGG pathway analysis was performed using Enrichr (Chen 
et  al., 2013), an integrative gene set enrichment tool used to 
perform pathway analysis. For each input gene list, the tool 
calculates an enrichment score based on a modified Fisher’s 
exact test. The adjusted p value cutoff was set to 0.05 for the 
identification of significant pathways. The significant pathways 
of each drug were ranked according to combined scores, and the 
HF-related pathways within the top 10 ranked pathways were 
selected as potential MOAs.

RESULTS

Preliminary Candidates for HF
HF Arising From DCM
Table 1 presents the selected top 5% (38) candidates for DCM. 
As expected, our analyses identified drugs used to treat HF in 
clinical practice, such as perindopril, telmisartan, and amiloride.

Besides, a total of 7 drugs from the list of 38 candidates had 
literature evidence supporting their use to treat HF. Animal studies 
have shown that estradiol treatment can prevent the development 
of HF (Beer et al., 2007; Satoh et al., 2007). Moreover, estradiol 
can also prevent cardiomyocyte apoptosis (Patten et al., 2004) and 
cardiac fibrosis (Pedram et al., 2010), which are involved in the 
pathological processes of HF. Chlorpromazine is a prototypical 
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phenothiazine antipsychotic drug, and previous studies have 
shown that intravenous administration of chlorpromazine had 
hemodynamic effects and was of benefit to patients with HF 
(Elkayam et al., 1977; Mifune et al., 1979). Nicardipine is a calcium 
channel blockader exhibiting antihypertensive properties and is 
effective in the treatment of coronary spasms and angina. Studies 
showed that an acute intravenous drip infusion of nicardipine is 
effective in the treatment of HF (Fifer et al., 1990; Sy et al., 1993; 
Hirota et al., 1997). Naloxone is an opioid antagonist medication 
used to block the effects of opioid drugs. Animal experiments 
have shown that naloxone improves the systemic hemodynamics 
and myocardial contractile function in conscious dogs with HF 
(Himura et al., 1994). Atorvastatin and pravastatin are members 
of the drug class known as stains used to lower cholesterol. It 
has been suggested that the use of atorvastatin or pravastatin 
in HF patients attenuates adverse left ventricular remodeling 
and improves left ventricular systolic function as well as clinical 
outcomes (Sola et al., 2006; Wojnicz et al., 2006; Han et al., 2007; 
Lipinski et al., 2009; Correale et al., 2013). Bromocriptine is a 
prolactin release inhibitor. Bromocriptine treatment was reported 
to improve hemodynamic profiles in HF patients and was 
associated with a high rate of full left ventricular recovery and low 
morbidity and mortality in HF patients arising from peripartum 
cardiomyopathy (Francis et al., 1983; Hilfiker-Kleiner et al., 2017).

HF Arising From ISCM
Table 2 presents the selected top 5% (38) of candidate drugs for 
ISCM. Amiloride was among the candidates. We also determined 
that 5 out of the 38 candidate drugs have been reported as 
potentially being useful in HF treatment. Estradiol, atorvastatin, 
and naloxone, which are candidate drugs of DCM, also appeared 
in the preliminary candidate drug list of ISCM. Preclinical and 
clinical studies have indicated that thalidomide, which displays 
immunosuppressive and antiangiogenic activity, has potential 

efficacy for HF patients (Agoston et al., 2002; Gullestad et al., 2002; 
Gullestad et al., 2005; Orea-Tejeda et al., 2007). Furthermore, 
studies have indicated that nitrendipine, a calcium channel blocker 
with marked vasodilator action, can favorably alter performance 
of the failing left ventricles in HF patients (Cohn, 1986).

Refined List of Candidate Drugs
For DCM, 13 drugs remained after the second round of selection 
(Table 3). Perindopril and telmisartan were retained. In addition, 
five out of the aforementioned seven preliminary candidate 
drugs having been reported in the literature as having potential 
efficacy for HF treatment were also retained. For ISCM, 23 drugs 
remained following the second round of selection (Table 4). 
Amiloride and four out of five drugs supported by the literature 
in having potential therapeutic efficacy for HF were retained.

Enrichment Analysis of Known HF Drugs
We extracted all drugs (21) being demonstrated as improving 
the prognosis of HF patients from the 762 drugs to perform the 
enrichment analysis. The 21 drugs include 9 angiotensin-converting 

TABLE 1 | Preliminary candidate drugs for DCM.

Class Drug Rank Class Drug Rank

AI nimesulide 1 ERA estrone 20
ERA estriol 2 CA gemfibrozil 21
Other tetrabenazine 3 NA haloperidol 22
CA amiloride 4 Other metyrapone 23
CA atorvastatin 5 CA nicardipine 24
AI azathioprine 6 Other norgestimate 25
AI clocortolone 7 CA perindopril 26
ERA dienestrol 8 CA pravastatin 27
ERA estradiol 9 Other primaquine 28
Other fulvestrant 10 CA ritodrine 29
Other letrozole 11 CA telmisartan 30
Other liothyronine 12 AAA tripelennamine 31
NA metixene 13 AAA triprolidine 32
Other naloxone 14 AAA alimemazine 33
Other progesterone 15 NA amisulpride 34
Other resorcinol 16 Other atovaquone 35
NA tranylcypromine 17 NA Bromocriptine 36
Other chloroquine 18 AI budesonide 37
ERA equilin 19 CA chlorpromazine 38

Drugs whose names with bold font have literature support to be efficient to HF. 
CA, cardiovascular agent; ERA, estrogen receptor agonist; NA, neuropsychiatric agent; 
AI: anti-inflammatory; AAA, anti-allergic agent.

TABLE 2 | Preliminary candidate drugs for ISCM.

Class Drug Rank Class Drug Rank

ERA dienestrol 1 NA citalopram 20
ERA estradiol 2 AN etoposide 21
Other repaglinide 3 ANA eugenol 22
Other sulfinpyrazone 4 CA flecainide 23
Other tetracycline 5 NA galantamine 24
Other atovaquone 6 CA gemfibrozil 25
Other chloroquine 7 Other itraconazole 26
ERA equilin 8 CA minoxidil 27
ERA estrone 9 CA nitrendipine 28
NA ethotoin 10 CA oxprenolol 29
CA indapamide 11 NA pentobarbital 30
NA metixene 12 AN sonidegib 31
ANA naloxone 13 Other triprolidine 32
ANA naltrexone 14 Other tropisetron 33
CA nimodipine 15 CA warfarin 34
Other quinine 16 Other albendazole 35
Other thalidomide 17 CA amiloride 36
NA zonisamide 18 AN amsacrine 37
CA chlorthalidone 19 CA atorvastatin 38

Drugs whose names with bold font have literature support to be efficient to HF. 
CA, cardiovascular agent; ERA, estrogen receptor agonist; NA, neuropsychiatric agent; 
AN, anti-neoplastic; ANA, analgesic.

TABLE 3 | Final candidate drugs for DCM.

Drug Classification Drug Classification

perindopril Cardiovascular agent norgestimate PR agonist
telmisartan Cardiovascular agent nimesulide Anti-inflammatory
nicardipine Cardiovascular agent azathioprine Anti-inflammatory
chlorpromazine Cardiovascular agent tranylcypromine Neuropsychiatric
estradiol ER agonist bromocriptine Neuropsychiatric
estrone ER agonist naloxone Analgesic
progesterone PR agonist

Drugs with bold font have literature support to be efficient to HF.
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enzyme inhibitors, 7 angiotensin II-receptor blockers, 2 aldosterone 
receptor antagonists, and 3 beta-blockers, metoprolol, bisoprolol, 
and carvedilol.

Although Fisher’s methods and Tippett’s minimum P method 
only showed significant enrichment for DCM (Table 5), the 
inverse-variance method showed that the drug set was enriched 
for both DCM and ISCM, with significant P values of 0.0002 and 
0.03, respectively (Figure 2). The forest plot also showed that the 
mean rank of the 21 drugs is smaller than that of the remaining 
741 drugs in each data set without heterogeneity, indicating a 
robustness of the trend toward enrichment.

Potential MOA of Candidates
The MOA networks displaying the relationship between drug 
targets and HF-related genes are shown in Figures 3 and 4. The 
significant pathways related to each MOA network are presented 
in Supplemental Tables 3 and 4.

Potential MOA of Candidates for DCM-Induced HF
Estradiol, chlorpromazine, nicardipine, naloxone, and 
bromocriptine were candidates with literature support regarding 
their potential efficacy for HF treatment. The enriched pathways 
using genes from their MOA network are described in the 
following section.

There are 59 genes contained in the MOA network of 
estradiol. Using these 59 genes as input for KEGG pathway 
analysis, the estrogen signaling pathway and hypoxia-inducible 
factor 1 (HIF-1) signaling pathway were deemed as significant. 
Notably, estrogen regulates a plethora of physiological processes 
in mammals through the estrogen signaling pathway, including 
prevention of the development of HF, cardiomyocyte apoptosis, 
and cardiac fibrosis (Patten et al., 2004; Beer et  al.,  2007; 

Satoh et al., 2007; Pedram et al., 2010). HIF-1 is a transcription 
factor functioning as a major regulator of oxygen homeostasis. 
One previous study investigated left ventricular tissues from HF 
patients and determined that the HIF pathway persists during 
HF (Zolk et al., 2008).

There are 72 genes in the MOA network of chlorpromazine. 
The significant pathways related to chlorpromazine include the 
phosphoinositide-3-kinase (PI3K)-Akt signaling pathway, the 
HIF-1 signaling pathway, and the mitogen-activated protein 
kinase (MAPK) signaling pathway. The PI3K-Akt signaling 
pathway regulates fundamental cellular functions such as 
transcription, translation, proliferation, growth, and survival. 
One study indicated that the PI3K-Akt signaling pathway is 
involved in the myocardial remodeling in HF patients and plays 
an important role in the pathogenesis of myocardial hypertrophy 
(Yang et al., 2005). The MAPK signaling pathway is a highly 
conserved module that is involved in the majority of cellular 
functions, including cell proliferation, differentiation, and 
migration. Previous studies have shown that downregulation 
of the MAPK signaling pathway has a cardioprotective effect 
against HF (Li et al., 2018).

The MOA network of nicardipine consists of six genes. 
The calcium signaling pathway is found to be related to the 
MOA network of nicardipine. Ca2+ plays an important role in 
connecting the excitability of cell membrane with contraction in 
myocardium. Previous reports have shown that Ca2+ homeostasis 
is defective in HF and represents a central cause of contractile 
dysfunction in failure myocardium (Luo and Anderson, 2013), 
suggesting that the calcium signaling pathway may be translated 
into novel therapies for HF.

There are 80 genes contained in the MOA network of naloxone. 
The PI3K-Akt signaling pathway and HIF-1 signaling pathway 
are significantly related to the MOA network of naloxone, which 
are both involved in the pathogenesis of HF (Yang et al., 2005; 
Zolk et al., 2008).

Although the MOA network of bromocriptine contains only 
three genes, the tumor necrosis factor (TNF) signaling pathway 
and nuclear factor kappa B (NF-kappa B) signaling pathway are 
deemed as significant. TNF can induce a wide range of intracellular 
signal pathways including apoptosis and cell survival as well as 
inflammation and immunity. Previous studies indicated that 
the expression of TNF receptors is upregulated in mononuclear 
leukocytes of HF patients (Nozaki et al., 1998). Besides, increased 
levels of TNF-alpha were observed in HF patients, which were 
high enough to reduce cardiac contractility in vitro, and the 
mortality of HF patients increases with higher levels of TNF-
alpha (Muller-Ehmsen and Schwinger, 2004). For these reasons, 
TNF signaling pathway may appear to be a potential target for the 
treatment of HF. NF-kappa B is the generic name of the relevant 
transcription factor family. The NF-kappa B signaling pathway 
regulates genes involved in immunity, inflammation, and cell 
survival. The polymorphism of NF-kappa B is associated with 
the heart function of HF patients (Santos et al., 2010). Moreover, 
silencing the NF-kappa B signaling pathway can prevent cardiac 
hypertrophy and HF in mice HF models (Gupta et al., 2008).

Perindopril and telmisartan are currently being used in 
clinical practice to treat HF by targeting and inhibiting the 

TABLE 4 | Final candidate drugs for ISCM.

Drug Classification Drug Classification

nimodipine Cardiovascular agent dienestrol ER agonist
flecainide Cardiovascular agent estradiol ER agonist
gemfibrozil Cardiovascular agent equilin ER agonist
nitrendipine Cardiovascular agent estrone ER agonist
oxprenolol Cardiovascular agent thalidomide Antineoplastic
amiloride Cardiovascular agent etoposide Antineoplastic
metixene Neuropsychiatrics sonidegib Antineoplastic
zonisamide Neuropsychiatrics amsacrine Antineoplastic
galantamine Neuropsychiatrics repaglinide Antidiabetic
pentobarbital Neuropsychiatrics quinine Antimalarial
naloxone Analgesic albendazole Anthelmintic
eugenol Analgesic

Drugs with bold font have literature support to be efficient to HF.

TABLE 5 | Drug analysis enrichment synthesized P values.

P value

DCM ISCM

Fisher’s method 0.0326 0.6977
Toppett’s minimum p approach 0.0198 0.8131
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FIGURE 2 | The synthesized result of the enrichment analysis. (A) For dilated cardiomyopathy (DCM). (B) For ischemic cardiomyopathy (ISCM).

FIGURE 3 | The mode of action (MOA) network of dilated cardiomyopathy (DCM) candidates. Green nodes present known heart failure (HF)-related genes. 
Red nodes represent drug targets. Pink nodes represent genes with no evidence of corresponding to HF.
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renal–angiotensin–aldosterone system (RAAS). The significant 
HF-related pathways related to them include apoptosis, the 
PI3K-Akt signaling pathway, the HIF-1 signaling pathway, and 
the MAPK signaling pathway. Previous studies have revealed that 
cardiocyte apoptosis exists in the hearts of HF patients (Narula 
et al., 1996) and that the attenuation of apoptosis can delay 
cardiac dysfunction in murine HF models (Mandl et al., 2011). 
Moreover, high RAAS activity can result in apoptosis, while 
inhibiting RAAS can prevent apoptosis (Velez Rueda et al., 2012; 
Kooptiwut et al., 2015). Based on the literature, downregulating 
the MAPK signaling pathway can have cardioprotective effects 
against HF (Li et al., 2018), while inhibiting RAAS can abrogate 
MAPK activation (Lebeche et al., 2001).

Apart from the aforementioned drugs, other candidates 
were neither used in clinical practice nor did they exhibit any 
therapeutic efficacy to HF supported by the literature. However, 
there are at least two pathways corresponding to HF for each 
drug (results not shown), suggesting that these drugs may have 
potential therapeutic efficacy for HF treatment.

Potential MOA of Candidates for ISCM-Induced HF
Five candidate drugs of ISCM are used in clinical practice to treat 
HF or have literature support with known treatment efficacy for 
HF, including estradiol, naloxone, thalidomide, nitrendipine, 
and amiloride. Estradiol and naloxone are also DCM candidates, 

despite their MOA networks for DCM and ISCM being different. 
The MOA networks of estradiol and naloxone consist of 218 and 
206 genes, respectively. The pathways that deemed as significant to 
them are the same, including the HIF-1 signaling pathway, MAPK 
signaling pathway, and PI3K-Akt signaling pathway. A total of 
103 genes are involved in the MOA network of Thalidomide, and 
the HIF-1 signaling pathway and PI3K-Akt signaling pathway 
are related to this network. The MOA network of nitrendipine 
contains 35 genes, and the significant pathway of these genes is 
the PI3K-Akt signaling pathway. Amiloride, which is used as 
adjunctive treatment with diuretics in HF, was also contained 
in the final candidates list. We input the 63 genes of the MOA 
network of amiloride to perform the KEGG pathway analysis and 
determined that the HIF-1 signaling pathway, PI3K-Akt signaling 
pathway, and TNF signaling pathway were deemed significant, 
which suggests that amiloride may play other roles in the treatment 
of HF apart from diuretic activity. For the remaining drugs, at least 
two pathways corresponded to HF (results not shown), suggesting 
a potential therapeutic efficacy for HF prevention.

DISCUSSION

In the present work, we presented a two-step drug repositioning 
pipeline and applied our methodology to HF arising from 

FIGURE 4 | The mode of action (MOA) network of ischemic cardiomyopathy (ISCM) candidates. Green nodes present known heart failure (HF)-related genes. 
Red nodes represent drug targets. Pink nodes represent genes with no evidence of corresponding to HF.
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two different etiologies to identify candidate drugs. Drug-set 
enrichment analysis and literature search provided support 
to  the validity of our repositioning approach. MOA network 
and KEGG analysis displayed the potential mechanisms of 
drug efficacy.

Concerning the repositioning results, we observed that the 
cardiovascular drugs have the largest proportion among the 
candidates in both DCM- and ISCM-induced HF, indicating that 
our proposed method could specifically focus the repositioning 
on disease-related tissues. For DCM, the probability of finding 
candidates supported by literature rise from 26.3% (10 out of 38) 
to 53.8% (7 out of 13) after narrowing down the preliminary 
candidates, and this number rise from 15.8% (6 out of 38) to 
21.7% (5 out of 23) for ISCM, which indicates that our two-
step drug repositioning approach can effectively increase 
the likelihood of finding candidates with actual therapeutic 
potential for HF.

It is encouraging to know that our repositioning results are 
supported by drug-set enrichment analysis. Our results suggest 
that gene expression profiling data contains useful information 
for drug discovery. We observed that the inverse-variance 
method indicates that the drug set is enriched for both DCM 
and ISCM, while Fisher’s method and Tippett’s minimum P 
method only indicate significant enrichment for DCM. There 
are a few possible explanations for this result. First, the sample 
size of drugs used to do enrichment analysis may not be large 
enough. The number of drugs used to perform enrichment 
analysis is 21, which is much smaller than the total number of 
drugs used for drug repositioning (762). Second, HF is known 
to be heterogeneous with several subtypes, which may lead 
to different responses to the same therapeutic interventions 
(McMurray et al., 2012; Ahmad et al., 2014; Ahmad et al., 2018). 
Some studies have reported that ISCM-induced HF patients 
have a worse prognosis than DCM-induced HF patients (Follath 
et al., 1998; Follath, 2000), suggesting that the response to 
treatment in DCM-induced patients is better than that of ISCM-
induced patients.

To investigate the MOA for the candidate drugs, we take 
advantage of existing information on known HF-related genes, 
known drug targets, and known protein–protein interaction 
information to obtain the MOA network for each drug. The 
MOA network displays the direct interactions between drugs 
and diseases in a form of network through its target genes. In 
the MOA network, we can identify genes that have not been 
previously reported as HF-related but have direct interactions 
with known HF-related genes as well as known drug targets, 
suggesting that these genes may represent potential biomarkers 
or therapeutic targets for HF. We also observe that, although 
some drugs appear in the candidates list of both DCM-induced 
and ISCM-induced HF, the MOA network can be different, 
which may indicate the differences of pathogenesis in HF arising 
from different etiologies. For candidates which are neither 
used in clinical practice nor supported by previous studies, 
HF-related pathways can be enriched using the genes contained 
in their MOA networks, indicating their potential therapeutic 
efficacy for HF.

There are a number of advantages to our study. First, we 
extracted all HF-related gene expression datasets with a minimum 
sample size of 10 from GEO and synthesized the results of each 
dataset to obtain a more robust and reliable results to compensate 
for the limitation that most human genomic studies of HF are 
limited by insufficient cardiac tissues. Second, the first step of 
our repositioning approach is a largely hypothesis-free approach 
blinding to any knowledge regarding existing HF drugs, known 
drug targets, or known drug–disease relationships, and thus is 
likely to find candidate drugs of different mechanisms from the 
known treatment. Third, compared to the Cmap methods used 
as the first step of our repositioning approach, the second step of 
our repositioning approach can effectively increase the likelihood 
of identifying candidates with actual therapeutic potential for HF 
and can be used in conjunction with any other drug repurposing 
methods to effectively narrow down a list of candidate drugs. In 
the second step, we determined the interaction between known 
drug targets and HF networks to narrow down the preliminary 
candidates. Nearly all preliminary candidate drugs being used in 
clinical practice or with literature support were included in the 
final candidates list. Fourth, our method of constructing MOA 
networks can be applied to any drug repositioning studies aimed 
at exploring the underlying mechanisms of action of candidate 
drugs. Fifth, to our knowledge, this is the first systematic drug 
repositioning analysis conducted in relation to HF. In the face of 
the growing epidemiological burden of HF, our study might be of 
particular use in the discovery of novel effective pharmacological 
therapies for HF.

The present study also has a few general limitations. First, 
although the pattern matching method used in the first step is 
largely hypothesis free, the assumptions of reversed expression 
patterns may not be completely true for every disease–drug 
pair. Second, in the second step of our repositioning approach, 
to ensure that drugs have the greatest likelihood to interact 
with HF, we only chose drugs whose targets are located in the 
HF network as the final candidates. Owing to this selection 
criterion, some candidates may be missed. Moreover, the drug-
induced gene expression profiles in Cmap are not measured in 
cardiac tissues and may represent another limitation, although 
the Cmap study claimed that these data can be reasonably 
modeled in non-neoplastic diseases (Lamb et al., 2006). In 
addition, our repositioning analysis is only based on gene 
expression information. Considering that the gene expression 
profile only partly reflects the mechanisms of diseases and 
drugs, our method may be improved by incorporating other 
information related to genomics, transcriptomics, proteomics, 
and metabolomics. Finally, although we performed drug 
set enrichment analysis and literature search to validate our 
repositioning results and obtained promising results, the 
current study does not provide confirmatory evidence for the 
repositioning candidates, and thus, adequately sized preclinical 
and clinical studies will be necessary to verify the repositioning 
predictions.

In conclusion, we have proposed a framework for drug 
repositioning and presented a list of repositioning candidates 
for HF. To our knowledge, this is the first systematic drug 
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repositioning analysis to HF, and we believe that it could be of 
particular use in the discovery of novel effective pharmacological 
therapies for HF.
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