AUTHOR=Schmidt Lukas , Werner Stephan , Kemmer Thomas , Niebler Stefan , Kristen Marco , Ayadi Lilia , Johe Patrick , Marchand Virginie , Schirmeister Tanja , Motorin Yuri , Hildebrandt Andreas , Schmidt Bertil , Helm Mark TITLE=Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures JOURNAL=Frontiers in Genetics VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2019.00876 DOI=10.3389/fgene.2019.00876 ISSN=1664-8021 ABSTRACT=
Modification mapping from cDNA data has become a tremendously important approach in epitranscriptomics. So-called reverse transcription signatures in cDNA contain information on the position and nature of their causative RNA modifications. Data mining of, e.g. Illumina-based high-throughput sequencing data, is therefore fast growing in importance, and the field is still lacking effective tools. Here we present a versatile user-friendly graphical workflow system for modification calling based on machine learning. The workflow commences with a principal module for trimming, mapping, and postprocessing. The latter includes a quantification of mismatch and arrest rates with single-nucleotide resolution across the mapped transcriptome. Further downstream modules include tools for visualization, machine learning, and modification calling. From the machine-learning module, quality assessment parameters are provided to gauge the suitability of the initial dataset for effective machine learning and modification calling. This output is useful to improve the experimental parameters for library preparation and sequencing. In summary, the automation of the bioinformatics workflow allows a faster turnaround of the optimization cycles in modification calling.