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A large number of clinical studies have shown that interleukin-18 (IL-18) plasma levels
are positively correlated with the pathogenesis and development of type 2 diabetes
mellitus (T2DM), but it remains unclear whether IL-18 causes T2DM, primarily due
to the influence of reverse causality and residual confounding factors. Genome-wide
association studies have led to the discovery of numerous common variants associated
with IL-18 and T2DM and opened unprecedented opportunities for investigating
possible associations between genetic traits and diseases. In this study, we employed a
two-sample Mendelian randomization (MR) method to analyze the causal relationships
between IL-18 plasma levels and T2DM using IL18-related SNPs as genetic instrumental
variables (IVs). We first selected eight SNPs that were significantly associated with
IL-18 but independent of T2DM. We then used these SNPs as IVs to evaluate
their effects on T2DM using the inverse-variance weighted (IVW) method. Finally,
we conducted sensitivity analysis and MR-Egger regression analysis to evaluate the
heterogeneity and pleiotropic effects of each variant. The results based on the IVW
method demonstrate that high IL-18 plasma levels significantly increase the risk of
T2DM, and no heterogeneity or pleiotropic effects appeared after the sensitivity and
MR-Egger analyses.

Keywords: interleukin-18 levels, type 2 diabetes mellitus, casual effect, Mendelian randomization, genome-wide
association studies

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a complex metabolic disease and accounts for more than
90% of diabetic cases. Its pathogenesis involves both genetic predisposition and unhealthy living
habits (Zheng et al., 2018). The disease occurs mostly after the age of 35–40 years, providing
potential time windows for proactive strategies toward effective prevention (Palermo et al.,
2014; Zheng et al., 2018).

Among the known risk factors, inflammation has been identified as a potential cause
of T2DM as well as other obesity-associated diseases, such as atherosclerosis and fatty
liver (Kohlgruber and Lynch, 2015; Zou et al., 2018). Inflammations interfere with glucose
metabolism in adipocytes, hepatocytes, and muscle cells and also affect insulin production
or signaling (Kohlgruber and Lynch, 2015). The IL-1 cytokine family, a major class
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of immunoregulatory agents, plays important roles in endocrinal
processes and the regulation of responses to inflammatory
stress, especially in T2DM (Banerjee and Saxena, 2012). For
example, human pancreatic cells produce more IL-1β under
higher glucose concentrations, which in turn may lead to
impaired insulin secretion, decreased cell proliferation, and,
eventually, β-cell death (Poitout and Robertson, 2002; Rhodes,
2005). In contrast, IL-1Ra, another member of the IL-1
family, can protect cultured human islets from high glucose-
induced IL-1β-mediated β-cell apoptosis (Maedler et al., 2001).
Obviously, members of the IL-1 family, e.g., IL1-Ra and IL-
1β, maintain a dynamic balance to influence β-cell function
and glycemic regulation in T2DM development (Larsen et al.,
2007, 2009). Recently, interleukin-18 (IL-18), an IL-1 family
member, has been reported to be involved in T2DM and play
a role in regulating innate and adaptive immune responses
(Matsui et al., 1997; Wawrocki et al., 2016). Immediately
after this report, a nested case-control study based on the
Nurses’ Health Study showed high IL-18 levels are associated
with a higher risk of T2DM (Hivert et al., 2009). In another
study, IL-18 levels were measured in serum samples from 130
coronary artery disease (CAD) patients. The study included
43 T2DM patients and 31 healthy controls and also revealed
that T2DM patients tend to have higher IL-18 serum levels
(Suchanek et al., 2005). These results are consistent with previous
clinical findings that increased IL-18 serum levels serve as a
marker of insulin resistance in both T2DM patients and non-
diabetic people (Fischer et al., 2005). However, due to the
interference of multiple confounding factors and the “reverse
causal effect” in observational studies, it remains unclear whether
high levels of IL-18 trigger the onset of T2DM and cause or
push the development of the disease as a main confounding
factor, an issue that calls for systematic investigations for the
development of effective preventive or therapeutic strategies,
e.g., by Mendelian randomization (MR) studies (Noyce et al.,
2017; Schuetz and Wahl, 2017).

Mendelian randomization, greatly facilitated by the
development of genome-wide association studies (GWASs),
is a method for establishing causal effects between genetic traits
and diseases by building instrumental variables (IVs) based
on the information about single nucleotide polymorphisms
(SNPs), i.e., phenotype-associated genetic variants (Visscher
et al., 2012; Hayes, 2013; De et al., 2014; Huang, 2015; Li
et al., 2015; Sekula et al., 2016; Zheng et al., 2017; Cheng
et al., 2018d, 2019; Guo et al., 2018). For MR analysis, all
IVs have to be independent of one another and robustly
associated with the phenotype (e.g., high IL-18 levels) but
not with the disease (e.g., T2DM) (Figure 1), ensuring
that the only way for the IVs to influence the disease is
through the phenotype, with maximum avoidance of any
possible residual confounding factors. Based on Mendel’s
second law, i.e., the principle of random distribution of
gametes in offspring (Castle, 1903), IV analysis can avoid
reverse causality.

In this study, we verified the assumption that T2DM is caused
by high IL-18 levels. Next, we estimated the causal effect of IL-18
levels on T2DM by the MR method.

MATERIALS AND METHODS

Strategic Design of Data Processing
and Analysis
We extracted summary-level data from GWAS datasets and
processed the data by removing the SNPs not suitable for
establishing IVs. We then calculated the Wald ratio of
each IV, and we used the inverse-variance weighted (IVW)
method to predict the causal effects of high IL-18 serum
levels on T2DM. Upon completing the MR analysis, we
evaluated the heterogeneity and pleiotropic effects of each
variant, using the sensitivity analysis and the MR-Egger method,
respectively (Figure 2).

Summary-Level Data Extraction for
Associations Between Genetic Variants
and IL-18
The SNP information required to construct the IVs was extracted
from a meta-analysis study done in 2013 by Walston et al.
This team identified 18 top significant SNPs associated with
plasma IL-18 levels (P < 5 × 10−8), using the GWAS data
from the Cardiovascular Health Study (CHS) and a prospective
population-based cohort study called InCHIANTI (Matteini
et al., 2014). The “haplo.glm” function, implemented by the
original author in the “haplo.stats” R package, was used to
calculate the beta coefficient (β), the standard error (SE),
and the threshold of the P-value for each haplotype relative
to the most common reference haplotype (Matteini et al.,
2014). Participants in this study included 3233 individuals
over the age of 65 from the CHS cohort, and another
group of 1210 participants aged 65–102 years from the
InCHIANTI cohort, all being Caucasian (Fried et al., 1991;
Ferrucci et al., 2000). The related SNP serial numbers, allele
frequencies, effect alleles (EAs), beta coefficients, and SEs
were obtained from the meta-analysis results by combining
the two cohorts.

Summary-Level Data Extraction for
Associations Between Genetic Variants
and T2DM
The GWAS data used for this study were obtained from the trans-
ethnic T2D GWAS meta-analysis for calculating the subsequent
Wald ratio. In total, 26,488 T2DM cases and 83,964 controls were
used in the study, and 2,915,012 genetic variants were identified,
which have been published by the Diabetes Genetics Replication
and Meta-analysis (DIAGRAM) consortium1. The odds ratio
(OR), SE, and P-value of T2DM per allele were extracted. The
P-value established for screening genotypes (P < 5 × 10−8)
independent of type 2 diabetes is specifically referenced to a
number of similar studies; the most authoritative of which is
“Estimating the causal influence of body mass index on risk of
Parkinson disease: A Mendelian randomization study,” which was
published in PLOS Medicine in 2017.

1http://diagram-consortium.org/about.html
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FIGURE 1 | Mendelian randomization analysis utilizing genetic variants as instrumental variables for estimating the effect of IL-18 plasma levels on T2DM.

FIGURE 2 | Strategic design of data processing and analysis.

Frontiers in Genetics | www.frontiersin.org 3 April 2019 | Volume 10 | Article 295

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00295 April 3, 2019 Time: 21:0 # 4

Zhuang et al. Causality Between T2DM and IL-18

Data Processing
Due to the potential linkage disequilibrium (LD), the IVs were
chosen independent of each other to avoid over-precise estimates
in subsequent analysis caused by genetic pleiotropy. According
to the application principles of MR analysis, the study is based
on Mendel’s second law of inheritance: the separation and
combination of gene pairs controlling different traits do not
interfere with each other; in the formation of gametes, the paired
genes are separated from each other, and genes that determine
different traits are randomly distributed between two gametes.
When two genes are not completely independent, they will
show a certain degree of linkage; this situation is called LD,
and it greatly affects the exclusiveness of the variable tool to
phenotypic inheritance, leading to subsequent calculation bias,
generally called “over-precise estimates” (Noyce et al., 2017).
Although rudimentary selection has been applied by Walston
et al. (Matteini et al., 2014), the processed SNPs were verified
again using an LD web tool2 to remove the interfering SNPs (r2
threshold = 0.1 or within 500 kb physical distance) (Baird, 2015;
Noyce et al., 2017). Next, the T2DM-related SNPs (P< 0.05) were
removed to meet the conditions for the MR analysis, making the
IL-18-associated variants independent of the disease.

MR Method
Mendelian randomization is a method applied by pooling Wald
ratios of the IVs to verify the causal relationship between
exposures and diseases (Emdin et al., 2017). The Wald ratio of
each IV was calculated first. As shown in Figure 2, we assumed X,
Y, and Z to be IL-18, T2DM, and IVs, respectively, and the Wald
ratio (βXY) of IL-18 to T2DM through a specified variant can be
calculated as follows:

βXY = βZY/βZX,

where βZY represents the per-allele log(OR) of T2DM from
summary-level data of Morris et al. (Morris et al., 2012), and
βZX is the per-allele log(OR) of IL-18 from summary-level data of
Walston et al. (Matteini et al., 2014). The SE of the IL-18–T2DM
association of each Wald ratio can be defined as follows:

SEXY = SEZY/SEZX,

where SEZY and SEZX represent the SE of the variant–T2DM and
variant–IL-18 associations from corresponding summary-level
data, respectively. Subsequently, 95% confidence intervals (CIs)
were calculated from the SE of each Wald ratio. Then, these data
were pooled to estimate a weighted average of the causal effect by
the IVW method. This method is one of the most commonly used
methods for meta-analysis of fixed effects models. It summarizes
effect sizes from numerous independent studies by calculating the
weighted mean of the influence sizes, taking the inverse variance
of individual studies as weights. The meta-analysis model for the
point estimate is on the basis of the heterogeneity of the pooled
data. The fixed effect model is applied for the case of no significant
heterogeneity, while the random-effect model is used for others
(Boucher, 2012; Lee et al., 2016).

2http://www.cog-genomics.org/plink/1.9/ld#r

In order to assess the genetic heterogeneity of summarized
data, Cochran’s Q-test and the I2 statistic were applied. Cochran’s
Q-test applies a χ2 distribution with (k-1) degrees of freedom,
where k is the number of variants for analysis; I2 = [Q - (k -
1)]/Q × 100% ranges from 0 to 100%. P < 0.01 and I2 > 50%
are defined as significant heterogeneity (Zhang et al., 2015).

Leave-One-Out Method for
Sensitivity Analysis
The sensitivity analysis was conducted to detect the heterogeneity
of each variant, and the IVW method was carried out for each set
of variants without a “missing SNP” to get the point estimates
from IL-18 on T2DM (Noyce et al., 2017). Then, we checked the
fluctuation of the results before and after removing the “missing
SNP,” which reflects the sensitivity of each IV (Zheng, 2017).

MR-Egger Method
MR-Egger regression analysis was applied here to ensure that
violations in the analysis would not bias the estimates of
the directional causal association (Bowden et al., 2015). The
MR-Egger regression analysis was originally derived from the
Egger regression method, which is mainly used to detect
research bias in meta-analysis and systematic bias caused by
pleiotropy. The estimated value of the intercept from MR-Egger
regression can be interpreted as an estimate of the average
pleiotropic effect across the genetic variants. Estimates of the
average pleiotropic effect of genetic variants can be reflected
in the intercept estimates in MR-Egger regression. A non-
zero intercept is indicative of overall directional pleiotropy,
and the slope coefficient provides a bias estimate of the
causal effect (Bowden et al., 2015). All above statistical
analyses were conducted in R 3.4.3 using the R package of
meta-analysis 1 and MR3.

RESULTS

IV SNPs
A selection of eight SNPs to construct IVs (rs2250417, rs2300702,
rs2268797, rs6748621, rs7577696, rs6760105, rs212745, and
rs212713) satisfied all conditions, including strong associations
with IL-18 phenotypes (P < 5× 10−8, β 6= 0) and no association
with T2DM (P > 0.05) or LD effect (Table 1).

The Causality Influence From BMI on the
Risk of T2DM
The pooled results from the IVW method with eight SNPs suggest
that high IL-18 plasma concentrations significantly increase the
risk of T2DM. No heterogeneity was found between variants of
the summary data (P = 1.0 and I2 = 0%; Figure 3); the fixed-effect
model was applied for the meta-analysis, and the OR of T2DM
per SD higher IL-18 plasma level was 1.14 (95% CI 1.03 − 1.26,
P = 0.0117; Figure 3).

3http://cran.r-project.org/web/packages/meta/index.html
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TABLE 1 | Associations of genetic variants with IL-18 and T2DM.

SNP Chr Gene BP IL-18 IL-18 IL-18 P T2DM β T2DM T2DM

β SE SE P

rs2250417 11 BCO2 111590526 0.1 0.01 1.9 × 10−32 0.00995 0.0102 0.71

rs2300702 2 SRD5A2 316411522 0,07 0.01 1.6 × 10−17 0.00995 0.0153 0.29

rs2268797 2 SRD5A2 31637256 0.07 0.01 2.8 × 10−17 0.00995 0.0153 0.26

rs6748621 2 DPY30 32115705 0.08 0.01 1.1 × 10−16 0.00995 0.0102 0.68

rs7577696 2 DPY30 32132286 0.08 0.01 2.7 × 10−19 0.00995 0.0102 0.6

rs6760105 2 SPAST 32160890 0.06 0.01 3.6 × 10−16 0.00995 0.0102 0.61

rs212745 2 SLC30A6 32266336 0.07 0.01 2.1 × 10−15 0.00995 0.0102 0.64

rs212713 2 NLRC4 32311041 0.06 0.01 1.5 × 10−10 0.00995 0.0102 0.61

FIGURE 3 | Forest plot revealing Wald ratios and 95% CIs from IL-18-associated SNPs.

Sensitivity Evaluation
The ORs obtained after removing the “missing SNP” all exceeded
1, ranging from 1.1345 to 1.1505, with small fluctuations from
-0.005 [(1.1345–1.14)/1.14] to 0.009 [(1.1505–1.14)/1.14]. This
means that the causality effects we obtained from MR were
supported by most of the individual SNPs, demonstrating that no
single SNP dominated the IVW point estimate, and there was no
heterogeneity in the variants (Figure 4; Rosmalen et al., 2012).

Pleiotropic Effect Assessment
The pooled causal effects from the MR-Egger regression
analysis are consistent with the IVW results: an estimated
bate of T2DM per SD higher IL-18 plasma level was 0.122
(95% CI 0.003 − 0.221, P = 0.044); the intercept size
was 0.011 (95% CI -0.004 to 0.026, P = 0.158), suggesting
that all variants were valid. There is no alternative pathway
leading to the disease, and the IVW was applied under no
pleiotropic effect.

DISCUSSION

In this study, we conducted an MR analysis to explore
the causal effect of IL-18 plasma levels on the risk of
T2DM. The estimated causal impact resulting from the IVW

method was 1.14 (95% CI 1.03 − 1.26, P = 0.0117).
Additionally, the sensitivity analysis and the MR-Egger regression
analysis also provided adequate evidence that the results
were not due to heterogeneity or pleiotropic effects of
any single variant.

A major innovative aspect of this study design is the
introduction of the concept of IVs in the association analysis.
In the causal inference of observational studies, no matter
how good an epidemiological research design is and how
accurate the measurements, we cannot eliminate the potential,
unmeasurable confounding factors. The MR study design follows
the Mendelian inheritance law of “random allocation of alleles
to offspring.” If the genotype is associated with the disease
through the phenotype, it can use genotypes as a variable
to infer the association between phenotype and disease, as
shown in Figure 1.

Given the results of this study, we can almost certainly
conclude that the IL-18-associated T2DM risk is mainly due to
the role of pro-inflammatory cytokines in β-cell dysfunction.
Islet inflammations cause serious tissue lesions in both T1DM
and T2DM. Upon infiltrating into the islet, the immune cells
secrete a variety of pro-inflammatory cytokines, such as IL-
1β, tumor necrosis factor alpha (TNF-α), and γ-interferon,
and cause islet cell function defects and diabetes (Morgan
et al., 2014; Marchetti, 2016; Eguchi and Nagai, 2017). The
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FIGURE 4 | Scatter plot of the ORs from IL-18-associated SNPs in the “leave-one-out” analysis. The red baseline shows the results without missing any SNP; the
blue dots denote the results after removing one SNP.

question of causality between T2DM and elevated IL-18 levels
is answered in this study, as we have demonstrated that
pro-inflammatory cytokines have a causal effect on T2DM.
Our study not only aids in the development of prognostic
techniques for diabetes and its complications but also provides
a more comprehensive strategy for all types of clinical drug
regimens to circumvent the risk of T2DM. Especially for
non-T2DM treatments that can increase IL-18 expression,
more stringent control, and careful handling are needed. For
example, bacillus Calmette-Guérin (BCG) vaccines, which have
been used for nearly a 100 years, have been confirmed in
2002 to cause a large increase in the expression of IL-
1 family members, including IL-18, after vaccination (Lyons
et al., 2002). Attention should be paid to the avoidance of
virulence factors caused by the treatment process, and the
rationality and safety of various medical treatments should be
comprehensively evaluated.

Finding a solution for the high IL-18 levels may be
a lengthy task. For instance, Schrezenmeir et al. used
probiotic oligosaccharides to reduce the production of pro-
inflammatory cytokines in intestinal cells and effectively
reduced the burden of self-immunity (Zenhom et al.,
2011). The use of statins can also effectively inhibit the
expression of pro-inflammatory cytokines in CrFK cells
infected with influenza A virus (Mehrbod et al., 2012). In

cohort trials of patients with Alzheimer’s disease, researchers
also found that ascorbic acid, α-tocopherol, and β-carotene
can reduce oxidative stress and pro-inflammatory cytokine
production in monocytes (de Oliveira et al., 2012). At the
same time, daily exercise aids in reducing plasma levels
of pro-inflammatory cytokines; early treadmill exercise
reduced the production of pro-inflammatory factors in
mice and even alleviated anxiety symptoms after cerebral
ischemia (Zhang Q. et al., 2017).

Inevitably, this study has some minor limitations. When
studying a single phenotypic variable, other phenotypes become
confounding factors, so we introduced the MR concept, based
on Mendel’s second law, the “law of independent assortment,”
to solve this problem and to control genetic factors of different
traits. We can insulate other pathway effects by linking genetic
loci that control a single phenotype to the disease. But, as stated,
the possibility of “non-isolation” still exists for some phenotypes
that have not yet been completely described and which may
be regulated by the same set of genetic loci. However, with
the rapid updates and development of the databases, we expect
this issue will be solved soon, e.g., by methods such as link
prediction (Cheng et al., 2016, 2018a,b; Zeng et al., 2017; Jiang
et al., 2018; Zhang et al., 2018; Ding et al., 2019) or artificial
intelligence (Cabarle et al., 2017; Liu et al., 2017; Zhang X. et al.,
2017; Cheng and Hu, 2018; Dao et al., 2018; Feng et al., 2018;
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Pan et al., 2018; Song et al., 2018; Tang et al., 2018; Wei et al., 2018;
Xu et al., 2018a,b; Yang et al., 2018; Zhu et al., 2019). With the
discovery of new IL-18 variants and the large collection of results
of randomized controlled trials, we anticipate the discovery of
more non-coding biomarkers for novel diagnostic or therapeutic
strategies for T2DM (Zou et al., 2015; Lu et al., 2016; Liu et al.,
2017; Wei et al., 2017a,b; Cheng et al., 2018c; Zeng et al., 2018).
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