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Playing critical roles as post-transcriptional regulators, microRNAs (miRNAs) are a family

of short non-coding RNAs that are derived from longer transcripts called precursor

miRNAs (pre-miRNAs). Experimental methods to identify pre-miRNAs are expensive

and time-consuming, which presents the need for computational alternatives. In recent

years, the accuracy of computational methods to predict pre-miRNAs has been

increasing significantly. However, there are still several drawbacks. First, these methods

usually only consider base frequencies or sequence information while ignoring the

information between bases. Second, feature extraction methods based on secondary

structures usually only consider the global characteristics while ignoring the mutual

influence of the local structures. Third, methods integrating high-dimensional feature

information is computationally inefficient. In this study, we have proposed a novel

mutual information-based feature representation algorithm for pre-miRNA sequences

and secondary structures, which is capable of catching the interactions between

sequence bases and local features of the RNA secondary structure. In addition, the

feature space is smaller than that of most popular methods, which makes our method

computationally more efficient than the competitors. Finally, we applied these features to

train a support vector machine model to predict pre-miRNAs and compared the results

with other popular predictors. As a result, our method outperforms others based on both

5-fold cross-validation and the Jackknife test.

Keywords: pre-miRNAs identification, feature representation algorithm, mutual information, structure analysis,

support vector machine

INTRODUCTION

Derived from hairpin precursors (pre-miRNAs), mature microRNAs (miRNAs) belong to a family
of non-coding RNAs (ncRNAs) that play significant roles as post-transcriptional regulators (Lei and
Sun, 2014). For example, hypothalamic stem cells partially control aging rate through extracellular
miRNAs (Zhang et al., 2017). MiRNAs are formed by cleavage of pre-miRNAs by enzymes.
Discovery of miRNAs relies on predictive models for characteristic features from pre-miRNAs.
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However, the short length of miRNA genes and the lack of
pronounced sequence features complicate this task (Lopes
et al., 2016). In addition, miRNAs are involved in many
important biological processes, including plant development,
signal transduction, and protein degradation (Zhang et al.,
2006; Pritchard et al., 2012). Due to their intimate relevance
to miRNA biogenesis and small interfering RNA design,
pre-miRNA prediction has recently become a hot topic in
miRNA research. However, traditional experimental methods
like ChIP-sequencing are expensive and time-consuming
(Bentwich, 2005; Li et al., 2013; Liao et al., 2014; Peng
et al., 2017). In the post-genome era, a large number of
genome sequences have become available, which provides
an opportunity for large scale pre-miRNA identification by
computational techniques (Li et al., 2010).

In recent years, many computational methods have been
proposed to identify pre-miRNAs, most of which are based
on machine learning (ML) algorithms or statistical models.
The ML-based methods usually model pre-miRNA identification
as a binary classification problem to discriminate real and
pseudo-pre-miRNAs. Widely used ML-based algorithms include
support vector machines (SVMs) (Xue et al., 2005; Helvik et al.,
2007; Huang et al., 2007; Wang Y. et al., 2011; Lei and Sun,
2014; Lopes et al., 2014; Wei et al., 2014; Liu et al., 2015b;
Khan et al., 2017), back-propagation and self-organizing map
(SOM) neural networks (Stegmayer et al., 2016; Zhao et al.,
2017), linear genetic programming (Markus and Carsten, 2007),
hidden Markov model (Agarwal et al., 2010), random forest
(RF) (Jiang et al., 2007; Kandaswamy et al., 2011; Lin et al.,
2011), covariant discrimination (Chou and Shen, 2007; Lopes
et al., 2014), Naive Bayes (Lopes et al., 2014), and deep learning
(Mathelier and Carbone, 2010). For example, Yousef et al. (2006)
Peng et al. (2018) used a Bayesian classifier for pre-miRNA
recognition, which has demonstrated effectiveness in recognizing
pre-miRNAs in the genomes of different species. Xue et al.
(2005) proposed a triplet-SVM predictor to identify pre-miRNA
hairpin structural features, whose prediction performance has
been improved by 10% in a later method using a RF-based
MiPred classifier (Jiang et al., 2007). In addition, Stegmayer et al.
(2016) proposed a deepSOM predictor to solve the problem of
imbalance of positive and negative pre-miRNA samples.

It is known that the performance of ML-based methods is
highly associated with the extraction of features (Liao et al.,
2015b; Zhang and Wang, 2017; Ren et al., 2018). Typical
feature representation methods include secondary structure and
sequence information-based methods (Wei et al., 2016; Saçar
Demirci and Allmer, 2017; Yousef et al., 2017). For example,
Xue et al. (2005) proposed a 32-dimensional feature of triplet
sequences containing secondary structure information to better
express pre-miRNA sequences. Jiang et al. (2007) performed
random sequence rearrangement, which is useful in obtaining
the energy characteristics of pre-miRNA sequences. However,
this method is quite slow. In addition, Wei et al. (2014) and
Chen et al. (2016) extended the features proposed by Xue et al.
(2005) into 98-dimensional pre-miRNA features, which resulted
in a better pre-miRNA prediction accuracy. Most pre-miRNAs
have the characteristic stem–loop hairpin structure (Xue et al.,

2005); thus, the secondary structure is an important feature
used in computational methods. Recently, Liu et al. proposed
several methods for predicting pre-miRNAs on the basis of
the secondary structure, namely, iMiRNA-PseDPC (Liu et al.,
2016), iMcRNA-PseSSC (Liu et al., 2015b), miRNA-dis (Liu et al.,
2015a), and deKmer (Liu et al., 2015c). Some researchers (Khan
et al., 2017; Yousef et al., 2017) have increased the dimensionality
of features by combining multi-source features to improve the
accuracy of pre-miRNAs prediction. With the increase of feature
dimension, considerable redundant information and noises are
also incorporated, which may reduce the prediction accuracy
and slow down the algorithm. Thus, it is usually necessary to
perform feature selection to remove irrelevant or redundant
features. An excellent feature selection method can effectively
reduce the running time for training the model and improve
the performance of the prediction (Wang X. et al., 2011; Wang
Y. et al., 2011). To further facilitate computational processes,
several bioinformatics toolkits have been developed to generate
numerical sequence feature information (Liu et al., 2015d).

Developing an effective feature representation algorithm
for pre-miRNA sequences is a challenging task. Existing
methods have several drawbacks, which may not be sufficiently
informative to distinguish between pre-miRNAs and non-pre-
miRNAs. First, even excellent feature extraction methods usually
only consider the frequency or sequence information of the
bases of pre-miRNA sequences while ignore the interaction
between two bases. Second, feature extraction methods
based on secondary structures usually only consider the
global characteristics while ignore the mutual influence
of the local characteristics of structures. Third, methods
combining multisource feature information and integrating
feature selection algorithms to reduce dimensionality
(Khan et al., 2017; Yousef et al., 2017) is inefficient in
computational time.

As a useful measure to compare profile information based
on their entropy, mutual information (MI) has been extensively
applied in computational and bioinformatics studies. For
instance, MI profiles were used as genomic signatures to reveal
phylogenetic relationships between genomic sequences (Bauer
et al., 2008), as a metric of phylogenetic profile similarity
(Date and Marcotte, 2003), and for predicting drug-target
interactions (Ding et al., 2017) and gene essentiality (Nigatu
et al., 2017). Inspired by previous studies (Date and Marcotte,
2003; Bauer et al., 2008; Ding et al., 2017; Nigatu et al.,
2017; Zhang and Wang, 2018), we proposed a novel MI-based
feature representation algorithm for sequences and secondary
structures of pre-miRNAs. Specifically, we used entropy and MI
to calculate the interdependence between bases, and calculated
the 3-gram MI and 2-gram MI of the sequences and secondary
structures as feature vectors, respectively. Due to the nature
of MI in representing profile dependency, our method is
capable of catching the interactions between sequence bases
and local features of the secondary structure, which is critical
to pre-miRNA prediction. In addition, we combined the MI
feature with the minimum free energy (MFE) feature of pre-
miRNA, one of the most widely used features for RNA
study and constructed a total of 55-dimensional features.
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FIGURE 1 | The overall framework of the proposed method for predicting

pre-miRNAs.

Since the feature space is smaller than that of most popular
methods, our method is computationally more efficient than the
competitors while keeping most important information for pre-
miRNA prediction. Our method was evaluated on a stringent
benchmark dataset by a jackknife test and compared with a few
canonical methods.

MATERIALS AND METHODS

Framework of the Proposed Method
We illustrated in Figure 1 the overall framework of our
method, which consists of two main steps, namely, feature
extraction and pre-miRNA prediction. In the feature extraction
step, the initial pre-miRNA sequences were first extracted
from the raw data. Secondly, homology bias was avoided
by using the CD-HIT software (Li and Godzik, 2006) (with
threshold value 0.8), and the samples with similarity greater
than the threshold in the initial dataset were filtered out.
The remaining data was used as the benchmark dataset
for this study. After that, the secondary structures of the
sequences in the benchmark dataset were predicted by the
software RNAfold (Hofacker, 2003). Finally, the primary
sequence features based on mutual information (PSFMI),
secondary structure features based on mutual information
(SSFMI), and MFE features were retrieved, respectively
for samples in the benchmark dataset. In the pre-miRNA
prediction step, the generated features were fed into an SVM
classifier to generate a training model, which was employed
to predict pre-miRNAs.

Datasets
Balanced Dataset
Our balanced benchmark dataset for pre-miRNA identification
consists of real Homo sapiens pre-miRNAs as positive set and
two pseudo pre-miRNAs subsets as negative set, named as: S1
and S2, respectively. The benchmark dataset S1 and S2 can be
formulated as:

S1 = S+ ∪ S−
xue(1612)

S2 = S+ ∪ S−
wei(1612)

The benchmark dataset S+contains a total of 1,612 positive
samples, which were selected from the 1,872 reported Homo
sapiens pre-miRNA entries downloaded from the miRBase
(20th Edition) (Kozomara and Griffithsjones, 2011), and the
pre-miRNAs sharing sequence similarity more than 80% were
removed using the CD-HIT software (Li and Godzik, 2006) to get
rid of redundancy and avoid bias; the negative samples set S−xue
contains 1,612 pseudo miRNAs, which were selected from the
8,494 pre-miRNA-like hairpins S−xue (Xue et al., 2005); the S−wei
contains 1,612 pseudo miRNAs, which were selected from the
14,250 pre-miRNA-like hairpins S−wei (Wei et al., 2014).

In addition, we selected 88 new pre-miRNA sequences from
a later version (e.g., miRBase22) as positive samples, and
selected 88 samples from S−wei as negative samples to construct
a benchmark dataset for independent testing, named S3. The
benchmark dataset S3 can be formulated as:

S3 = S+miR22 ∪ S−
wei(88)

Imbalanced Dataset
To evaluate the performance of our approach in an unbalanced
dataset, we have constructed two unbalanced benchmark
datasets, named as: S4 and S5, respectively. The benchmark
dataset S4 and S5 can be formulated as:

S4 = S+ ∪ S−wei
S5 = S+

microPred
∪ S−

microPred

Specifically, S4 consists of S+ (positive samples) and S−wei
(negative samples) with ratio ∼1:8.8 (1,612:14,250). S5 was
adopted from microPred (Batuwita and Palade, 2009), which
contains 691 non-redundant human pre-miRNAs from miRBase
release 12 and 8,494 pseudo hairpins.

To evaluate experimental performance on other species, we
retrieved the virus pre-miRNA sequences dataset from the study
of Gudyś et al. (2013). Similar to other datasets, we removed
pre-miRNAs sharing more than 80% sequence similarity by the
CD-HIT software. As a result, we constructed a virus dataset
namely S6, which contains 232 positive samples and 232 negative
samples. The benchmark dataset S6 can be formulated as:

S6 = S+virus ∪ S−virus

Where the virus pre-miRNA sequences dataset S6 consists of
S+virus (positive samples) and S−virus (negative samples), which were
obtained from the study of Gudyś et al. (2013).
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Classification Algorithm and Optimization
We selected SVM to classify the samples. Specifically, the publicly
available support vector machine library (LIBSVM) was applied
to the benchmark data with our feature representation. The
LIBSVM toolkit can be downloaded freely at http://www.csie.
ntu.edu.tw/~cjlin/libsvm. We integrated this toolbox in the
Matrix Laboratory (MATLAB) workspace to build the prediction
system. We selected the radial basis function as the kernel
function, and a grid search based on the 10-fold cross validation
was used to optimize the SVM parameter γ and the penalty
parameter C. C = 65,536 and γ = 10−4 was tuned to be the
optimal parameters.

Features Extraction
Primary Sequence Features Based on Mutual

Information (PSFMI)
Recently, it has been shown that local continuous primary
sequence characteristics are crucial for pre-miRNA prediction
(Bonnet et al., 2004). As one of the important characteristics,
n-grams are often used in feature mapping (Liu and Wong,
2003). Let S be a given pre-miRNA sequence (consisting of four
characters: A, U, C, and G) with length L. Then the n-grams
represent a continuous subsequences of length n in S with .

Figure 2 shows the calculation process for the 2-gram and
3-gram PSFMI feature representations. Any two and three
consecutive bases in the pre-miRNA sequence, regardless of the
order of the bases, are represented as 2- and 3-gram, respectively.
For example, as shown in Figure 2, the number of bases “GA”(2-
gram) is 3. The number of bases “UG”(2-gram) is 4. Similarly,
3-gram represents three consecutive bases, such as the number of
bases “G G U”(3-gram) is 2.

In this study, we used entropy and mutual information (MI)
to calculate the interdependence between two bases on a given
pre-miRNA sequence. Specifically, we calculated the 3-gram MI
and the 2-gram MI as the feature vector for a given pre-miRNA
sequence. The 3-tuple MI for 3-gram is calculated as:

MI(x, y, z) = MI(x, y)−MI(x, y|z) (1)

where x, y, and z are three conjoint bases. Subsequently, the
MI MI(x, y) and conditional MI MI(x, y|z) can be calculated
as follows:

MI(x, y|z) = H(x|z)−H(x|y, z) (2)

MI(x, y) = p(x, y) ∗ log(
p(x, y)

p(x) ∗ p(y)
) (3)

MI(x, y) = MI(y, x) (4)

Here, H(x|z) andH(x|y, z) are calculated as follows:

H(x) = p(x) ∗ log(p(x)) (5)

H(x|z) = −
p(x, z)

p(z)
log(

p(x, z)

p(z)
) (6)

H(x|y, z) = −
p(x, y, z)

p(y, z)
log(

p(x, y, z)

p(y, z)
) (7)

where p(x) denotes the frequency of x appearing in a pre-miRNA
sequence, p(x, y)denotes the frequency of x and y appearing in 2-
grams and p(x, y, z) denotes the frequency of x, y, and z appearing
in 3-tuples in a pre-miRNA sequence. p(x), p(x, y)andp(x, y, z)
can be calculated by Equations (8)–(10):

p(x) =
Nx + ε

L
(8)

p(x, y) =
Nxy + ε

L− 1
(9)

p(x, y, z) =
Nxyz + ε

L− 2
(10)

(10) Nx is the number of occurrences of base x appearing in
the pre-miRNA sequence, and L is the length of the pre-miRNA
sequence. In Equation (8), ε represents a very small positive real
number that does not affect the final score, which is used to avoid
having 0 as the denominator.

According to the Equation (10), a given pre-miRNA sequence
can be expressed as 30 mutual information values [20 3-tuples IM
(x, y, z) and 10 2-tuples IM (x, y)]. In addition, we calculated the

FIGURE 2 | The 2-gram and 3-gram feature representation.
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frequency of the four base classes appearing in this pre-miRNA
sequence. Therefore, the pre-miRNA sequence can be expressed
as 20 + 10 + 4 = 34 features, as determined using our proposed
mutual information method.

Secondary Structure Features Based on Mutual

Information (SSFMI)
It has been shown that the structure of pre-miRNA can
provide insights into biological functions. Pre-miRNA structural
information can be predicted by RNAfold (Hofacker, 2003)
software from sequences and is frequently used as features by
machine-learning algorithms. Figure 3 shows the pre-miRNA
secondary structure of miRNA hsa-mir-302f, which was obtained
using the algorithm in Mathews et al. (1999).

The pre-miRNA secondary structure is represented as a
sequence of three symbols: a left parenthesis, a right parenthesis,
and a point. In other words, nucleotides have only two states:
paired and unpaired nucleotides, which are represented in
parentheses “(” or “)” and points “.”, respectively. The open
parenthesis “(” indicates that the paired nucleotides located on
the 5′ end can be paired with 3′-end nucleotides, which are
represented by the corresponding close parenthesis “).” The
secondary structure of the pre-miRNA sequence is composed of
free radicals and radical pairs A–U and C–G. To a certain extent,
after such treatment, the secondary structure of the pre-miRNA
sequence can be converted into a linear sequence.

A given pre-miRNA sequence S is converted to a pre-
miRNA secondary structure sequence by using the RNAfold
software. The length of the sequence is denoted by L,
and the mutual information of the secondary structure
sequence n-gram is calculated by Equations (1) and (3). The
calculation process is similar to that for the PSFMI. Figure 2
shows the calculation process for the 2-gram and 3-gram
SSFMI feature representations.

According to Equations (1)–(10), the pre-miRNA secondary
structure sequence can be expressed as 16 mutual information

FIGURE 3 | The pre-miRNA secondary structure of miRNA hsa-mir-302f.

values [10 3-tuples IM(x, y, z) and 6 2-tuples IM(x, y)].
Similarly, the frequencies of the three symbols that appear in
the sequence of secondary structure elements were calculated.
Another significant feature is the amount of base pairs in pre-
miRNA sequences. For the pre-miRNA gene, given the presence
of the G–U wobble pair in the hairpin loop structure (secondary
structure) of the pre-miRNA, the G–U pair is considered in the
base pairing.

Therefore, the secondary structure features can be expressed
as 10 + 6 + 3 + 1 = 20 features, as determined using our
proposed mutual information method.

In addition, studies have shown that real pre-miRNA
sequences are generally more stable than randomly generated
pseudo-pre-miRNAs and therefore have lower MFE. Therefore,
during the process of feature extraction for pre-miRNA
sequences, structural energy features are often used to
characterize pre-miRNA sequences. Since the structural
calculation result of RNAfold is actually provided along with the
MFE value of the secondary structure of the sequence, we took
this value.

In summary, we extracted a total of 55 [34 (PSFMI) + 20
(SSFMI) + 1 (MFE)] features, in which the 34-dimensional
feature was obtained by applying the PSFMI method from the
pre-miRNA sequence, the 20-dimensional feature was obtained
by applying the SSFMI method from the pre-miRNA secondary
structure, and the 1 (MFE) dimension feature is the MFE value
calculated by the RNAfold software. Since the distribution of
the values in each feature is non-uniform, we normalized each
feature to (−1,1) using the MATLAB function mapminmax
(MATLAB 2014b), and obtained the final 55-dimensional feature
data set for model training.

Measurements
In statistical prediction experiments, three cross-validation
methods are often used to test the effectiveness of a prediction
algorithm including independent dataset test, K-fold validation
test and the Jackknife validation test. Among them, the Jackknife
test is considered to be themost rigorous and objective method of
verification. In the field of pre-miRNA prediction, the Jackknife
tests are often used to verify the predictive performance of
different algorithms. In the Jackknife test, each pre-miRNA
sequence was individually selected as a test sample, and the
remaining pre-miRNA sequences were used as training samples,
and the test sample categories were predicted from the model
trained by the training samples. Therefore, we adopted the
Jackknife test in this study.

In order to comprehensively evaluate the performance of
the pre-miRNA prediction method, several indicators were
introduced in this paper. Receiver operating characteristic
(ROC) was plotted based on specificity (Sp) and sensitivity
(Sn). The areas under ROC curves (AUC) and average area
under the precision-recall curve (AUPR) are both used as
the evaluation metrics. The AUC provides a measure of the
classifier performance; the larger the value of the AUC is, the
better the performance of the classifier. However, for class
imbalance problem, AUPR is more suitable than AUC, for it
punishes false positive more in evaluation. In addition, Matthew
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correlation coefficient (MCC) was used to evaluate the prediction
performance. The MCC accounts for true and false positives and
negatives and are usually regarded as a balancedmeasure that can
be used even if the classes are of different sizes. The sensitivity
(SE), specificity (SP), precision (PR), accuracy (ACC), and MCC
are defined as follows:

SE =
TP

TP + FN
(11)

SP =
TN

TN + FP
(12)

PR =
TP

TP + FP
(13)

F1 − score = 2×
SE× PR

SE+ PR
(14)

ACC =
TP + TN

TP + FP + TN + FN
(15)

MCC =
TP × TN − FP × FN

√
(TP+ FN)(TN+ FP)(TP+ FP)(TN+ FN)

(16)

Where TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives and false negatives, respectively.

RESULTS AND DISCUSSION

Performance of Different Features
According to the feature extraction algorithm proposed in this
paper, the corresponding 55 features (including PSFMI, SSFMI,
and MFE) were extracted for each true and false pre-miRNA
(positive and negative sample data) in the benchmark dataset. For
the improved evaluation of these features, they were subdivided
into four subsets according to the different feature types, namely,
PSFMI, SSFMI, PSFMI + MFE, and SSFMI + MFE feature
sets. To assess the importance of each feature subset, predictive
models were constructed on the basis of the different feature
subsets of the benchmark dataset. Jackknife verification was used
to evaluate the performance of the predictive models.

Table 1 presents a comparison of the performances of the
predictive models based on the different feature subsets and
combinations thereof. As demonstrated in Table 1, the predictive
model based on the feature subset SSFMI is better than that
based on the feature subset PSFMI. The predictive model based
on SSFMI achieves 80.21% sensitivity, 88.34% specificity, the
Matthews coefficient of 0.688, and prediction accuracy of 84.27%.
The predictive model based on the mutual information of pre-
miRNA secondary structure is better than that based on the
sequence-based mutual information. The performances of the
predictive models based on the PSFMI + MFE and SSFMI +
MFE feature sets are significantly improved compared with those
based on the independent feature subsets (i.e., PSFMI and SSFMI
feature sets). In terms of accuracy, the performance of the PSFMI
+ MFE model is 13.24% better than that of the PSFMI model,
whereas the performance of the SSFMI + MFE based model is
1.31% better than that of the SSFMI model. The experimental
results show that the combination of MFE features should be
considered to increase prediction accuracy.

TABLE 1 | The performance of different features on benchmark dataset (Jackknife

test evaluation).

Features SE (%) SP (%) ACC (%) MCC

PSFMI 67.99 69.04 68.52 0.370

SSFMI 80.21 88.34 84.27 0.688

PSFMI+MFE 78.60 84.93 81.76 0.637

SSFMI+MFE 81.95 89.21 85.58 0.713

The best values are shown in boldface.

FIGURE 4 | The AUROC comparison of four feature combinations through the

Jackknife cross-validation.

We also compare the AUROC of four feature combinations
obtained by Jackknife cross-validation on benchmark dataset
S1, shown in Figure 4. We can draw the same conclusion
that the prediction model based on feature subset SSFMI
is better than the prediction model based on feature subset
PSFMI, and the combination of MFE features can improve the
accuracy of prediction.

Feature Importance Analysis
To explore the extent to which the features in the feature set affect
the classification, we analyzed the importance of each feature in
the feature set. To quantitatively measure the importance of each
feature, we introduced the metric information gain (IG) (Deng
et al., 2011; Uǧuz, 2011). IG scores are widely used in the analysis
of feature importance of biological sequences (Wei et al., 2014,
2017; Chen et al., 2016). The higher the value of IG, the more
important the feature is for the classifier. Table 2 presents the IG
scores of 55 features. As shown in Table 2, although the 4 highest
IG values all belong to PSFMIs, the 10 lowest IG values also
belong to PSFMIs, indicating that the IG values of the PSFMIs are
unevenly distributed and have large differences. The average IG
value of PSFMI features is 0.5761, whereas the average IG value of
SSFMI is 0.7489, further confirming that the secondary structure
characteristics of pre-miRNA have a greater influence on the
classification results than the primary sequence characteristics.

Frontiers in Genetics | www.frontiersin.org 6 February 2019 | Volume 10 | Article 119

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Fu et al. Pre-miRNAs Identification Through MI

TABLE 2 | Importance of the relatively specific features in the proposed features

set.

Rank Features IG

1 PSFMI_1 1.0000

2 PSFMI_2 1.0000

3 PSFMI_3 0.9981

4 PSFMI_4 0.9975

5 SSFMI_1 0.9963

6 PSFMI_5 0.9963

7 PSFMI_6 0.9933

8 SSFMI_2 0.9890

9 SSFMI_3 0.9772

10 PSFMI_7 0.9750

11 PSFMI_8 0.9739

12 PSFMI_9 0.9722

13 PSFMI_10 0.9717

14 SSFMI_4 0.9680

15 PSFMI_11 0.9625

16 SSFMI_5 0.9608

17 PSFMI_12 0.9423

18 PSFMI_13 0.9143

19 SSFMI_6 0.8940

20 SSFMI_7 0.8936

21 PSFMI_14 0.8916

22 SSFMI_8 0.8909

23 SSFMI_9 0.8870

24 SSFMI_10 0.8787

25 SSFMI_11 0.8624

26 PSFMI_15 0.8429

27 SSFMI_12 0.8387

28 SSFMI_13 0.8364

29 SSFMI_14 0.8282

30 PSFMI_16 0.7897

31 PSFMI_17 0.7859

32 PSFMI_18 0.7851

33 PSFMI_19 0.7386

34 PSFMI_20 0.6681

35 SSFMI_15 0.6008

36 SSFMI_16 0.6008

37 SSFMI_17 0.6008

38 SSFMI_19 0.5995

39 MFE 0.4575

40 PSFMI_21 0.3508

41 PSFMI_22 0.3504

42 PSFMI_23 0.3351

43 PSFMI_24 0.3218

44 SSFMI_19 0.2647

45 SSFMI_20 0.1044

46 PSFMI_25 0.0058

47 PSFMI_26 0.0057

48 PSFMI_27 0.0052

49 PSFMI_28 0.0032

50 PSFMI_29 0.0025

51 PSFMI_30 0.0025

52 PSFMI_31 0.0023

53 PSFMI_32 0.0009

54 PSFMI_33 0.0005

55 PSFMI_34 0.0003

TABLE 3 | Comparison of performance of different kernel functions on the

benchmark dataset S1 (Jackknife test evaluation).

Methods SE (%) SP (%) ACC (%) MCC AUC (%)

SVM (linear kernel) 88.83 92.12 90.48 0.810 96.20

SVM (polynomial kernel) 84.86 85.86 85.36 0.707 93.04

SVM (rbf kernel) 88.59 92.62 90.60 0.813 96.54

SVM (sigmoid kernel) 88.96 91.94 90.45 0.809 96.26

The best values are shown in boldface.

TABLE 4 | A brief introduction to the state-of-the-art predictors.

Methods Classifier Dimensions Parameters

Triplet-SVM SVM 32 No parameter

miRNAPre SVM 98 No parameter

iMiRNA-SSF SVM 98 No parameter

iMcRNA-PseSSC SVM 113 n = 2, λ = 13,ω = 0.5a

iMiRNA-PseDPC SVM 725 d = 7, λ = 15,ω = 1a

Our method SVM 55 No parameter

aACC’s best parameter settings.

The experimental findings are also consistent with the feature
importance analysis.

Effect of Different Kernel Functions
To justify different kernel functions of SVM for our algorithm, we
ran another set of experiments on the benchmark dataset using
Jackknife test evaluation. Several kernel functions were tested in
the experiments: SVM with linear kernel, SVM with polynomial
kernel, SVM with Radial Basis Function (RBF) kernel and SVM
with sigmoid kernel. The results achieved in these experiments
are shown in Table 3. We could see the ACC, MCC, and AUC
of the SVM classifier with RBF kernel outperformed all other
classifiers. Therefore, in this study, we choose the SVM classifier
of the RBF kernel.

Performance on Balanced Dataset
We compared the ACC, SE, SP, MCC, and AUC achieved on the
benchmark dataset S1 and S2 by our predictor with the following
methods: iMiRNA-SSF (Chen et al., 2016), miRNAPre (Wei et al.,
2014), Triplet-SVM (Xue et al., 2005), iMcRNA-PseSSC (Liu
et al., 2015b), and iMiRNA-PseDPC (Liu et al., 2016), and A brief
introduction to thesemethods is shown inTable 4. As can be seen
from Table 4, both the iMcRNA-PseSSC (Liu et al., 2015b) and
iMiRNA-PseDPC (Liu et al., 2016) methods require parameters,
and the iMiRNA-PseDPC (Liu et al., 2016) method features the
largest dimension.

The performance of different methods on the benchmark
datasets S1 and S2 via the jackknife test, as showed in Tables 5,
6, respectively. For a fair comparison, the performances of
these methods were taken from other studies with best tuned
parameters (Liu et al., 2015b, 2016). Table 5 shows that our
method significantly outperforms previous methods in all
evaluation metrics used. Among the evaluated methods, our
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TABLE 5 | Results of the proposed method and state-of-the-art predictors on

benchmark dataset S1 (Jackknife test evaluation).

Methods SE (%) SP (%) ACC (%) MCC AUC (%)

iMiRNA-SSF 89.27 86.91 88.09 0.762 94.64

Triplet-SVM 82.44 85.24 83.84 0.677 91.97

miRNAPre 84.24 87.90 86.07 0.722 93.49

iMcRNA-PseSSC 84.55 86.41 85.48 0.710 93.22

iMiRNA-PseDPC 86.72 89.21 87.97 0.760 94.97

Our method 88.59 92.62 90.60 0.813 96.54

The best values are shown in boldface.

TABLE 6 | Results of the proposed method and state-of-the-art predictors on

benchmark dataset S2 (Jackknife test evaluation).

Methods SE (%) SP (%) ACC (%) MCC AUC (%)

iMiRNA-SSF 84.49 85.86 85.17 0.704 92.03

Triplet-SVM 82.07 84.12 83.10 0.662 90.86

miRNApre 84.80 86.79 85.79 0.716 92.81

iMcRNA-PseSSC 80.02 82.75 81.39 0.628 89.71

iMiRNA-PseDPC 87.66 87.16 87.41 0.748 94.79

Our method 87.28 88.71 88.00 0.760 95.04

The best values are shown in boldface.

method achieves the best predictive performance on fourmetrics:
AUC (96.54%), ACC (90.60%), MCC (0.813), and SP (92.62%).
The respective ACC and MCC of our method are 1.51% and
0.051 higher than those of the previously known best-performing
predictor iMiRNA-SSF (Chen et al., 2016) (ACC = 88.09%
and MCC = 0.762). The AUC of our method is 1.57% higher
than those of the previously known best-performing predictor
iMiRNA-PseDPC (Liu et al., 2016) (AUC= 94.97%). In addition,
We have incorporated the new negative samples from Wei’s
study (Wei et al., 2014) to construct a new benchmark dataset
S2, and compared the prediction performance of our method
together with 5 other popular methods using the Jackknife test
(see Table 6). As can be seen, our method achieves the best
predictive performance on 4 (out of 5) metrics including AUC
(95.04%), ACC (88.00%), MCC (0.760), and specificity (88.71%),
and is slightly worse than iMiRNA-PseDPC in sensitivity.

To further compare the performance of our method with
other methods on independent testing , we chose the S1 dataset
as the training set and the S3 dataset as the test set. Table 7
shows that our method outperforms all other methods in the
independent test with an ACC of 70.45% and MCC of 0.412.
The iMiRNA-PseDPC (Liu et al., 2016) method has an AUC
value of 81.69%, which is the best AUC value in all methods.
The AUC of our method (AUC = 75.54%) is comparable to
the AUC of the iMcRNA-PseSSC (Liu et al., 2015b) method
(AUC = 75.81%). The dimensions of iMiRNA-PseDPC are as
high as 725 dimensions, far exceeding the 55-dimensional of
our method, and the time overhead of our method is less than
iMiRNA-PseDPC.

TABLE 7 | Comparing the proposed method with other state-of-the-art predictors

on an independent dataset S3.

Methods SE (%) SP (%) ACC (%) MCC AUC (%)

miRNApre 80.68 48.86 64.77 0.312 72.02

iMiRNA-PseDPC 84.09 47.73 65.91 0.342 81.69

iMcRNA-PseSSC 80.68 56.82 68.75 0.386 75.81

Triplet-SVM 80.68 46.59 63.64 0.290 68.92

Our method 76.14 64.77 70.45 0.412 75.54

The best values are shown in boldface.

TABLE 8 | Five-fold cross-validation prediction performance of the proposed

method and 4 state-of-the-art predictors on imbalanced benchmark dataset S4
and S5.

Methods AUC S4 F1 score AUPR AUC S5 F1 score AUPR

iMcRNA-PseSSC 0.9103 0.5707 0.6743 0.9333 0.7157 0.7628

iMiRNA-PseDPC 0.9333 0.6404 0.7317 0.9534 0.7708 0.8259

Triplet-SVM 0.8905 0.5207 0.6364 0.9357 0.7182 0.7806

miRNApre 0.9554 0.7029 0.7976 0.9454 0.7447 0.8140

Our method 0.9526 0.7084 0.7694 0.9589 0.7813 0.8525

The best values are shown in boldface.

Performance on Imbalanced Dataset
We then tested our method on S4 and S5 together with the
other 4 State-of-the-Arts methods including miRNAPre (Wei
et al., 2014), Triplet-SVM (Xue et al., 2005), iMcRNA-PseSSC
(Liu et al., 2015b), and iMiRNA-PseDPC (Liu et al., 2016). The
performance was evaluated using the 5-fold cross validation and
the results were summarized in Table 8. As can be seen, our
method performed the best for all 3 evaluation metrics including
AUC (0.9589), F1score (0.7813), and AUPR (0.8525), respectively
on the dataset S5. As for the dataset S4, our method ranks the first
on F1score (with a value 0.7084) and second on AUC and AUPR.
For a better view, we also plotted the AUC curves and AUPR
curves of our method on S4 and S5 for all 5-folds, respectively
in Figures 5, 6.

Performance on Other Species
We then compared our method with 4 state-of-the-arts methods
on the benchmark dataset S6 through the jackknife test. Table 9
shows that our method outperforms all other methods in the
independent test with an ACC of 92.59%, MCC of 0.852, and
AUC of 98.07%. The experimental results show that our method
also has good performance on other species.

Case Study
Sometimes, the lower version of miRBase database (e.g., miRBase
20) may contain some false-positive pre-miRNAs, which will be
excluded in a later version (e.g., miRBase 22). Usually, they are
saved in the file “miRNA.dead.” Obviously, if we used miRBase
20 as a bench-mark data, a good method should predict the false-
positive pre-miRNAs to be negative (i.e., not to be pre-miRNAs).
Fortunately, it is the case for our method and we listed the 8
predicted false-positive pre-miRNAs in Table 10, in which the
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FIGURE 5 | The AUROC curves of our method on the imbalanced benchmark dataset S4 and S5 via 5-fold cross validation.

FIGURE 6 | The AUPR curves of our method on the imbalanced benchmark dataset S4 and S5 via 5-fold cross validation.

TABLE 9 | Comparing the proposed method and state-of-the-art predictors on

the benchmark dataset S6 (using the Jackknife test).

Methods SE (%) SP (%) ACC (%) MCC AUC (%)

miRNApre 92.59 88.43 90.51 0.811 97.11

Triplet-SVM 89.35 88.43 88.89 0.778 95.85

iMiRNA-PseDPC 91.67 91.67 91.67 0.833 97.41

iMcRNA-PseSSC 89.81 87.96 88.89 0.778 95.55

Our method 93.06 92.13 92.59 0.852 98.07

The best values are shown in boldface.

column names “ID” and “Accession” indicate the Id number and
the Accession number of the pre-miRNA sequences in miRbase
22, respectively.

Running Time
In this study, we used the SVM model to predict pre-miRNAs.
The time complexity of training our SVMmodel isO(N3

S+N2
S .l+

NS.d.l) (Burges, 1998). Where l is the number of training points,
NS is the number of support vectors (SVs), and d is the dimension
of the input data.

To further evaluate the performance of our method and other
competitors, we tested the running time on S6 datasets on the

TABLE 10 | False-positive pre-miRNAs predicted to be negative by our method.

ID Accession

hsa-mir-566 MI0003572

hsa-mir-3607 MI0015997

hsa-mir-3656 MI0016056

hsa-mir-4417 MI0016753

hsa-mir-4459 MI0016805

hsa-mir-4792 MI0017439

hsa-mir-6723 MI0022558

hsa-mir-7641-1 MI0024975

TABLE 11 | The running time (in seconds) of different methods on benchmark

dataset S6 using the Jackknife test, where C and γ represent the penalty

coefficient of the SVM model and the parameters of the RBF function, respectively.

Methods γ C Time ACC (%) AUC (%)

miRNApre 0.25 16 133.159 90.51 97.11

Triplet-SVM 0.0156 2 21.689 88.89 95.85

iMiRNA-PseDPC 0.25 16 543.803 91.67 97.41

iMcRNA-PseSSC 0.0039 39 50.459 88.89 95.55

Our method 0.0156 16 19.712 92.59 98.07
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same platform. The experiments were carried out on a computer
with Intel(R) Xeon(R) CPU E5-2650 0@2.00GHz 2.00GHz, 16GB
memory andWindows OS. Detailed results of running time were
shown in Table 11. Our method achieves the better performance
of running time, and obtains a good performance of accuracy.

CONCLUSIONS

Pre-miRNA prediction is one of the hot topics in the field of
miRNA research (Yue et al., 2014; Cheng et al., 2015; Liao
et al., 2015a; Luo et al., 2017, 2018; Peng et al., 2017, 2018;
Xiao et al., 2017; Fu et al., 2018). In recent years, machine
learning-based miRNA precursor prediction methods have made
great progress. Most of the existing prediction methods are
based on the global feature extraction feature of the sequence,
ignoring the influence of the sequence base characters, and
the pre-miRNA structure information does not consider the
local characteristics. For this reason, this paper performs mutual
information calculation on the pre-miRNA sequence and the
secondary structure, respectively, to extract the pre-miRNA
sequence and the local features of the secondary structure. Then,
the extracted features are input to a support vector machine
classifier for prediction.

Finally, the experimental results show that: compared with the
existing methods, the proposed method improves the sensitivity
and specificity of pre-miRNA prediction. In addition, since the
feature space of our method is only 55, less than that of most
state-of-the-art methods, our feature construction is also efficient
when plugging into canonical classification methods such as
SVM. In summary, our method can extract effective features
of pre-miRNAs and predicts reliable candidate pre-miRNAs for
further experimental validation.
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