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The one-century-old theory of orthogonal genetic variance decomposition originated the
field of quantitative genetics and has kept on being improved ever since. Recently, serious
concerns about the possibility of attaining a satisfactory implementation of genetic
variance decomposition with linkage disequilibrium (LD) and epistasis have been raised.
In this paper we dissipate such doubts by completing the classical theory of variance
decomposition into additive, dominance and epistasis components with LD. We apply
that theory to the analysis of the genotype-to-phenotype maps of two cases of particular
evolutionary interest—Bateson-Dobzhansky-Müller incompatibilities and sign epistasis.
For the first case we show how negative LD and reduction of heterozygotes may
contribute to maintain genetic variability after secondary contact. For the second case
we show that LD transforms the set of frequencies leading to an evolutionary plateau into
a ridge. Our theoretical developments reassuringly reflect the complexity LD conveys to
genetic systems throughout novel properties—as compared with systems under linkage
equilibrium. We argue that such particularities might have actually contributed to cause
confusion about the feasibility of developing this methodology. In any case, the theory
we provide in this paper enables new perspectives in both evolutionary and quantitative
genetics studies.

Keywords: genetic variance decomposition, linkage disequilibrium, epistasis, Bateson-Dobzhansky-Müller

incompatibilities, sign epistasis

INTRODUCTION

Genetic variance decomposition has gained increased scientific attention one century after it
was first developed by Fisher (1918). At that time, that theory was necessary for denying that
Mendelian inheritance could be in contradiction with Galton’s (1886) regression towardmediocrity
in traits with continuous variation. Beyond that, variance decomposition endorsed regression
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toward mediocrity with a mechanistic explanation and provided
a satisfactory genetic basis to Darwinian gradual evolution
(Provine, 1971).

With time, models of genetic effects enabling variance
decomposition (and thus disentangling resemblance between
relatives) in the face of increasingly complex genetic systems
and/or population facts were developed. A historical, key step
forward was given by Kempthorne (1954) and Cockerham (1954)
in the year following the publication of the double helix structure
of DNA (Franklin and Gosling, 1953; Watson and Crick, 1953),
by providing extensions to multiple alleles and epistasis, on
the one hand, and to Hardy-Weinberg disequilibrium (HWD)
in a two-locus two-allele epistatic system, on the other hand,
respectively. Still, the practical use of those implementations was
subject to apparent limitations at the time when the exponential
growth of molecular biology had just been kicked off.

More recently, the development of molecular genetics has
made it possible to obtain datasets large enough to undertake
realistic strategies of genetic mapping and genomic prediction.
Consequently, along the latest quarter century models of
genetic effects and variance decomposition have been thoroughly
revisited (e.g., Cheverud and Routman, 1995; Hansen and
Wagner, 2001; Yang, 2004; Zeng et al., 2005; Mao et al., 2006;
Alvarez-Castro and Carlborg, 2007; Álvarez-Castro and Yang,
2011, 2015; Ma et al., 2012; Álvarez-Castro, 2014; Xiao et al.,
2014). However, among all possible implementations, linkage
disequilibrium (LD) has not yet been satisfactorily addressed—
more to the point, it has even been claimed to be unfeasible (see
Vitezica et al., 2017 and references therein).

In this paper, we provide theoretical developments enabling
the decomposition of the genotypic values and the genetic
variance with arbitrary numbers of loci and alleles, with
any kind of dominance and epistatic interactions and with
arbitrary population frequencies—i.e., under arbitrary departures
both from Hardy-Weinberg equilibrium (HWE) and from
linkage equilibrium (LE). We also provide applications of our
methodology to two cases of special evolutionary interest—
Bateson-Dobzhansky-Müller (BDM) incompatibilities and sign
epistasis—and review and discuss arguments on which doubts
about the feasibility of a genetic decomposition with LD and
epistasis were based.

GENETIC VARIANCE DECOMPOSITION

Conceptual Background
Following Fisher’s (1918, 1930) scheme, the decomposition of
the genetic variance can be defined as a property of a particular
genetic system at a particular population, which mathematically
translates into a function whose variables are the genotypic
values (the expected phenotype of each genotype) and the
population genotypic frequencies. That function provides the
proportion of genetic variance attributable to each genetic
component (additive, dominance, epistasis, and imprinting) into
which the genotypic values can be split—i.e., reparameterized
using a mathematical model. The additive component is the
one associated to the most important and intuitive biological
interpretation—it enables the analysis of resemblance between

parents and offspring involved in the concept of narrow-
sense heritability. Nevertheless, the remaining components of
variance are also biologically meaningful since they enable the
analysis of further instances of resemblance between relatives
and various evolutionary interpretations (see e.g., Kempthorne,
1957; Álvarez-Castro, 2014; Alvarez-Castro and Le Rouzic, 2015).
Imprinting is though out of the scope of this paper.

Mathematical Model
The classical (statistical) genetic model for a locus A with two
alleles A1 and A2 decomposes the genotypic values—i.e., the
expected phenotype of each genotype, G = (G11, G12, G22)—
into additive and interaction (dominance) components using
the linear regression framework G = 1µ+Nα+δ (Kempthorne,
1957), which can be expanded as
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where µ is the population mean phenotype, N indicates the
number of alleles of each type in each genotype, αi, i = 1,2
(the explanatory variables), are the average (additive) effects of
the alleles and δij, j = 1,2, i ≤ j, (the error terms) are the
dominance deviations.

The regression model in Equation (1) is solved by first
clearing away the term with the mean phenotype using the
mean-corrected genotypic values as

Ḡ = G− 1µ (2)

and then solving the resulting regression Ḡ = Nα +δ. The
weighted least-squares (WLS) solution and error terms for
this regression may be obtained from its normal equations,
N’PNα = N’PḠ, where N is called the design matrix of
the regression, N’ stands for its transpose and P (called the
weights matrix) contains the population genotypic frequencies
(f (AiAj) = pij, j = 1,2, i ≤ j) in its diagonal, i.e., P = diag(pij)
(the theory of matrix algebra applied to linear regression used in
this paper comes from Harville, 1997; Draper and Smith, 1998).
This way we obtain

α = H̃Ḡ, with H̃ = (N′PN)−1N′P. (3)

Matrix H = NH̃ is often called the hat matrix of the regression
and M = I–H (I being the identity matrix with the proper
dimension, 3 × 3) is the annihilation matrix. Using the latest
matrix the error terms may be equated as

δ = MḠ. (4)

It is worth noting that the regression model in Equation (1),
as solved above, is not equivalent to G = (1|N) (µ|α)’+δ

expanding to
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In fact, the WLS solution of the regression in Equation (5) can
easily be found to be different from the results obtained within
Equations (2–4). More to the point, Equation (2) can actually
be obtained from the WLS solution of regression G = 1µ+η. In
this expression, vector 1 = (1, 1, 1)′ is the design matrix, 11′P is
the hat matrix, µ = 1′PG is the explanatory variable, I–11′P is
the annihilation matrix and η = (I–11′P)G are the error terms.
Hence, the mean-corrected vector of genotypic values Ḡ =G–1µ
in Equation (2) can actually be interpreted as the error terms of
regression G = 1µ+η, since the WLS solution of that regression
provides the error terms as η = (I–11′P)G= G–1µ.

Overall, for obtaining the biologically meaningful parameters
aimed in the regression model in Equation (1), the solution is
not achieved in a single step—i.e., is not achieved as by means of
Equation (5). It is instead achieved in two regression steps, the
first of which is G = 1µ+η, evidently leading to η = Ḡ, and the
second of which is η = Ḡ = Nα+δ. Below it will be made clear
that the methodology provided in this paper for decomposing the
genotypic values and the genetic variance in the face of LD and
epistasis fits squarely with this sequential procedure.

Orthogonal Variance Decomposition
Using the solution to Equation (1) obtained above within
Equations (2–4), the genotypic values may be decomposed as:

Gij = µ + αij + δij, j = 1, 2, i ≤ j, (6)

where, for each genotypic value, Gij, its additive component is
αij= αi+αj—cf Equation (1). These αij are actually the breeding
values, at least under HWE. In any case, the decomposition
of the genotypic values in Equation (6) directly provides the
corresponding decomposition of the genetic variance, which can
be given by the variance of the values obtained for each set of
components (e.g., Bürger, 2000) as

VA = V(αij), VD = V(δij). (7)

Since the above decomposition of the genotypic values
(Equation 6) is orthogonal by construction, the variance
components in Equation (7) provide an accurate decomposition
of the genetic variance, VG = V(Gij) = VA+VD, and hold their
biological interpretations. Orthogonality is also an extremely
useful statistical property for the development of appropriate
model selection strategies in genetic mapping studies, as resumed
in the discussion.

The mathematical model in Equation (1) has recently been
extended to an arbitrary number of alleles with arbitrary HWD
(Álvarez-Castro and Yang, 2011). It can also be extended
to accommodate an arbitrary number of (multiallelic) loci,
and shall then involve an epistasis component. Although the
developments currently available may account for arbitrary
epistasis, they attain orthogonality (and thus are accurate in
what regards their biological meaning) only when no departures
from LE frequencies occur (see Álvarez-Castro and Yang, 2011;
Vitezica et al., 2017 and references therein). In what follows,
we provide new multilocus extensions of the mathematical
model in Equation (1) that do not assume LE, thus holding

orthogonality in the face of arbitrary population frequencies—as
well as arbitrary interactions within and between/among loci.

THEORETICAL RESULTS

Mean and Additive Component
We now consider an additional biallelic locus, B, with alleles
B1 and B2. We start by detaching the mean and the
additive component of the model in a way analogous to
regression (Equation 1) above. Therefore, we consider regression
G= 1µ+Nαα+ηα , expanding to
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(8)

The rows of Nα are just all possible combinations of two rows
of the one-locus matrix N in Equation (1). In any case, in a first
step we obtain Ḡ = G–1µ, as in Equation (2) for the one-locus
case. Then, the second step consists in obtaining the additive
component as the WLS solution of regression Ḡ = Nαα+ηα .
Equations (3, 4) and related text would typically provide theWLS
solution for this case as well, did our new matrix Nα in the
regression model in Equation (8) not lead to a singular matrix
Nα

′PNα . However, it actually does. Conveniently, this issue may
be overcome by performing the regression outside the kernel,
as follows.

First, the eigenvalues and eigenvectors of singular matrix
Nα

′PNα are computed—in practice, this is done simply using
e.g., the appropriate built-in commands of R Core Team (2017).
Next, a diagonal matrix, Dα is built with the non-nil eigenvalues
so obtained, while their corresponding eigenvectors become the
columns of matrix Uα . Then, the solution may be obtained as
in Equation (3), using in this case the matrices obtained just
above, as

α = H̃αḠ, with H̃α = (Uα(Dα)
−1Uα

′

)−1Nα

′

P. (9)

The error term is then obtained, as in Equation (4), as

ηα = MαḠ, (10)

using the hat matrix Hα = NαH̃α and its corresponding
annihilation matrix Mα = I–Hα , being understood that the
identity matrix I is used in its appropriate dimension, which for
this case is 9× 9.

The extension of the regression model in Equation (8) to l
multiple biallelic loci is straightforward, by just enlarging the
rows of regression matrix Nα to accommodate all combinations
of l repetitions of the rows of regressionmatrixN in Equation (1).
Complexity may also be increased straightforwardly in what
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regards the numbers of alleles, by just building Nα from single-
locus design matrices that, as opposed to N in Equation (1),
are appropriate for the number of alleles, nj, of each locus, j.
As mentioned above, such matrices have already been provided
(Álvarez-Castro and Yang, 2011).

For the case of two biallelic loci, it is easy to derive from the
design matrix Nα in Equation (8) that the additive components
of the genotypic values are αijkl = αA

i + αA
j + αB

k + αB
l ,

j = 1,2, i ≤ j, l = 1,2, k ≤ l. In the general case (with nj

alleles in each locus j, j = 1,. . . ,l) we would have αG =
l

∑

j=1

nj
∑

i=1
α
j
i ,

where the subscript G indicates the genotype. Then, the additive
component of the genetic variance is, analogous to the one-locus
case above (Equation 7), VA =V(αijkl) for the two-locus case and
VA = V(αG) in the general case.

In any case, the regression model in Equation (8) ensures
by construction that the additive variance computed from
Equation (9) as explained just above is accurate regardless
both any dominance and/or epistatic interactions involved in
the genetic system and any departures from equilibrium—from
HWE and/or from LE—affecting the population frequencies.
Indeed, such additive variance accounts for any possible
departures from equilibrium frequencies because it is obtained
using expressions that involve the genotypic frequencies pijkl,

i ≤ j, k ≤ l (rather than only the marginal ones pAij , p
B
kl, or

even the allele frequencies pAi , p
B
k , which are the ones used in

previous methods).

Dominance Component
Analogous to the one-locus case (Equation 1), the mean and
the additive components of the two-locus regression model
(Equation 8) have been detached above in two steps. However,
as opposed to the error terms in the one-locus case, which
accounted for only dominance interactions, the error terms of
the regression model in Equation (8), ηα , entail all possible
interactions together—including also epistasis. Thus, further
regression steps are still required for detaching the remaining
terms needed for completing the genetic decomposition, leading
to a full orthogonal partition of both the genotypic values
and the genetic variance. Specifically, the next step consists in
detaching the dominance component, δ, from the error terms of
Equation (8), ηα . This can be done with regression ηα =Nδδ+ηδ ,
expanding to



































ηα
1111

ηα
1211

ηα
2211

ηα
1112

ηα
1212

ηα
2212

ηα
1122

ηα
1222

ηα
2222



































=



































1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

























































δA11

δA12

δA22

δB11

δB12

δB22























+



































ηδ
1111

ηδ
1211

ηδ
2211

ηδ
1112

ηδ
1212

ηδ
2212

ηδ
1122

ηδ
1222

ηδ
2222



































(11)

Design matrix Nδ just indicates the dominance deviations
associated to each genotype, at each locus. The rows ofNδ can be

obtained with all possible repetitions of the rows of the identity
matrix of the appropriate dimension, 3 × 3, in the same way
as the two-locus design matrix Nα in the regression model in
Equation (8) are repetitions of rows of the single locus design
matrix N in the regression model in Equation (1). This analogy
makes special sense by rewriting the one-locus regression model
(Equation 1) as G = 1µ+Nα+Iδ. In the general case, with
multiple multiallelic loci, the number of rows combined would
equal the number of loci and the dimension of each identity
matrix would equal the number of marginal genotypes of the
corresponding locus.

In any case, the WLS solution to Equation (11) may be
obtained with the method used for Equation (9) above, leading to

δ = H̃δηα , with H̃δ = (Uδ(Dδ)
−1Uδ

′)−1Nδ
′P, (12)

whereDδ andUδ are built with the non-nil eigenvalues of matrix
Nδ

′PNδ and with their corresponding eigenvectors, respectively.
The error term is obtained once again as in Equations (4, 10) as

ηδ = Mδηα , (13)

withHδ =NδH̃δ andMδ = I–Hδ , I being the identity matrix with
the appropriate dimension, 9× 9.

As pointed out above for the multilocus additive components
of the genotypic values, having a look at Equation (11) makes
it evident that the dominance components of the genotypic
values are δijkl = δAij + δBkl, i ≤ j, k ≤ l. In the general case

(with nk alleles at the kth locus, k = 1,. . . ,l) they would be δG

=
l

∑

k=1

nk
∑

i≤j=1
δkij. The dominance variance is thus VD = V(δijkl)

or, in general, VD = V(δG). This dominance variance is by
construction orthogonal to the additive variance provided above
through Equation (9), since it comes from the error terms of
Equation (8). Furthermore, this dominance component is also
accurate regardless both dominance, epistasis and departures
from HWE and from LE that may occur, in the same way as
justified in relation to the additive variance above.

Epistasis Components
After having detached both the additive and the dominance
components, the remaining error terms in Equation (11), ηδ ,
account only for the between-locus interactions (i.e., pairwise
epistasis) or for also higher order interactions in the general case.
Hence, the epistasis variance is just the variance of those error
terms. We may thus call ε = ηδ and express the epistatic variance
as VI = V(εijkl) for two loci or VI = V(εG) in the general
case. Once again, orthogonality holds by construction since the
epistasis terms so obtained are necessarily orthogonal both to
the dominance component, from which they have been detached
as error terms in Equation (11), and to the additive component,
from which they had previously been detached within the error
terms of Equation (8). As a consequence of orthogonality, the
sum of the three variance components (additive, dominance, and
epistasis) equals the genetic variance and, hence, the epistatic
variance can also be expressed as VI = VG − (VA+VD).
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With this, we have achieved the main goal of this
paper—to overcome the established misconception that LD
precludes orthogonal genetic variance decomposition into
additive, dominance and epistasis components. In what follows
we nevertheless briefly describe how to further split the epistasis
terms, ε, into their natural components (arising as the different
groups of interactions of the previous variables) in the face of
LD. To do so, additional regressions must keep on being solved
sequentially, the first of which detaches the additive-by-additive
(AA) component, εαα , as

ε = Nααεαα + ηαα , with Nαα = Nα⊗Nα , (14)

where ⊗ stands for the Kronecker product—the operator
providing interaction terms in regressions (e.g., Harville, 1997;
Draper and Smith, 1998). The WLS solution to this regression
may be obtained, analogous to Equations (3, 4), in the
conventional way as

εαα = H̃ααε, with H̃αα = (Nαα
′PNαα)

−1Nαα
′P. (15)

The error terms may in their turn be expressed as

ηαα = Mααε, (16)

with Hαα = NααH̃αα and Mαα = I–Hαα , using the identity
matrix I with the appropriate dimension. The next step detaches
the dominance-by-additive (DA) and the additive-by-dominance
(AD) components, εδα and εαδ , respectively, as

ηαα = (Nδα|Nαδ) (εδα|εαδ)
′ + εδδ ,

with Nδα = Nα⊗I and Nαδ = I⊗Nα . (17)

In this expression, the DA and AD components are obtained
simultaneously by concatenating their design matrices into one
as (Nδα|Nαδ), which for this particular case works the same way
as splitting it in two steps—one for obtaining DA and another
one for obtaining AD. The WLS solution of the regression in
Equation (17) requires again, analogous to Equations (9, 12), to
compute the corresponding eigenvectors and eigenvalues (in this
case, those of (Nδα|Nαδ)’P(Nδα|Nαδ)) to obtain

(εδα|εαδ)
′ = H̃δααδηαα , with H̃δααδ

= (Uδααδ(Dδααδ)
−1Uδααδ

′)−1 (18)

(Nδα|Nαδ)
′ P.

The error terms are the dominance-by-dominance
(DD) interactions,

εδδ = Mδααδηαα , (19)

withHδααδ = (Nδα|Nαδ) H̃δααδ andMδααδ = I–Hδααδ .
It is worth noting at this point that the regression in

Expression 17may as well be performed in two sequential steps—
one for obtaining εδα using Nδα and a second one for obtaining
εαδ using Nαδ . Each of these two steps can be solved using the
common WLS method (Equation 3) and the results so obtained

are the same as in Equations (18, 19). Thus, the regression
method we are using in this paper when the regressions
lead to non-singular matrices—e.g., when using design-matrix
(Nδα|Nαδ)—works in the same way as alternative formulations
of the regression that do not lead to non-singular matrices—
usingNδα andNαδ sequentially. In any case, the pairwise epistasis
components AA, DA, AD and DD of the genotypic values and of
the genetic variance may be obtained from Equations (14–19) in
a way analogous to the additive and the dominance components
obtained from Equations (8–10, 11–13), respectively.

In the completely general case (with multiple multiallelic loci),
the occurrence of higher order interactions shall accordingly
increase the number of regression steps required for completing
the decomposition of the epistasis term. With l loci, all l(l−1)/2
pairwise AA components must be detached first using the design
matrices of to the two-locus case and concatenating them as done
for the DA andAD components above (Equation 17). All DA and
AD components must be detached afterwards in a similar way,
followed by all DD components, for which a design matrix built
as a concatenation of l(l−1)/2 identity matrices must be used.
Next, all third order components AAA, DAA, ADA, AAD, DDA,
DAD, ADD, and DDD must be detached sequentially in a way
analogous to the pairwise components—with design matrices
built as concatenations of Kronecker products of three marginal
effects design matrices. The same process must then be repeated
up to the lth order, at which the Dl interactions are the last error
terms (as the DD interactions were in the two-locus case).

General Multilocus Regression Models
The theory developed above for the decomposition of
the genotypic values and of the genetic variance under
arbitrary departures from both additivity, HWE and LE gets
summarized by

G = 1µ + Nαα + Nδδ + ε. (20)

This regression model may be derived in particular from
Equations (8, 11) and is meant to be solved in three sequential
steps, the first of which is trivial—it consists in just computing
themean-corrected vector of genotypic values. Thus, the solution
of the regression model in Equation (20) is very similar to that
of the classical one-locus case (Equation 1), which requires one
fewer regression step, as well as shorter design matrices.

If the decomposition of the epistasis term is also required,
the regression model in Equation (20) must be extended. For a
genetic system with two biallelic loci, by just considering also
Equations (14, 17) it is easy to derive that extension as

G = 1µ + Nαα + Nδδ + Nααεαα + (Nδα|Nαδ) (εδα|εαδ)
′

+ εδδ , (21)

to be solved using two additional regression steps (five in total,
the first of which remains trivial). In the general case, the
regression model in Equation (21) must be further extended
to accommodate all levels of higher order interactions as
explained above.
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APPLIED CASES

Hereafter we consider two cases of particular evolutionary
interest that may be addressed using a genetic system with
two biallelic loci, A and B, with pairwise epistasis—BDM
incompatibilities and sign epistasis.

BDM Incompatibilities
First, we focus on the BDM case (e.g., Dobzhansky, 1937). We
consider in particular a population in which alleles A1 and B1
are fixed, which splits into two isolated populations that are
in their turn invaded by initially neutral mutations A2 and B2,
respectively. However, as soon as the two populations enter
into secondary contact the simultaneous occurrence of alleles
A2 and B2 in individuals causes a fitness decline. The left-hand
side of Table 1 shows the genotype-to-phenotype (GP) map of
the BDM case we consider here. At the bottom of the table it
is shown that when expressing the BDM GP map in terms of
individual-referenced genetic effects from the reference of the
genotypic value of A1A1B1B1–R = G1111—all marginal effects
are nil. Nevertheless, it is well-known that the presence of all
kinds of epistatsis components (AA, DA, AD, and DD) implies
that non-nil marginal effects shall arise both when representing
the GP map from different individual-reference points and when
analyzing it at the population level. Hence, it is expected that
additive, dominance and epistasis variance components are non-
nil under many conditions.

Such variance components can be observed in Figure 1A,
where the genetic variance decomposition is shown for two sets
of allele frequencies under their whole range of possible incidence
of LD. Figure 1A considers in particular two cases fulfilling
f (A1) = f (B2), which is expected to occur at the beginning of
the secondary contact described above. In one case (gray lines)
the individuals are assumed to come in equal numbers from the
two populations and therefore f (A1) = f (B2) = 1/2, whereas in
the other case (black lines) the number of individuals coming
from one of the populations doubles that of the other one and
therefore f (A1) = f (B2) = 1/3. Alvarez-Castro and Le Rouzic
(2015) have observed that under LE, despite the evolutionary
importance of epistasis in BDM incompatibilities (potentially
leading to speciation), the epistasis variance at secondary contact
does not exceed half of the additive variance. Here we extend
that result to LD since, as we can see in Figure 1A, the epistasis
variances (dashed lines) remain at values below half of their
corresponding additive variances (solid lines) not only when
D’ = 0 (i.e., under LE), but also to the right of that point (i.e.,
under positive LD) and to the left of it (i.e., under negative LD).

The latest case, with negative LD, is the realistic one after
secondary contact, when any individual is expected to produce
one only type of gametes, either A1B2 or A2B1, depending upon
its population of origin. Starting with LE (with D’ = 0, at the
center of Figure 1A) to increasing negative LD (i.e., toward the
left-hand side of the figure) the additive and the dominance
variances (solid and dotted lines, respectively) increase. The
epistasis variance, on the other hand, decreases. Indeed, LD
makes some multilocus genotypic classes to be underrepresented
or even absent in the extreme case, which causes the decrease

TABLE 1 | Genotypic values (i.e., GP map) of the BDM and of the sign epistasis
cases considered in the text and individual-referenced genetic effects from which
they can be built.

GP maps BDM Sign epistasis

A1A1 A1A2 A2A2 A1A1 A1A2 A2A2

B1B1 4 4 4 0 1 2

B1B2 4 0 0 1 1 1

B2B2 4 0 0 2 1 0

Individual-

referenced

genetic

effects

R a d R a d

G1111 0 0 G1212 0 0

aa ad dd aa ad dd

−1 −1 1 −1 0 0

Both cases are locus-symmetric, meaning that the marginal (additive and dominance)
individual-referenced effects of loci A and B are equal (i.e., a1 = a2 = a and d1 = d2 = d),
as well as the individual-referenced pairwise interaction terms da and ad. In both cases,
the reference point, R, is chosen in a way that enables to express the GP map with
nil marginal effects. For details about the models used to translate between GP maps
and individual-referenced (also called functional) genetic effects see (Alvarez-Castro and
Carlborg, 2007).

of the epistatic variance but does not work in the same way
for the dominance variance because homozygotes as well as
heterozygotes of some kind remain even under maximum
negative LD—e.g., A1B2|A1B2, A1B2|A2B1, and A2B1|A2B1.

We have also inspected the scenario close to fixation of
genotype A1A1B1B1, which is represented in Figure 1B. That
figure shows one case with allele frequencies f (A1)= f (B1)= 4/5
(gray lines) and another one with f (A1) = f (B1) = 9/10 (black
lines). As opposed to Figure 1A, in Figure 1B the additive
variances decrease with increasing incidence of negative LD. This
reveals the extent to which negative LD (which is expected to
remain for a number of generations after secondary contact,
particularly if the individuals of the two populations do not freely
intermingle) is hindering fixation, thus bestowing extra time
for speciation to be triggered—e.g., for additional reproductive
isolation (as mating preference mechanisms) to evolve.

That slow down of the selection speed toward fixation due to
departures from equilibrium frequencies can also be visualized
in Figure 2, which shows several additive variance surfaces of the
BDM case here considered. In Figure 2A equilibrium frequencies
are assumed. Figure 2B shows a case of negative LD, with a
standardized disequilibrium index of D’ = −0.6. A decrease
in additive variance around the fixation of A1A1B1B1 can be
perceived as an incipient plateau toward the left corner of
the additive variance surface in Figure 2B, as compared with
Figure 1A. That plateau would become much more evident with
increasing incidences of negative LD, as Figure 1B demonstrates.

In Figure 2C a different kind of departures from equilibrium
frequencies is shown—HWD. Indeed, also a reduction of
heterozygotes is expected in the BDM case at secondary contact
and as well in the following generations as long as the two
populations do not freely intermingle. We have assumed in
particular a fixation index of F = 0.3 at each of the two loci.
That incidence is enough to cause an evident additive variance
plateau around the fixation of A1A1B1B1 (in particular, more

Frontiers in Genetics | www.frontiersin.org 6 March 2019 | Volume 10 | Article 54

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Álvarez-Castro and Crujeiras Variance Decomposition Under Linkage Disequilibrium

FIGURE 1 | Genetic variance components of the BDM case considered in the text and Table 1, for different sets of allele frequencies and for the full range of possible
incidences of LD, measured in terms of the standardized disequilibrium index, D’. Additive, dominance and epistasis variances are plotted using solid, dotted and
dashed lines, respectively. (A) considers two cases with symmetric allele frequencies across loci, f (A1) = f (B2) = 1/3 (black lines) and f (A1) = f (B2) = 1/2 (gray lines).
(B) considers two cases with equal allele frequencies across loci, f (A1) = f (B2) = 9/10 (black lines) and f (A1) = f (B2) = 4/5 (gray lines).

evident than in the case ofD’=−0.6 in Figure 2B). In Figure 2D,
with the combined effect of LD (as in Figure 2B) and HWD (as
in Figure 2C), the additive variance plateau becomes even larger.
Therefore, Figure 2 shows how non-equilibrium frequencies may
hamper fixation to occur in a case of BDM incompatibilities,
in terms of the changes those departures from equilibrium
frequencies (both HWD and LD) cause in the additive variance.

Sign Epistasis
The right-hand side of Table 1 shows the GP map of the sign
epistasis case we consider hereafter. At the bottom of the table
it is shown that this case can be built with only AA effects from
the reference of R = G1212. Figure 3A shows the well-known
surface of additive variance of the sign epistasis GPmap under LE
(see e.g., Cheverud, 2000; Goodnight, 2015). We recall that result
here to compare it with its LD counterpart, which we can plot
using the theory provided above. In particular, Figure 3B shows
the additive variance surface of sign epistasis with strong positive
LD (D’ = 0.9).

The drop of additive variance at intermediate frequencies in
Figure 3A adopts the shape of a sharp ridge in Figure 3B. In
the well-studied LE case, the additive variance falls down to
zero at intermediate frequencies because of an unstable internal
equilibrium, which causes an evolutionary plateau around
it (Goodnight, 2015). Evolutionary plateaus are temporary
significant decays of selection response between two periods of
phenotype change and they are a natural outcome of epistasis
(Alvarez-Castro and Le Rouzic, 2015; Goodnight, 2015; Le
Rouzic and Álvarez-Castro, 2016). In the BDM case above, we
have also commented on an additive variance plateau, although
we consciously avoided calling it evolutionary plateau because

the decay of selection response would in that case not eventually
be followed by a new period of patent selection response—it
would instead lead either to a slow pace toward fixation or to
speciation. In any case, the ridge of Figure 3B clearly indicates
that LD modifies the effect of the evolutionary plateau in the sign
epistasis GP map, since it shows that the region affected by such
plateau turns into an elongated zone of multilocus frequencies—
with similar frequencies of A1 and B1. Negative LD causes the
same effect but in the perpendicular direction (Figure 3C).

The aforementioned drop of additive variance of the sign
epistasis case at intermediate frequencies is also shown in
Figure 4. Indeed, with f (A1) = f (B1) = 1/3 the additive variance
(black solid line) increases with negative LD and decreases with
positive LD, which reflects the formation of a ridge in the
additive variance surface—growing either in the direction of
equal allele frequencies in the two loci (with positive LD) or
in the perpendicular direction (with negative LD) as mentioned
above. Figure 4 also shows that under equal allele frequencies
(gray lines), the additive variance remains nil along the whole
range of D’ values.

Beyond what LD implies when sign epistasis occurs, this case
also enables us to describe a general property of epistasis with
LD, which entails a remarkable difference with systems under
LE. Such property can be revealed by focusing on the dominance
variances of Figure 4 (dotted lines), which are non-nil despite the
absence of dominance in the GP map (recall Table 1). AA effects
are known to affect marginal additive effects under LE—indeed,
marginal effects of the sign epistasis case we consider here are nil
when expressed from the reference of A1A2B1B2 and also in an
F2 population but not when frequencies are not intermediate at
least at one locus. However, AA effects cannot typically (under
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FIGURE 2 | Additive variance surface of the BDM case considered in the text and Table 1, for the whole range of allele frequencies and different incidences of
departures from equilibrium frequencies. (A) considers the case of equilibrium frequencies. (B) considers the case of negative LD with D’ = −0.6. (C) considers the
case of a reduction of heterozygotes with a fixation index of F = 0.3 at each locus. (D) combines both departures (B, C) at the same time. In all cases the vertical axis
ranges from zero to ten.

LE) generate (or, in general, affect) marginal dominance effects.
This is why the dominance variance is nil in Figure 4 when
D’ = 0. However, the combined effect of AA effects and LD
makes dominance variance to arise in both cases considered
in Figure 4 (either with nil or non-nil additive variance).
In what follows, we dissect the mechanism underlying that
combined effect.

Let us begin by considering the most extreme cases of LD.
With complete positive association of alleles, only three out of the
nine genotypes remain—A1B1|A1B1,A1B1|A2B2, andA2B2|A2B2.
For the specific pattern of sign epistasis we are considering here,
the genotypic values of these genotypes are those of a single locus
with overdominance—in particular, 0, 1, and 0, respectively, as
Table 1 shows. With complete negative association of alleles, the

genotypic values would display underdominance instead (only
genotypesA1B2|A1B2,A1B2|A2B1, andA2B1|A2B1 would remain,
with genotypic values 2, 1, and 2, respectively). Thus, regardless
its sign, LD gradually transforms a two-locus genetic system
with sign epistasis (with only AA epistasis and no dominance)
into a single-locus system with dominance. That is exactly what
the decomposition of the genetic variance with LD (performed
as developed above) reflects in Figure 4, with nil dominance
variances at D’ = 0 and with increasing dominance variances
(and decreasing epistasis variances) toward both sides. Overall,
as opposed to what occurs under LE, LD makes AA epistasis
to influence marginal dominance effects. Besides, by generating
dominance and dominance variance, the combination of AA
effects plus LD also generates all three remaining kinds of
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FIGURE 3 | Additive variance surface of the sign epistasis case considered in the text and Table 1, for the whole range of allele frequencies and different incidences
of departures from equilibrium frequencies. (A) considers the case of equilibrium frequencies. (B) considers the case of positive LD with D’ = 0.9. (C) considers the
case of negative LD with D’ = −0.9.In all cases the vertical axis ranges from zero to one.

epistatic interactions—DA, AD, and DD. Hence, in particular,
the epistasis variances shown in Figure 4 include contributions
from those three epistasis components, as well as from the
AA component.

DISCUSSION

Throughout one century, the theory for the orthogonal
decomposition of the genetic variance into additive, dominance
and epistasis components remained unfinished. Several
recent works have considered LD when performing genetic
variance decomposition, although not providing an orthogonal
decomposition of the genetic variance with LD (see Yang,
2004; Mao et al., 2006; Wang, 2011 and references therein;
Hill and Mäki-Tanila, 2015 and references therein). Here, we
have actually provided an orthogonal decomposition of the
genetic variance with LD and thus completed that theory at
a time when that has been claimed not to be possible. Our
implementations are developed in a way that generalizes

previous developments so that the resulting theory accounts
for arbitrary numbers of loci and alleles with arbitrary within-
and between-/among-locus interactions and under arbitrary
departures from equilibrium frequencies. In what regards the
latest, it is worth noting that the theory developed in this
paper succeeds in attaining an orthogonal decomposition of
the genetic variance under completely arbitrary genotypic
frequencies, this is to say, actually beyond those that arise from
implementing LD through the standardized equilibrium index,
D’ (equivalently through the equilibrium index, D), from LE
genotypic frequencies.

Regression Procedures
As recalled by Vitezica et al. (2017), implementing HWD in
orthogonal variance decomposition obliged marginal genotypic
frequencies to be considered in the developments, as opposed to
only allele frequencies (see also Cockerham, 1954; Yang, 2004;
Alvarez-Castro and Carlborg, 2007; Álvarez-Castro and Yang,
2011). Similarly, implementing LD obliges multilocus genotypic
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FIGURE 4 | Genetic variance components of the sign epistasis case
considered in the text and Table 1, for two sets of allele frequencies and for
the full range of possible incidences of LD, measured in terms of the
standardized disequilibrium index, D’. Additive, dominance and epistasis
variances are plotted using solid, dotted and dashed lines, respectively. The
two cases considered have equal allele frequencies across loci,
f (A1) = f (B2) = 1/3 (black lines) and f (A1) = f (B2) = 1/2 (gray lines).

frequencies to be considered, as opposed to only marginal ones.
Hence, unless under LE, an orthogonal decomposition with an
arbitrary number of loci cannot be addressed by just combining
the results of regressions performed at the single-locus level,
which is the approach used in previous models (e.g., Zeng
et al., 2005; Alvarez-Castro and Carlborg, 2007; Álvarez-Castro
and Yang, 2011)—it has to be addressed instead by means of
regressions performed at the multilocus level.

For the implementation of orthogonal genetic variance
decomposition with LD to be a coherent extension of the
general concept of variance decomposition originally established
by Fisher (1918), those multilocus regressions must adhere
to the same conceptualization of the regression variables as
the classical regression models (e.g., Kempthorne, 1957). Our
developments do not only provide the previously known
orthogonal decomposition when performed with genotype
frequencies under LE, but are in point of fact fully consistent
with the rationale of the classical models of orthogonal genetic
variance decomposition, which can be shown trough several
crucial points.

First, we have designed marginal regression design matrices
for multilocus regressions that, although necessarily larger,
keep on using the same indexes as the previous single-locus
design matrices—indeed, our design matrices for marginal
effects are built with rows that are combinations of rows of
single-locus design matrices. Second, epistasis keeps on being
implemented just as a parameter coming from interactions of
the marginal effects—i.e., with design-matrices coming from
Kronecker products of marginal design-matrices. Third, we

stick to the procedure of sequential regression, detaching each
component (mean, additive, dominance and all epistasis types,
including both interaction combinations and interaction orders)
step by step. Finally, we have shown that the method used to
overcome non-singular matrices in WLS regression works as
desired since it provides the same solutions as alternative ways
of setting out the regression that enable a conventional WLS
solution (recall the regression for obtaining AD epistasis).

In general, the theory developed in this paper illustrates the
potential of matrix algebra applied to regression analysis in the
context of the orthogonal decomposition of the genotypic values
and the genetic variance. With two biallelic loci, the regression
model providing an orthogonal decomposition into additive,
dominance and epistasis components takes a rather simple form
even when expanded to show all scalars within eachmatrix. Then,
by just describing the way in which the design matrices must be
modified (more precisely, enlarged), the same regression model
is straightforwardly extended to arbitrary numbers of alleles
and loci. Also by virtue of matrix algebra, the WLS solutions
of the subsequent steps of the regression model take the form
of manageable expressions even when the conventional WLS
solutions involve non-singular matrices.

Why Has This Decomposition Been
Considered Unfeasible?
Some concerns about the feasibility of a fully orthogonal
decomposition of the genetic variance with LD come from
realizing that, by definition, LD generates non-independence
at the among-locus level (e.g., Hill and Mäki-Tanila, 2015).
Nevertheless, it should just as well be kept in mind that already
at the single-locus level, HWD generate non-independence
between/among alleles, which has been reported to prevent the
additive components of the genotypic values from fitting to the
concept of breeding values—thus loosing part of the properties
they have under HWE (as is recalled e.g., by Vitezica et al., 2017).
Although that may be considered more or less inconvenient, it
does not make the within-locus orthogonal decomposition into
additive and dominance genetic components under HWD to be
either unfeasible or useless (see e.g., Cockerham, 1954; Alvarez-
Castro and Carlborg, 2007; Álvarez-Castro and Yang, 2011;
Vitezica et al., 2017). Similarly, considering that LD may make
us adjust our interpretation of orthogonal genetic decomposition
at the among-locus level does not preclude such decomposition
from being both possible (indeed, we have achieved it above) and
of significant practical use (as further discussed below).

On the other hand, Zeng et al. (2005) analyzed biallelic
models with LD and epistasis and concluded that such conditions
make it unfeasible for reduced meaningful models to retain
the estimates of genetic effects of a full model. However, the
same outcome can occur under other circumstances—e.g., with
lack of genotype information (Nettelblad et al., 2012). Thus,
again, the fact that orthogonal models do not under all possible
circumstances enable meaningful reduced models in which the
remaining parameters remain unchanged may be both surprising
and inconvenient, but it actually does not mean that the models
themselves are neither orthogonal nor biologically meaningful
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nor useful. Indeed, systems under LD bring about a significant
increase in complexity—both conceptually andmathematically—
and we have shown above that the orthogonal decomposition of
the genetic variance provided in this paper is useful to properly
reflect it. In particular, we have used our theoretical results to
describe how, under LD, even marginal dominance effects are
influenced by AA interactions—a novel feature as compared to
systems under LE.

In brief, noteworthy particularities of LD to be kept in
mind in what regards orthogonal genetic decompositions have
been found out and, although cases for which orthogonal
decompositions were attained previously also involve certain
particularities, we find it plausible that the specific kind of
complexity found to be associated to LD may have made it
difficult to imagine how an orthogonal decomposition into
additive, dominance and epistastic genetic components under LD
could be possible to achieve in theory or how it could be applied
in practice.

Applications
In this paper we have considered two cases of evolutionary
interest for illustrating some of the potential uses of our
theoretical proposal for orthogonal variance decomposition with
epistasis and LD. Although both cases remain at the simplest
possible level of two biallelic loci, in the BDM case we have dealt
with all types of pairwise epistasis, HWD and LD simultaneously
to show how our theory can be used to analyze the emergence of
an additive variance plateau by means of which HWD and LD
may prevent the fixation of the original genotype after secondary
contact.We have also used this case to add up to the fact that (also
under LD) epistasis may condition the evolutionary outcome of
a genetic system while the epistatic variance remains low.

In the sign epistasis case, we have kept things even simpler
by sticking to a GP map that can be built with just AA epistatic
effects. It has been by using the simplicity of that genetic system
that we have been able to show how LD may (in combination
with just AA epistasis) generate dominance variance. More in
particular, we have also shown how LD turns the evolutionary
plateau that has been described for this system under LE
into a ridge, whose orientation depends upon the sign of the
standardized disequilibrium index D’.

The potential applications of the orthogonal decomposition
of the genetic variance under LD certainly go beyond the
applications we have here addressed. Álvarez-Castro and Yang
(2011) described a method of fitness estimation from equilibrium
frequencies at a multiallelic locus under selection, using an
accurate expression for the orthogonal decomposition of the
genetic variance under HWD. With the theory provided here,
that method can now be also applied to multilocus systems
(whether multiallelic or not), in which selection shall typically
generate departures from LE genotypic frequencies.

We have already mentioned above that, in genetic mapping
studies, orthogonal variance decomposition is a key ingredient
of model selection strategies. Indeed, the need to overcome
difficulties arising in genetic mapping studies and the lack
of a satisfactory extension of the classical decomposition of
the genetic variance justified the development of alternative

orthogonal parameterizations (e.g., Crawford et al., 2017) and
even of non-parametric methods (e.g., Gianola et al., 2006).
More to the point, it has recently been stressed that several
kinds of orthogonal decompositions of the genetic variance
can be developed (Huang and Mackay, 2016). However, the
best advantages of orthogonality to model selection shall come
from genetic models in which the parameters retain the desired
biological meaning since those are the ones that make real sense
to consider and compare. Such genetic models are the ones Fisher
(1918) originally established in his now classical decomposition
of the genetic variance.

Incidentally, it has been shown in practice that even
when orthogonality is not fully achieved (particularly, due to
LD), extensions of the classical models enabling orthogonal
decompositions under most of the genetic phenomena involved
in the data (particularly, accounting for arbitrary marginal
genotypic frequencies, and thus for HWD) provide estimates
that are substantially more consistent (e.g., in what regards
their genetic meaning) than models that enable orthogonal
decompositions only under more restricted conditions
(accounting for arbitrary allele frequencies alone; Vitezica
et al., 2017). The ideal situation is in any case to count on a
fully orthogonal extension of the classical models, which is what
motivated the work we are providing in this paper.

Overall, orthogonal genetic variance decomposition
is nuclear in evolutionary and quantitative genetics, its
usefulness goes nowadays far beyond what Fisher (1918)
could possibly envisage when he developed it one century
ago and new applications of it keep on surprising us now
and again. For instance, advances made in theoretical models
of genetic effects and classical variance decompositions
about a decade ago (Alvarez-Castro and Carlborg, 2007)
have recently been used to improve methods of genomic
prediction (Vitezica et al., 2017). Indeed, we find it difficult
to set limits today to the actual extent to which the theory
provided in this paper may aid the study of evolutionary
phenomena and quantitative genetics analyses, particularly in
the medium term.
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