AUTHOR=Chen Yu-Ting , Chang Chi-Chang , Chen Chi-Wei , Chen Kuan-Chun , Chu Yen-Wei TITLE=MADS-Box Gene Classification in Angiosperms by Clustering and Machine Learning Approaches JOURNAL=Frontiers in Genetics VOLUME=9 YEAR=2019 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00707 DOI=10.3389/fgene.2018.00707 ISSN=1664-8021 ABSTRACT=
The MADS-box gene family is an important transcription factor family involved in floral organogenesis. The previously proposed ABCDE model suggests that different floral organ identities are controlled by various combinations of classes of MADS-box genes. The five-class ABCDE model cannot cover all the species of angiosperms, especially the orchid. Thus, we developed a two-stage approach for MADS-box gene classification to advance the study of floral organogenesis of angiosperms. First, eight classes of reference datasets (A, AGL6, B12, B34, BPI, C, D, and E) were curated and clustered by phylogenetic analysis and unsupervised learning, and they were confirmed by the literature. Second, feature selection and multiple prediction models were curated according to sequence similarity and the characteristics of the MADS-box gene domain using support vector machines. Compared with the BindN and COILS features, the local BLAST model yielded the best accuracy. For performance evaluation, the accuracy of