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The mainstream of research in genetics, epigenetics, and imaging data analysis

focuses on statistical association or exploring statistical dependence between variables.

Despite their significant progresses in genetic research, understanding the etiology and

mechanism of complex phenotypes remains elusive. Using association analysis as a

major analytical platform for the complex data analysis is a key issue that hampers

the theoretic development of genomic science and its application in practice. Causal

inference is an essential component for the discovery of mechanical relationships among

complex phenotypes. Many researchers suggest making the transition from association

to causation. Despite its fundamental role in science, engineering, and biomedicine,

the traditional methods for causal inference require at least three variables. However,

quantitative genetic analysis such as QTL, eQTL, mQTL, and genomic-imaging data

analysis requires exploring the causal relationships between two variables. This paper

will focus on bivariate causal discovery with continuous variables. We will introduce

independence of cause and mechanism (ICM) as a basic principle for causal inference,

algorithmic information theory and additive noise model (ANM) as major tools for bivariate

causal discovery. Large-scale simulations will be performed to evaluate the feasibility of

the ANM for bivariate causal discovery. To further evaluate their performance for causal

inference, the ANM will be applied to the construction of gene regulatory networks.

Also, the ANM will be applied to trait-imaging data analysis to illustrate three scenarios:

presence of both causation and association, presence of association while absence of

causation, and presence of causation, while lack of association between two variables.

Telling cause from effect between two continuous variables from observational data is

one of the fundamental and challenging problems in omics and imaging data analysis.

Our preliminary simulations and real data analysis will show that the ANMs will be one of

choice for bivariate causal discovery in genomic and imaging data analysis.

Keywords: independence of cause and mechanism (ICM), algorithmic information theory, additive noise models,

genome-wide causal studies, gene expression, imaging data analysis
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INTRODUCTION

Despite significant progress in dissecting the genetic architecture
of complex diseases by association analysis, understanding the
etiology, and mechanism of complex diseases remains elusive.
Using association analysis and machine learning systems that
operate, almost exclusively, in a statistical, or model-free modes
as a major analytic platform for genetic studies of complex
diseases is a key issue that hampers the discovery of mechanisms
underlying complex traits (Pearl, 2018).

As an alternative to association analysis, causal inference
may provide tools for unraveling principles underlying complex
traits. Causation is defined as the act that generates an effect
in Merriam-Webster dictionary. In terms of daily life language,
causation is the effects of actions or interventions that perturb the
system or indicates that one event is the result of the occurrence
of the other event. In statistics, the causal effect can be defined
using intervention calculus (Mooij et al., 2016). Suppose that
X, Y are two random variables with joint distribution P(X,Y).
If an external intervention that is from outside the system under
consideration forces the variable X to have the value x and
keeps the rest of the system unchanged, after Y is measured, the
resulting distribution of Y , P(Y|do (x)) is defined as the causal
effect of X on Y . Power of causal inference is its ability to predict
effects of actions on the system (Mooij et al., 2016).

Typical methods for unraveling cause-and-effect relationships
are interventions and controlled experiments. Unfortunately, the
experiments in human genetics are unethical and technically
impossible. Next generation genomic, epigenomic, sensing,
and image technologies produce ever deeper multiple omic,
physiological, imaging, environmental, and phenotypic data with
millions of features. These data are almost all “observational,”
which have not been randomized or otherwise experimentally
controlled (Glymour, 2015). In the past decades, a variety of
statistical methods and computational algorithms for causal
inference which attempt to abstract causal knowledge from
purely observational data, referred to as causal discovery, have
been developed (Zhang et al., 2018). Causal inference is one of
the most useful tools developed in the past century. The classical
causal inference theory explores conditional independence
relationships in the data to discover causal structures. The
PC algorithms and the fast causal inference (FCI) algorithms
developed at Carnegie Mellon University by Peter Spirtes and
Clark Glymour are often used for cause discovery (Le et al.,
2016). Despite its fundamental role in science, engineering
and biomedicine, the conditional independence-based classical
causal inference methods can only identify the graph up to its
Markov equivalence class, which consists of all directed acyclic
graphs (DAGs) satisfying the same conditional independence
distributions via the causal Markov conditions (Nowzohour and
Bühlmann, 2016). DAGs are defined as directed graphics with no
cycles. In other words, we can never start at a node, travel edges in
the directions of the arrows and get back to the node (Figure S1).
For example, consider three simple DAGs: x → y → z, x ←
y ← z, and x ← y → z. Three variables x, y, and z in all
three DAGs satisfy the same causal Markov condition: x and z
are independent, given y. This indicates that these three DAGs

form a Markov equivalence class. However, these three DAGs
represent three different causal relationships among variables
x, y, and z, which prohibits unique causal identification. These
non-unique causal solutions seriously limit their translational
application.

In the past decade, causal inference theory is undergoing
exciting and profound changes from discovering only up to
the Markov equivalent class to identify unique causal structure
(Peters et al., 2011; Peters and Bühlman, 2014). A class of
powerful algorithms for finding a unique causal solution is
based on properly defined functional causal models (FCMs).
They include the linear, non-Gaussian, acyclic model (LiNGAM)
(Shimizu et al., 2006; Zhang et al., 2018), the additive noise model
(ANM) (Hoyer et al., 2009; Peters et al., 2014), and the post-
nonlinear (PNL) causal model (Zhang and Hyvärinen, 2009).

In genomic and epigenomic data analysis, we usually consider
four types of associations: association of discrete variables (DNA
variation) with continuous variables (quantitative trait, gene
expressions, methylations, imaging signals and physiological
traits), association of continuous variables (expressions,
methylations and imaging signals) with continuous variables
(gene expressions, imaging signals, phenotypes and physiological
traits), association of discrete variables (DNA variation) with
binary trait (disease status), and association of continuous
variables (gene expressions, methylations, phenotypes and
imaging signals) with binary trait (disease status). All these four
types of associations can be extended to four types of causations.
This paper focuses on studying causal relationships between two
continuous variables.

Many causal inference algorithms using observational data
require that two variables being considered as cause-effect
relationships are part of a larger set of observational variables
(Mooij et al., 2016). Similar to genome-wide association studies
where only two variables are considered, we mainly investigate
bivariate causal discovery to infer cause-effect relationships
between two observed variables. To simplify the causal discovery
studies, we assume no selection bias, no feedback and no
confounding. We first introduce the basic principle underlying
the modern causal theory. It assumes that nature consists
of autonomous and independent causal generating process
modules and attempts to replace causal faithfulness (If every
conditional independence in the distribution is implied by
the Markov condition in the DAG, it requires that every
variables is independent of its non-descendants in the DAG)
by the assumption of Independence of Cause and Mechanism
(ICM) (Janzing and Schölkopf, 2010; Schölkopf et al., 2012;
Lemeire and Janzing, 2013; Besserve et al., 2017; Peters
et al., 2017). Then, we will present ANM as a major tool
for causal discovery between two continuous variables. We
will investigate properties of ANM for causal discovery.
Finally, the ANM will be applied to gene expression data to
infer gene regulatory networks and longitudinal phenotype-
imaging data to identify brain regions affected by intermediate
phenotypes. A program for implementing the algorithm for
bivariate causal discovery with two continuous variables can
be downloaded from our website https://sph.uth.edu/research/
centers/hgc/xiong/software.htm.
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THE INDEPENDENCE PRINCIPLE OF
CAUSE AND MECHANISM FOR CAUSAL
INFERENCE

This section will introduce the independence of cause and
mechanism as a basic principle for causal inference and
Kolmogorov complexity as a theoretic tool for causal analysis.
The philosophical causal principle assumes that nature consists
of independent, autonomous causal generating process modules
(Shajarisales et al., 2015; Peters et al., 2017). In other words, causal
generating processes of a system’s variables are independent.
If we consider two variables: cause X and effect Y , then
the mechanism that generates cause X and the mechanism
that generates effect Y from the cause X are independent.
Or, the process that generates the effect Y from the cause
X contains no information about the process that generates
the cause X. In the probability setting, this indicates that
the cause distribution P (X) and the conditional distribution
P(Y|X) of Y given X are independent. Statistics provides
definition of independence between two random variables,
but provides no tools for defining independence between two
distributions (Peters et al., 2017). Algorithmic information
theory can offer notion and mathematical formulation of
independence between two distributions or independence of
mechanisms (Janzing and Schölkopf, 2010; Parascandolo et al.,
2017).

Cause and effect cannot be identified from their
joint distribution. Cause and effect are asymmetric. The
joint distribution is symmetric. It can be factorized to
PX,Y = PXPY|X = PYPX|Y . (For details, please see
Supplementary Note A). This implies that the joint distribution
PX,Y of two variables X,Y is unable to infer whether X→Y or
Y→X. Peters et al. (2014) showed in Proposition 4.1 of their
book that for every joint distribution PX,Y or PY ,X of real-valued
variables X and Y , there are non-linear models:

Y = fY (X,NY) ,XáNY

and

X = gX (Y ,NX) ,YáNX ,

where fY and gX are functions and NY and NX are real-
valued noise variables. In Supplementary Note B we provide
the details that were omitted in the proof of Proposition 4.1
(Peters et al., 2014). This shows that to make a bivariate
causal model identifiable, we must restrict the function
class.

NON-LINEAR ADDITIVE NOISE MODELS
FOR BIVARIATE CAUSAL DISCOVERY

In this section, we will introduce popular non-linear additive
noise models (ANMs) as a major tool for bivariate causal
discovery. Assume no confounding, no selection bias and no
feedback. Consider a bivariate additive noise model X→Y where

Y is a non-linear function of X and independent additive noise
EY :

Y = fY (X) + EY

X ∼ PX ,EY ∼ PEY , (1)

where X and EY are independent. Then, the density PX,Y is said
to be induced by the additive noise model (ANM) from X to Y
(Mooij et al., 2016). The alternative additive noise model between
X and Y is the additive noise model Y→X:

X = fX(Y) + EX

Y ∼ PY ,EX ∼ PEX , (2)

where Y and EX are independent.
If the density PX,Y is induced by the ANM X→Y, but not

by the ANM Y→X, then the ANM X→Y is identifiable. To
illustrate application of the algorithmic mutual information, we
show that independence of cause and mechanism will imply that
the cause X and error EY in the non-linear function model (1) are
independent (For details, please see Supplementary Note C).

Peters et al. (2017) showed that a joint distribution PX,Y
does not admit an ANM in both directions at the same time
under some quite generic conditions. To illustrate that ANMs
are generally identifiable, i.e., a joint distribution only admits
an ANM in one direction, we plotted Figures 1, 2. The data in
Figures 1, 2 were generated by Y = X3 + EY , where EY is
uniformly distributed in [−1, 1].

The joint distribution satisfied an ANM X→Y, but did not
admit an ANM Y→X. We plotted Figures 1, 2 in which red lines
indicated the bandwidth of the conditional distribution. Figure 1

FIGURE 1 | An example of joint distribution p(x, y) generated by

Y := f (X)+ EY , where f (X) = X3 and EY is uniformly distributed in [−1, 1].

The interval of the red line represents the bandwidth of the conditional

distribution pY |X . We perform a nonlinear regression in the directions X→Y.
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FIGURE 2 | An example of joint distribution p(x, y) generated by

Y := f (X)+ EY , where f (X) = X3 and EY is uniformly distributed in [−1, 1].

The interval of the red line represents the bandwidth of the conditional

distribution pX|Y . We perform a nonlinear regression in the directions Y→X.

showed that all bandwidth of the conditional distribution
PY|X represented by the red line was two units. This clearly
demonstrated that conditional distribution PY|X did not depend
on the cause X. However, Figure 2 showed that the bandwidth
of the conditional distribution PX|Y , represented by the red line
varied as Y changed. This demonstrated that the conditional
distribution PX|Y , indeed, depended on Y . In other words, it
violated the principal of independence of cause and mechanism.
The joint distribution in this example only admitted an ANM in
only one direction X→Y.

The ANMs should assume that the functions fX and gY
are non-linear. If the functions are linear, then additional
assumptions for identifiability should be made. In other words,
for the linear functions, if at least one of the distributions of
the cause and noise is non-Gaussian [e.g., linear non-Gaussian
acyclic model (LiNGAM)], then the linear model is identifiable.
Otherwise, the linear model is not identifiable (Shimizu et al.,
2011; Moneta et al., 2013). In this scenario, we cannot get
different bandwidths. The limitation of the ANMs is that it
cannot be applied to linear case if both distributions of cause and
noise are Gaussian.

Empirically, if the ANM X→Y fits the data, then we infer
that X causes Y , or if the ANM Y→X fits the data, then Y
causes X will be concluded. Although this statement cannot be
rigorously proved, in practice, this principle will provide the basis
for bivariate cause discovery (Mooij et al., 2016). To implement
this principal, we need to develop statistical methods for assessing
whether the additive noise model fits the data or not.

Now we summarize procedures for using ANM to assess
causal relationships between two variables. Two variables can
be two gene expressions, or one gene expression and one

methylation level of CpG site, or an imaging signal of one brain
region and a functional principal score of gene. Divide the dataset
into a training data set by specifying Dtrain = {Yn,Xn},Yn =

[y1, ..., yn]
T ,Xn = [x1, ..., xn]

T for fitting the model and a test data
set Dtest = {Ỹm, X̃m}, Ỹm = [ỹ1, ..., ỹm]

T , X̃m = [x̃1, ..., x̃m]
T for

testing the independence, where n is not necessarily equal tom.
Algorithm for causal discovery with two continuous variables is

given below.

Step 1. Regress Y on X using the training dataset Dtrain and
non-parametric regression methods:

Y = f̂ (X) + EY . (3)

Step 2. Calculate residual ÊY = Y − f̂ (X) using the test dataset
Dtest and test whether the residual ÊY is independent of causal
X to assess the ANM X→Y.
Step 3. Repeat the procedure to assess the ANM Y→X.
Step 4. If the ANM in one direction is accepted and the ANM
in the other is rejected, then the former is inferred as the causal
direction.

There are many non-parametric methods that can be used to
regress Y on X or regress X on Y . For example, we can use
smoothing spline regression methods (Wang, 2011), B-spline
(Wang and Yan, 2017) and local polynomial regression (LOESS,
see Cleveland, 1979).

Covariance can be used to measure association, but cannot be
used to test independence between two variables. A covariance
operator can measure the magnitude of dependence, and
is a useful tool for assessing dependence between variables.
Specifically, we will use the Hilbert-Schmidt norm of the
cross-covariance operator or its approximation, the Hilbert-
Schmidt independence criterion (HSIC) to measure the degree of
dependence between the residuals and potential causal variable
(Gretton et al., 2005; Mooij et al., 2016).

Calculation of the HSIC consists of the following steps.

Step 1: Use test data set to compute

yi = f̂ (xi) + EY (i), i = 1, . . . ,m.

Step 2: Compute the residuals:

εi = EY (i) = yi − f̂ (xi),= 1, . . . ,m.

Step 3: Select two kernel functions kE(εi, εj) and kx(x1, x2). In
practice, we often use the Gaussian kernel function. Compute
the Kernel matrices:

KEY =









kE(ε1, ε1) . . . kE(ε1, εm)

.

.

.
.
.
.

.

.

.

kE(εm, ε1) . . . kE(εm, εm)









,Kx =









kx(x1, x1) . . . kx(x1, xm)

.

.

.
.
.
.

.

.

.

kx(xm, x1) . . . kx(xm, xm)









.

Step 4: Compute the HSCI for measuring dependence between
the residuals and potential causal variable.

HSIC2(EY ,X) =
1

m2
Tr (KEYHKXH),
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where H = I − 1
m1m1

T
m, 1m = [1, 1, ..., 1]T and Tr denotes the

trace of the matrix.

In summary, the general procedure for bivariate causal
discovery is given as follows (Mooij et al., 2016):

Step 1: Divide a data set into a training data setDtrain = {Yn,Xn}

for fitting the model and a test data set Dtest = {Ỹm, X̃m} for
testing the independence.
Step 2: Use the training data set and non-parametric regression
methods

(a) Regress Y on X: Y = fY (X) + EY and
(b) Regress X on Y : X = fX(X) + EX .

Step 3: Use the test data set and estimated non-parametric
regression model that fits the training data set Dtrain = {Yn,Xn}

to predict residuals:

(a) ÊYX = Ỹ − f̂Y (X̃)

(b) ÊXY = X̃ − f̂X(Ỹ).

Step 4: Calculate the dependence measures HSIC2(EY ,X) and
HSIC2(EX ,Y).
Step 5: Infer causal direction:

X→ Y if HSIC2(EY ,X) < HSIC2(EX ,Y); (4)

Y → X if HSIC2(EY ,X) > HSIC2(EX ,Y). (5)

If HSIC2(EY ,X) = HSIC2(EX ,Y), then causal direction is
undecided.

We do not have closed analytical forms for the asymptotic null
distribution of theHSIC and hence it is difficult to calculate the P-
values of the independence tests. To overcome these limitations,
the permutation/bootstrap approach can be used to calculate the
P-values of the causal test statistics. The null hypothesis is

H0 : no causations X→Y and Y→X (Both X and EY are
dependent, and Y and EX are dependent).

Calculate the test statistic:

TC = |HSIC
2 (EY ,X) − HSIC2 (EX ,Y) |. (6)

Assume that the total number of permutations is np. For each
permutation, we fix xi, i = 1, . . . ,m and randomly permutate
yi, i = 1, . . . ,m. Then, fit the ANMs and calculate the residuals
EX (i) , EY (i) , i = 1, . . . ,m and test statistic TC. Repeat np times.

The P-values are defined as the proportions of the statistic T̃C

(computed on the permuted data) greater than or equal to T̂C

(computed on the original dataDTE). After cause is identified, we
then use Equations (4) and (5) to infer causal directions X→Y or
Y→X.

LINEAR CORRELATION AND CAUSATION

In everyday language, correlation and association are used
interchangeably. However, correlation and association are
different terminologies. Pear correlation coefficient is defined as

ρ = cov(X,Y)
σxσy

from covariance, Spearman correlation coefficient

is defined as measuring increasing or decreasing trends.
Association characterizes dependence between two variables
(Altman and Krzywinski, 2015). In this paper, association is
equivalent to Pearson linear correlation. We will focus on linear
correlation. We investigate the relationships between causation
and correlation. The correlation between two continuous
variables can be investigated by a linear regression model:

Y = βX + ε, (7)

where β 6= 0.
The causation X→Y is identified by the ANM:

Y = f (X)+ ε,Xáε. (8)

In classical statistics, if we assume that both variables X and ε

follow a normal distribution, then cov (X, ε) = 0 if and only if X
and ε are independent. If X and ε are not normal variables, this
statement will not hold. For general distribution, we extend the
concept of covariance to cross covariance operator C̃Xε (Zhang
et al., 2018). It is shown that for the general distributions of X
and ε , C̃Xε = 0 if and only if X and Y are independent (Mooij
et al., 2016).

Let h and g be any two non-linear functions. C̃Xε = 0 is
equivalent to (Gretton et al., 2005)

max cov
(

h (X) , g (ε)
)

= max cov
(

h (X) , g
(

Y − f (X)
))

= 0,
(9)

Subject to
∣

∣

∣

∣h
∣

∣

∣

∣ = 1,
∣

∣

∣

∣g
∣

∣

∣

∣ = 1.
Now we give examples of a pair of random variables to

illustrate existence of three cases: (a) both linear correlation and
causation X→Y, (b) causation X→ Y , but no linear correlation,
and (c) linear correlation, but no causation X→ Y .

a) Both linear correlation and causation X→Y.
We consider a special case: Y = f (X). When Y = f (X),

Equation (9) holds, which implies X→Y. If we assume that
h (X) = X and g

(

Y − f (X)
)

= Y − f (X), then Equation (9)
holds and implies that

cov (X,Y) = cov(X, f (X)). (10)

If we further assume f (X) = βX, then Equation (10) implies

β =
cov(X,Y)

Var(X)
. (11)

This is estimation of linear regression coefficient.
b) Causation X→ Y, but no linear correlation
Consider the model:

Y = 5X2 + ε,

where X follows a uniform distribution between−2 and 2 and ε

follows a uniform distribution between−1 and 1.
Figure 3 plotted functions Y = 5X2 + ε . Assume that 2,000

subjects were sampled. Permutation was used to calculate P-value
for testing causation. We found that the Pearson correlation was
−0.00070 and P-value for testing causation X→Y was 10−5. This
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FIGURE 3 | The data generated by Y = 5X2 + ε , where X follows a uniform

distribution between −2 and 2 and ε follows a uniform distribution between

−1 and 1.

example showed the presence of causation, but lack of linear
correlation (Pearson correlation was near zero).

c) Linear correlation, but no causation X→ Y .
Consider the model (Figure S2):

X = Z + ε1,

Y = Z + ε2,

and Z ∼ N (0, 2) , ε1 ∼ N (0, 1) , ε2 ∼ N(0, 1), Z, ǫ1, ε2 are
independent.

The model can be rewritten as

Y = X + ε2 − ε1.

First we show that linear correlation between Y and X exists.
In fact,

cov (Y ,X) = cov (Z + ε2,Z + ε1 ) = var (Z)

= 2,Var (Y) = 3, Var (X) = 3.

Thus, the Pearson linear correlation coefficient is equal to ρ = 2
3 .

Thus, linear correlation between Y and X exists.
Next we show that X and ε2 − ε1 are not independent.
Note that cov (X, ε2 − ε1) = −var (ε1) = −1 and X, ε2 − ε1

follow normal distribution. Since the covariance between X and
ε2 − ε1 is not equal to zero, this implies that X and ε2 − ε1
are not independent. The conditional distribution PY|X is the
distribution of ε2 − ε1. But, we show that the normal variables X
and ε2−ε1 are not independent. This implies that the distribution
P(X) and PY|X are not independent. Therefore, we finally show
that there is no causation X→Y.

Similar conclusions hold for Y→X.

SIMULATIONS

ANMs With Different Non-linear Functions
To investigate their feasibility for causal inference, the ANMs
were applied to simulation data. Similar to Nowzohour and
Bühlmann (2016), we considered three non-linear functions:
quadratic, exponential, and logarithm functions and two random
noise variables: normal and t distribution. We assumed that the
cause X follows a normal distribution N(0, 1).

First we consider two models with a quadratic function and
two types of random noise variables, normal N(0, 1) and t
distribution with 5 degrees of freedom:

Model 1:

Y = X + b · X2 + ε1,

where the parameter b ranges from−10 to 10 and ε1 is
distributed as N (0,1).
Model 2:

Y = X + b · X2 + ε2

where the parameter b is defined as before and ε2 is distributed
as t distribution with 5 degrees of freedom.

The parameter space b ∈ [−10, 10] was discretized. For each
grid point, 1,000 simulations were repeated. For each simulation,
500 samples were generated. The ANMs were applied to the
generated data. Smoothing spline is used to fit the functional
model. The true causal direction is the forward model: X→Y.
The false decision rate was defined as the proportion of times
when the backward model Y→X is wrongly chosen by the
ANMs. Figures 4, 5 presented false decision rate as a function
of the parameter b for the models 1 and 2, respectively. We
observed from Figures 4, 5 that the false decision rate reached
its maximum 0.5 when b = 0. This showed that when the
model is close to linear, the ANMs could not identify the true
causal direction. However, when b moved away from 0, the false
decision rates approached 0 quickly. This showed that when the
data were generated by non-linear models, with high probability,
we can accurately identify the true causal directions.

To further confirm these observations, we consider another
two non-linear functions.

Model 3:

Y = X + b log(|X|)+ ε1,

Model 4:

Y = X + b log(|X|)+ ε2,

Model 5:

Y = X + b · eX + ε1,

Model 6:

Y = X + b · eX + ε2,

where the parameter b and the noise variables ε1 and ε2 were
defined previously.
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FIGURE 4 | False decision rates as a function of the parameter b for the

model 1.

The false decision rates of the ANMs for detecting the true causal
direction X→Y for the models 3, 4, 5, and 6 were presented in
Figures 6–9, respectively. Again, the observations for the models
1 and 2 still held for the models 3, 4, 5, and 6. When the data were
generated by non-linear models, we can accurately identify the
true causal directions. However, when the data were generated
by linear models, the false decision rates reached 0.5, which was
equivalent to random guess.

Type 1 Error Rates
To evaluate the performance of the ANMs for bivariate cause
discovery, we calculate the type 1 error rates. We consider two
scenarios: (a) no association, (b) presence of association.

(a) No association

We first generated the data with 100,000 subjects from themodel:
X ∼ N (0, 1) , Y ∼ N(0, 1) and X,Y are independent. Number of
permutations was 500. Number of replication of tests was 1,000.
The sampled subjects from the generated population for type 1
error rate calculations were 500, 1,000 and 2,000 respectively. The
test statistic Tc and permutations were used to test for causation
between two variablesX andY .Table S1 summarized type 1 error
rates of the ANMs for testing causation, assuming no association.

(b) Presence of association

Then, we generated the data with 100,000 subjects from the
model: X ∼ N (0, 1) , Y ∼ N(0, 1), X and Y were associated, but
without causation. Number of permutations was 500. Number
of replication of tests was 1,000. The sampled subjects from
the generated population for type 1 error rate calculations
were 500, 1,000 and 2,000 respectively. The test statistic Tc

and permutations were used to test for causation between two

FIGURE 5 | False decision rates as a function of the parameter b for the

model 2.

variables X and Y . Table S2 summarized type 1 error rates of the
ANMs for testing causation in the presence of association.

In summary, Tables S1, S2 showed that type 1 error rates
of the ANM based on permutation even in the presence of
association were not significantly deviated from nominal levels.

Power Simulations
To further evaluate the performance of the ANMs for bivariate
cause discovery, we used simulated data to estimate their power
to detect causation. We generated data with 100,000 subjects
from the causal model:

Y = f (X)+N,

where f (x) =
∑3

j= 1 wj × exp
(

−γ
(

x− xj
)2

)

, γ ∼ N (0, 1),

xj ∼ N (0, 1), X ∼ N(0, 1)and N ∼ N(0, σ 2 = 0.01). X and N are
independent, and wj

′s are randomly generated weights from the
uniform distribution. Number of permutations was 500. Number
of replication of tests was 1,000. The sampled subjects from the
population were 200, 500, 1,000, 2,000 and 5,000 respectively.
The test statistic Tc and permutations were used to test for
causation between two variables X and Y . Table S3 summarized
the power of the ANMs for detecting causation between two
variables.

REAL DATA ANALYSIS

Regulation of gene expression is a complex biological
process. Large-scale regulatory network inference provides
a general framework for comprehensively learning regulatory
interactions, understanding the biological activity, devising
effective therapeutics, identifying drug targets of complex
diseases and discovering the novel pathways. Uncovering
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FIGURE 6 | The false decision rates of the ANMs for detecting the true causal direction X→Y for the model 3.

and modeling gene regulatory networks are one of the long-
standing challenges in genomics and computational biology.
Various statistical methods and computational algorithms
for network inference have been developed. The ANMs can
also be applied to inferring gene regulatory networks using
gene expression data. Similar to co-gene expression networks
where correlations are often used to measure dependence
between two gene expressions, the ANMs can be used to infer
regulation direction, i.e., whether changes in expression of
gene X causes changes in expression of gene Y or vise verse
changes in expression of gene Y causes changes in expression of
gene X.

The ANMs were applied toWnt signaling pathway with RNA-
Seq of 79 genes measured in 447 tissue samples in the ROSMAP
dataset (White et al., 2017). For comparisons, the structural

equation models (SEMs) integrating with integer programming
(Xiong, 2018), causal additive model (CAM) (Bühlmann et al.,
2014), PC algorithm (Tan et al., 2011), random network,
glasso (Friedman et al., 2008), and Weighted Correlation
Network Analysis (WGCNA) (Langfelder and Horvath, 2008)
were also included in the analysis. We ranked directed edges
according to the values of the test statistics for the ANMs.
The results for top 40, 50, and 60 edges were included in
comparison. The results were summarized in Table 1. True
directed path was defined as the paths that matched KEGG
paths with directions. True undirected path was defined as the
paths that matched KEGG paths with or without directions.
Detection accuracy was defined as the proportion of the
number of true paths detected over the number of all paths
detected.
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FIGURE 7 | The false decision rates of the ANMs for detecting the true causal

direction X→Y for the model 4.

FIGURE 8 | The false decision rates of the ANMs for detecting the true causal

direction X→Y for the model 5.

Figure 10 presented the ANM-inferred network structure of
the Wnt pathway. The green lines represented the inferred paths
consistent to the KEGG while the gray ones represented the
inferred edges absent in the KEGG. The ANM, CAM, SEM, PC,
and random network methods inferred directed networks, and
Glasso and WGCNA association methods inferred undirected
networks. We took the structure of Wnt in the KEGG as the true
structure of the Wnt in nature. We observed from Table 1 that
the ANM more accurately inferred the network structure of the
Wnt than the other six statistical and computational methods for
identifying directed or undirected networks. Table 1 also showed

FIGURE 9 | The false decision rates of the ANMs for detecting the true causal

direction X→Y for the model 6.

that the accuracy of widely used Glasso and WGCNA algorithms
for identifying the structure of Wnt was even lower than that of
random networks, however, the accuracy of the ANM was much
higher than that of random networks. The causal network with
50 selected top edges identified by the ANMs reached the highest
accuracy. Varying the number of selected edges in the network
will affect accuracy, but their accuracies were not largely different
for the ANMs. This observation may not be true for other
methods.

To evaluate their performance for causal inference, the ANMs
were applied to the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) data with 91 individuals with Diffusion Tensor Imaging
(DTI) and cholesterol phenotypes measured at four time points:
baseline, 6, 12, and 24 months. After normalization and image
registration, the dimension of a single DTI image is 91 × 109 ×
91. Three dimensional functional principal component analysis
(3D-FPC) was used to summarize imaging signals in the brain
region (Lin et al., 2015), because of the technical difficulty and
operational cost, only 44 of the 91 individuals have all the DTI
imaging data at all the four data points. Based on our own
analysis experience, usually the first one or two 3D-FPC scores
can explain more that 95% of the variation of the imaging
signals in the region. To evaluate the performance of 3D-FPC
for imaging signal feature extraction, we present Figures 11A,B.
Figure 11A is a layer of the FA map of the DTI image from a
single individual and the dimension of this image is 91 × 109.
A total of 91 images were used to calculate the 3D-FPC scores.
Figure 11B was the reconstruction of the same layer of the FA
map of the DTI image from the same individual in Figure 11A

using 5 FPC scores. Comparing Figure 11A with Figure 11B, we
can see that these two images are very similar indicating that
the 3D-FPC score is an effective tool to represent the image
features.
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TABLE 1 | Accuracy of the ANMs and other six methods for inferring Wnt pathway.

Wnt pathway Directed paths Undirected paths included

Top selected edge number 40 50 60 40 50 60

Pairwise ANM 37.50% 38% 35% 47.50% 46% 41.70%

CAM 17.50% 16% 13.30% 25% 24% 25%

SEM 22.50% 20% 15% 32.50% 26% 25%

Random network 25.80% 25.40% 25.40% 31% 30.60% 30.50%

PC algorithm 19.50% 21.60% 16.40% 36.60% 39.20% 27.90%

WGCNA association X X X 25% 22% 23.30%

Glasso X X X 25% 28% 26.70%

To investigate feasibility of image imputation by using a
mixed strategy of 3D-FPC scores and matrix completion, we
used the DTI image of the 44 individuals who have measurement
at all four time points as the investigation dataset. Since at
baseline, the DTI image of all individuals was available, we
did not have missing value problems. We only need to impute
images at 6, 12, and 24 months for some individuals. We
randomly sampled 20 individuals assuming that their imaging
data were missing. Matrix completion methods were used to
impute missing images (Thung et al., 2018). To perform 3D
FPCA, all missing imaging signals at 6, 12, and 24 months
of the individuals were replaced by their imaging signals at
the baseline. Then, 3D FPCA was performed on the original
images and replaced images of 44 individuals at all time
points (base line, 6, 12, and 24 months). The FPC scores of
22 individuals without missing images were used for matrix
completion. The imputed FPC score were then used to form
reconstruction of the DTI images. To evaluate performance
of the above image imputation, we presented Figure 12 that
was the reconstruction of the DTI image in Figure 11A. We
observed from these figures that the imputed image captured
the majority of the information in the original DTI image
data.

After image imputation, DTI images at all four points
and cholesterol and working memory of 91 individuals were
available. The DTI images were segmented into 19 brain
regions using the Super-voxel method (Achanta et al., 2012).
Three-dimensional functional principal component analysis
was used to summarize imaging signals in the brain region (Lin
et al., 2015). The ANMs were used to infer causal relationships
between cholesterol, or working memory and image where
only first FPC score (accounting for more than 95% of the
imaging signal variation in the segmented region) was used to
present the imaging signals in the segmented region. Table 2
presented P-values for testing causation (cholesterol → image
variation) and association of cholesterol with images of 19 brain
regions where the canonical correlation method was used to test
association (Lin et al., 2017). Two remarkable features emerged.
First, we observed both causation and association of cholesterol
with imaging signal variation at 24 months in the temporal
L hippocampus (P-value for causation < 0.00013, P-value
for association < 0.00007) and temporal R hippocampus
regions (P-value for causation < 0.0165, P-value for

association < 0.0044), and only association of cholesterol
with imaging signal variation at 12 months in the temporal
L region (P-value for causation < 0.5262, P-value for
association < 0.0038). Figures 13A,B presented the curves
of cholesterol level of an AD patient and average cholesterol
level of normal individuals, and images at baseline, 6, 12, and
24 months of the temporal L hippocampus of an individual
with AD diagnosed at 24 months time point, respectively.
Figures 14A,C presented the curves of cholesterol level of an
individual with AD diagnosed at 24 months’ time point and
average cholesterol levels of normal individuals, and images
at baseline, 6, 12, and 24 months of the Temporal R regions
of an individual with AD diagnosed at 24 months’ time point,
respectively. Figures 13, 14 showed that images of the temporal
L hippocampus and Temporal R regions at 24 months became
black, which indicated that temporal L hippocampus and
temporal R regions were damaged by the high cholesterol.
Second, we observed only association of cholesterol with imaging
signal variation at 12 and 24 months in the Occipital_Mid brain
region (P-value < 0.0003 at 12 months, P-value < 0.00004
at 24 months), but no causation (P-value < 0.6794 at 12
months, P-value < 0.1922 at 24 months). Figure 15 showed
images of the occipital lobe region. We observed that there
was no significant imaging signal variation in the occipital lobe
region. This strongly demonstrates that association may not
provide information on unraveling mechanism of complex
phenotypes.

In our phenotype-image studies, we also identified causal
relationships between working memory and activities of the
temporal R (hippocampus) at 24months with P-value< 0.00014)
(image → working memory), but identified no association
of working memory with imaging signal variation in the
temporal R (hippocampus) region (P-value < 0.5904) (Table 3).
Figure 14C showed the weak imaging signal or decreased
neural activities in the temporal R (hippocampus) region at
24 months and Figure 14B showed lower working memory
measure of an AD patient than the average working memory
measurements of normal individuals at 24 months. This
demonstrated that the decreased neural activities in the temporal
R (hippocampus) region deteriorated working memory of
the AD patient. This result provided evidence that causation
may be identified in the absence of association signals.
These observations can be confirmed from the literature. It
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FIGURE 10 | The ANM-inferred network structure of the Wnt pathway. The green lines represented the inferred paths consistent to the KEGG while the gray ones

represented the inferred edges absent in the KEGG.

FIGURE 11 | (A) A slice of the FA map from a single individual’s DTI data. (B) FA map reconstruction with the first two 3D-FPC scores.

was reported that cholesterol level impacted the brain white
matter connectivity in the temporal gyrus (Haltia et al.,
2007) and was related to AD (Sjögren and Blennow, 2005;
Teipel et al., 2006). Abnormality in working memory was

observed in patients with temporal lobe epilepsy (Stretton et al.,
2013).

Next we investigate two examples from the gold-standard
data set in (Mooij et al., 2016) to evaluate performance. The
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first dataset was collected at 349 weather stations in Germany
from 1961 to 1990. Let X be altitude and Y be temperature.
Meteorology assumes that places with higher altitude tend to
be colder than those with lower altitude (roughly 1 centigrade
per 100 meter). There is no doubt that altitude is the cause and
temperature the effect, so ground truth is X→Y. P-value of using
the ANMs and permutation test for detecting the causation was
0.001.

The second dataset was Old Faithful geyser data. Old Faithful
is a hydrothermal geyser in Yellowstone National Park in the

FIGURE 12 | Imputed FA map in Figure 11A using 3D-FPC scores and matrix

completion.

state ofWyoming, USA. Each observation corresponds to a single
eruption. The data consists of 194 samples, and was collected in
a single continuous measurement from August 1 to August 15,
1985. Let X be duration of eruption in minutes and Y be time
to the next eruption in minutes. It is commonly accepted that
the time interval between the current and the next eruption is
an effect of the duration of the current eruption, so ground truth
is X→Y. P-value of using the ANMs and permutation test for
detecting the causation was 0.003. Both examples demonstrated
that the ANMs and permutation test were able to detect causation
between two variables.

DISCUSSION

The major purpose of this paper is to address several issues
for shifting the paradigm of genetic analysis from association
analysis to causal inference and to focus on causal discovery
between two variables. The first issue is the basic principles for
causal inference from observational data only. Typical methods
for unraveling cause and effect relationships are interventions
and controlled experiments. Unfortunately, the experiments in
human genetics are unethical and technically impossible. In
the past decade, the new principles for causal inference from
pure observational data have been developed. The philosophical
causal principle assumes that nature consists of autonomous and
independent causal generating process modules and attempts to
replace causal faithfulness by the assumption of Independence
of Cause and Mechanism (ICM). In other words, causal
generating processes of a system’s variables are independent. If
we consider two variables, the ICM states that distribution of

TABLE 2 | P-values for assessing association and causal relationships between the cholesterol and brain region.

Baseline 6 Months 12 Months 24 Months

Causal Association Causal Association Causal Association Causal Association

Frontal_Inf_R 0.5699 0.4318 0.2927 0.9390 0.2169 0.7145 0.6624 0.1580

Frontal_Sup_Mid_L 0.4061 0.5539 0.0203 0.0301 0.6905 0.8670 0.3316 0.9664

Insula_L 0.9274 0.4602 0.2766 0.3102 0.5396 0.2724 0.7734 0.6819

Fusiform_L 0.3253 0.6601 0.8358 0.1778 0.5720 0.6238 0.8411 0.4510

Insula_R 0.3853 0.2367 0.6093 0.8874 0.0109 0.1218 0.2575 0.1832

Temporal_R 0.3740 0.7487 0.2997 0.3214 0.2813 0.8856 0.0165 0.0044

Occipital_Mid 0.7275 0.3344 0.8082 0.4159 0.6794 0.0003 0.1922 0.00004

Temporal_L 0.1455 0.4873 0.5384 0.9752 0.5262 0.0038 0.0001 0.0001

Frontal_L_R 0.1673 0.9822 0.8928 0.9269 0.3784 0.4762 0.5832 0.8093

Frontal & Temp_L 0.6067 0.4698 0.9643 0.3847 0.2945 0.9249 0.5057 0.1937

Lingual 0.2625 0.5307 0.8354 0.0834 0.7238 0.8036 0.2230 0.5510

Cingulum 0.6232 0.6483 0.3061 0.1381 0.0587 0.7611 0.3581 0.6024

Precentral_R 0.7113 0.4946 0.7263 0.0948 0.1565 0.6969 0.5169 0.6388

Frontal_Inf_L 0.9167 0.9260 0.5886 0.0138 0.3091 0.0929 0.3568 0.7203

Occipital 0.2444 0.3753 0.0782 0.9927 0.8490 0.2909 0.7388 0.4617

Precuneus 0.8480 0.2492 0.4183 0.9418 0.7208 0.5096 0.9071 0.8899

SMP 0.9866 0.1630 0.4416 0.6642 0.1175 0.3797 0.9788 0.3388

Precentral_L 0.6825 0.7937 0.4142 0.0759 0.9402 0.5150 0.5254 0.9770

Precentral_R 0.0488 0.4103 0.9759 0.9831 0.7251 0.9000 0.5008 0.0105
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FIGURE 13 | (A) AD and normal individuals’ CHL curves. (B) Images of temporal L hippocampus region.

cause and conditional distribution of effect given the cause are
independent.

The second issue is how to measure independence (or
dependence) between two distributions. Statistics only provides
tools for measuring independence between two random
variables. There are nomeasures or statistics to test independence
between two distributions. Therefore, we introduce algorithmic
information theory that can offer notion and mathematical
formulation of independence between two distributions or
independence of mechanisms. We use algorithmic mutual
information to measure independence between two distributions
which can be used to assess causal relationships between two
variables. Algorithmically independent conditional implies that
the joint distribution has a shorter description in causal direction
than in non-causal direction.

The third issue is to develop causal models that can
easily assess algorithmic independent conditions. The
algorithmic independent condition states that the direction
with the lowest Kolmogorov complexity can be identified
to be the most likely causal direction between two random
variables. However, it is well-known that the Kolmogorov
complexity is not computable (Budhathoki and Vreeken,
2017). Although stochastic complexity was proposed to
approximate Kolmogorov complexity via the Minimum
Description Length (MDL) principle, it still needs heavy
computations. The ANM was developed as practical causal

inference methods to implement algorithmically independent
conditions. We showed that algorithmic independence
between the distribution of cause X and conditional
distribution PY|X of effect given the cause is equivalent to
the independence of two random variables X and EY in the
ANM.

The fourth issue is the development of test statistics for
bivariate causal discovery. The current ANM helps to break the
symmetry between two variables X and Y . Its test statistics are
designed to identify causal directions: X→Y or Y→X. Statistics
and methods for calculation of P-values for testing the causation
between two variables have not been developed. To address
this issue, we have developed a new statistic to directly test for
causation between two variables and a permutation method for
the calculation of P-value of the test.

The fifth issue is the power of the ANM. The challenge arising
from bivariate causal discovery is whether the ANM has enough
power to detect causation between two variables. To investigate
their feasibility for causal inference, the ANMs were applied
to simulation data. We considered three non-linear functions:
quadratic, exponential, and logarithm functions and two random
noise variables: normal and t distribution. We showed that the
ANM had reasonable power to detect existence of causation
between two variables. To further evaluate its performance, the
ANM was also applied to reconstruction of the Wnt pathway
using gene expression data. The results demonstrated that the
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FIGURE 14 | (A) AD and normal individuals’ CHL curves. (B) AD and normal individuals’ working memory. (C) Images of temporal R hippocampus region.

ANM had higher power to infer gene regulatory networks than
six other statistical methods using KEGG pathway database as
gold standard.

The sixth issue is how to distinguish association from
causation. In everyday language, correlation and association
are used interchangeably. However, correlation and association
are different terminologies. Correlation is to characterize the
trend pattern between two variables, particularly; the Pearson
correlation coefficient measures linear trends, while association
characterizes the simultaneous occurrence of two variables. The
widely used notion of association often indicates the linear
correlation. When two variables are linearly correlated we say
that there is association between them. Pearson correlation
or its equivalent, linear regression is often used to assess
association. Causation between two variables is defined as
independence between the distribution of cause and conditional
distribution of the effect, given cause. In the non-linear
ANM, the causal relation is assessed by testing independence
between the cause variable and residual variable. We investigated
the relationships between causation and association (linear
correlation). Some theoretical analysis and real trait-imaging data
analysis showed that there were three scenarios: (1) presence
of both association and causation between two variables, (2)
presence of association, while absence of causation, and (3)

presence of causation, while lack of association in causal
analysis.

Finally, in real imaging data analysis, we showed that causal
traits change the imaging signal variation in the brain regions.
However, the traits that were associated with the imaging signal
in the brain regions did not change imaging signals in the region
at all.

The experiences in association analysis in the past several
decades strongly demonstrate that association analysis is lack
of power to discover the mechanisms of the diseases and
provide powerful tools for medicine. It is time to shift the
current paradigm of genetic analysis from shallow association
analysis to more profound causal inference. Transition of
analysis from association to causation raises great challenges.
The results in this paper are considered preliminary. A
large proportion of geneticists and epidemiologists have
serious doubt about the feasibility of causal inference in
genomic and epigenomic research. Causal genetic analysis
is in its infantry. The novel concepts and methods for
causal analysis in genomics, epigenomics, and imaging data
analysis should be developed in the genetic community.
Large-scale simulations and real data analysis for causal
inference should be performed. We hope that our results will
greatly increase the confidence in genetic causal analysis and
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FIGURE 15 | (A) AD and normal individuals’ CHL curves. (B) Images of occipital lobe region.

TABLE 3 | P-values for assessing association and causal relationships between the working memory and brain region.

Baseline 6 Months 12 Months 24 Months

Causal Association Causal Association Causal Association Causal Association

Frontal_Inf_R 0.7515 0.6348 0.4857 0.5088 0.3709 0.5807 0.5028 0.0572

Frontal_Sup_Mid_L 0.2022 0.2877 0.0187 0.8929 0.2355 0.8327 0.4114 0.7976

Insula_L 0.0300 0.5539 0.4928 0.1057 0.8959 0.5846 0.6212 0.0332

Fusiform_L 0.3244 0.5135 0.0931 0.0503 0.0617 0.9162 0.6927 0.0741

Insula_R 0.2212 0.9885 0.7729 0.6777 0.5171 0.1434 0.7416 0.4923

Temporal_R 0.9042 0.5224 0.9641 0.6987 0.2813 0.0939 0.0001 0.5904

Occipital_Mid 0.8350 0.4884 0.0309 0.7277 0.6280 0.9993 0.2067 0.4716

Temporal_L 0.9491 0.8716 0.1052 0.4597 0.0001 0.0006 0.0001 0.5836

Frontal_L_R 0.8957 0.0212 0.2522 0.5165 0.2658 0.7134 0.1474 0.1720

Frontal & Temp_L 0.9189 0.3919 0.7792 0.1148 0.3951 0.3585 0.7691 0.7355

Lingual 0.4241 0.3219 0.4952 0.5941 0.1707 0.8981 0.8382 0.6736

Cingulum 0.5063 0.5778 0.0383 0.9534 0.5947 0.3123 0.1482 0.6307

Precentral_R 0.1398 0.2945 0.9875 0.5693 0.3247 0.7966 0.7323 0.7358

Frontal_Inf_L 0.8985 0.0989 0.2982 0.3727 0.8644 0.0363 0.9291 0.9581

Occipital 0.3828 0.8736 0.5267 0.8378 0.4624 0.1352 0.6937 0.1991

Precuneus 0.7215 0.8909 0.1169 0.5417 0.0406 0.6599 0.0429 0.9704

SMP 0.0900 0.7818 0.9407 0.6380 0.4428 0.3417 0.3151 0.8178

Precentral_L 0.9660 0.7217 0.6289 0.6630 0.8759 0.5526 0.8848 0.1713

Precentral_R 0.4051 0.3829 0.4783 0.5286 0.6365 0.0569 0.9260 0.5996

Frontiers in Genetics | www.frontiersin.org 15 August 2018 | Volume 9 | Article 347

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Jiao et al. Bivariate Causal Discovery

stimulate discussion about whether the paradigm of genetic
analysis should be changed from association to causation or
not.
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