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The current paradigm of genomic studies of complex diseases is association and

correlation analysis. Despite significant progress in dissecting the genetic architecture of

complex diseases by genome-wide association studies (GWAS), the identified genetic

variants by GWAS can only explain a small proportion of the heritability of complex

diseases. A large fraction of genetic variants is still hidden. Association analysis has

limited power to unravel mechanisms of complex diseases. It is time to shift the paradigm

of genomic analysis from association analysis to causal inference. Causal inference

is an essential component for the discovery of mechanism of diseases. This paper

will review the major platforms of the genomic analysis in the past and discuss the

perspectives of causal inference as a general framework of genomic analysis. In genomic

data analysis, we usually consider four types of associations: association of discrete

variables (DNA variation) with continuous variables (phenotypes and gene expressions),

association of continuous variables (expressions, methylations, and imaging signals) with

continuous variables (gene expressions, imaging signals, phenotypes, and physiological

traits), association of discrete variables (DNA variation) with binary trait (disease status)

and association of continuous variables (gene expressions, methylations, phenotypes,

and imaging signals) with binary trait (disease status). In this paper, we will review

algorithmic information theory as a general framework for causal discovery and the recent

development of statistical methods for causal inference on discrete data, and discuss the

possibility of extending the association analysis of discrete variable with disease to the

causal analysis for discrete variable and disease.
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INTRODUCTION

By February 6th, 2017, a catalog of published genome-
wide association studies (GWAS) had reported significant
association of 26,791 SNPs with more than 1,704 traits in 2,337
publications (A catalog of Published Genome-Wide Association
Studies, 2017)1. Many of these associated SNPs are non-coding
variants (Timpson et al., 2017). Despite significant progress
in dissecting the genetic architecture of complex diseases by
GWAS, understanding the etiology and mechanism of complex
diseases remains elusive. It is known that significant findings
of association analysis are1 lacking in consistency and often
proved to be controversial (Valente et al., 2015; Wakeford,
2015). Complex diseases are often caused by different genetic
mutations, have complex and multimodal genetic etiology,
and show substantial phenotype heterogeneity in morphology,
physiology and behavior (Brookes and Robinson, 2015). There
are multiple steps between genes and phenotypes. Each step
may be influenced by genomic variation and can weaken links
between genes and phenotypes. As a consequence, this will
obscure the causal mechanisms of disease. The recent study
finding “association signals tend to be spread across most of the
genome” again shows that association signals provide limited
information on causes of disease, which calls the future of
the GWAS into question (Boyle et al., 2017; Callaway, 2017).
Association and causation are different concepts (Altman and
Krzywinski, 2015). Association of a genetic variant with the
disease is to characterize the dependence between the genetic
variant and disease, while causation from the genetic variant to
the disease is to indicate that the presence of the genetic variant
will produce effect and cause disease. Observed association may
not infer a causal relationship and the lack of association may
not be necessary to imply the absence of a causal relationship
(Wakeford, 2015). Finding causal SNPs only by searching the set
of associated SNPs may miss many causal variants and may not
be an effective research direction in genetics. The dominant use
of association analysis for genetic studies of complex diseases
is a key issue that hampers the theoretical development of
genomic science and its applications to discovery of mechanisms
of diseases in practice. Causality shapes how we view and
understand mechanism of complex diseases (Gottlieb, 2017). In
addition, causal models can also be used to directly predict the
results of intervention, but association usually cannot.

It is time to develop a new generation of genetic analysis to
shift the current paradigm of genetic analysis from association
analysis to causal inference. To make the shift feasible, we need
(1) to develop novel causal inference methods for genome-wide
and epigenome-wide causal studies of complex disease; (2) to
develop unified frameworks for systematic casual analysis of
integrated genomic, epigenomic, imaging and clinical phenotype
data and to infer multilevel omics and image causal networks for
the discovery of paths from genetic variants to diseases. The focus
of this paper is to survey statistical methods for causal inference
and explore the potential to use modern causal inference theory

1A catalog of Published Genome-Wide Association Studies. 2017. Available from:

https://www.genome.gov/page.cfm?pageid=26525384&clearquery=1#result_table

for developing statistics for genome-wide causal studies (GWCS)
of complex diseases.

CAUSAL MARKOV CONDITIONS

The widespread view about causation in genetic epidemiology
field is that only interventions to a system can discover causal
relations. Many epidemiologists and statistical geneticists have
doubt about the possibility of using observational data to identify
disease-causing variants and “shied away” from causal inference
based on observation data (Janzing et al., 2016). In the past
decade, great progress in causal inference has been made. In
contrast to classical statistics where the relationships between
random variables are measured by statistical dependence or
association, the algorithms for causal inference that are designed
to discover the data generating processes based on statistical
observations have been developed.

The classical causal inference theory assumes the Causal
Markov conditions to infer causal relationships among multiple
variables and connect causality with statistics (Janzing and
Schölkopf, 2010). Consider a set of variables V = {X1, . . . ,Xn}.
Let G = {V ,E} be a directed acyclic graph (DAG) where nodes in
the DAG represent the random variables Xi and an arrow from
node Xi to node Xj denotes a causal direction. Let P(X1, . . . , Xn)
be a joint probability distribution of variables X1, . . . ,Xn. The
Markov condition describes the causal structure of the DAG G.
The DAG can also be characterized by the concept of parent sets.
Let pai and NDi be the set of parents of the node Xi, respectively.
The Markov conditions can be formulated as the following three
forms (Janzing and Schölkopf, 2010):

1. Factorization of the joint distribution:
The joint distribution P(X1, . . . , Xn) can be factorized into the
conditional distribution:

P (X1, . . . ,Xn) =
∏n

i= 1
P(Xi|pai), (1)

where P(Xi|pai) is the conditional probability of Xi, given the
values of all parents of Xi.

2. Local markov condition:
Every node is conditionally independent of its
non-descendants, given its parents, i.e.,

Xi �NDi|pai,

where NDi denotes the non-descendent of the node i .
3. Global markov condition:

Consider three datasets X,Y and Z. If X and Y are d-separated
by Z then we have

X �Y |Z.

To assess conditional independence in a more general case,
we introduce a useful concept, d-separation which associates
“correlation” with “connectedness” and independence with
“separation”. Two sets of variables X and Y are d-separated
by a third set of variables Zif and only if

(1) there is a path i→ m→ j where i ∈ X, m ∈ Z and j ∈ Y
(Figure 1A) or
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FIGURE 1 | (A) Causal direction 1, (B) Causal direction 2, (C) Causal direction

3, and (D) Causal direction 4.

(2) there is a path i← m→ j where i ∈ X, m ∈ Z and j ∈ Y
(Figure 1B) or

(3) there is path i→ m← j where i ∈ X, j ∈ Y , butm is not
in Z (Figure 1C) or

(4) there is path i → m ← j where i ∈ X, j ∈ Y , but m and
its descendants are all not in Z (Figure 1D).

In the DAG G, we defined the conditional densities P(xi|pai)
as the Markov kernels. The set of Markov kernels defines a
Markovian density. However, in general, the Markov conditions
cannot uniquely determine causal graphs. Many different DAGs
satisfy the same set of independence relations. For example,
consider three simple DAGs: x → y → z, x ← y ← z
and x ← y → z. Three variables x, y and zin all three DAGs
satisfy the same conditional independent distribution: x and z are
independent, giveny. Figure 2 shows three different DAGs that
share the same conditional independent distributions: B �C|A
and A �D|(B,C). These examples show that multiple graphs may
satisfy the Markov conditions. Except for Markov conditions, we
need other constraints for learning causal structure.

The faithfulness condition is another constraint that helps to
infer causal structure from observational data. The faithfulness
condition requires that conditional independences in the
distribution correspond to the d-separation in the DAG one by
one. In other words, faithfulness condition requires that every
conditional independence in the distribution must correspond to
the Markov condition that is applied to the DAG (Peters et al.,
2017; Xiong, 2018).

ALGORITHMIC COMPLEXITY FOR
CAUSAL INFERENCE

Markov condition approaches to causal inference have two
serious limitations. First, the approaches based on Markov

condition and faithfulness assumption can only identify the
graph up to its Markov equivalence class (Janzing and Schölkopf,
2010). Second, the Markov condition approaches need sampling.
However, some cases require causal inference for single
observation where the Markov condition approaches cannot be
applied.

To overcome these limitations, we need to develop methods
for causal inference without resorting to probability theory. One
approach is to infer causation via algorithmic information theory.
We begin with introduction of algorithmic information theory.
Consider two 20-bit binary strings:

S = 10101010101010101010

S = 00011101001000101101,

which are equally likely to represent the results of 20 flips of coin.
However these two strings have large difference in the complexity
between them. The first string has a short description: a 20-bit
string with 1 in position in odd number, or can be described
as “10 10 times,” which consisting of 11 characters. The second
string has no obvious simple description. Therefore, the length of
the shortest description of the first and second strings are 11 and
20, respectively.

For any string x, we define the Kolmogorov complexity
K(x) as the length of the shortest program that generates x,
denoted as x∗, using universal prefix Turing machine (Janzing
and Schölkopf, 2010). The conditional Kolmogorov complexity
K(x|y) of a string x given another string y is defined as the
length of the shortest program that can generate x from y.
The joint Kolmogorov complexity K(x, y) is defined as the
complexity of concatenation x′y where x′ denotes a prefix code of
x. Mutual information and Markov conditions can be extended
to algorithmic mutual information and Algorithmic Markov
conditions (Supplementary Note A).

ADDITIVE NOISE MODELS

In the previous section, we introduce the Markov conditions
and faithfulness, which are the constrained-based approaches.
These constrained-based approaches cannot identify the unique
causal solution or make causal inference between two variables.
However, the genome wide association studies (GWAS) test the
association of single SNP with the disease. GWAS investigates
dependence between two variables. Similar to GWAS, the
genome-wide causation studies (GWCS) needs to discover the
SNP that causes disease. We need to develop statistical methods
for bivariate causal discovery. The DAG approach requires
at least variables for causal inference. Therefore, the classical
Bayesian networks and DAG-based causal inference methods
cannot be applied to the GWCS. To overcome these limitations,
some authors (Kano and Shimizu, 2003; Shimizu et al., 2006;
Peters et al., 2011) proposed additive noise models (ANMs):

Y = f (X)+ N, N � X, (2)

where f is a function, and N is noise that is independent of the
cause X. It is clear that the conditional distribution P(Y|X) of the
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FIGURE 2 | Different DAGs can have same set of conditional independence distributions. (A) DAG example A, (B) DAG example B, (C) DAG example C.

response , givenX is equal to the noise distribution PN(Y−f (X)).
If X→ Y then we should have (Janzing and Steudel, 2010)

I(P (X) : PN
(
Y − f (X)

)
= 0. (3)

Consider two ANMs: integer models and cyclic models (Peters
et al., 2011).

Integer Models
Consider two random variables X and Y that take integer values
(Z). The support can be either infinite or finite. Consider an
ANM from→ Y :

Y = f (X)+ N, N � X, (4)

where f is a function f :Z→ Z and N is a noise variable. Let
n

(
l
)
= P(N = l). In (4), we further assume n(0) ≥ n(j) for

all j 6= 0. If there is also an ANM to fit the data, then the ANM is
referred to as reversible.

Cyclic Models
We first define the ring Z/mZ as the set of remainders modulo
m, i.e., Z/mZ= {[0] , [1] , . . . , [m− 1]}.

Now we consider random variables that can take values in a
periodic domain. Formally, we define m-cyclic random variable
as the variable that takes values in Z/mZ. Let X and Y be m and
k-cyclic random variables, respectively. Define an ANM from X
to Y :

Y = f (X)+ N, N � X, (5)

where f is a function f :Z/mZ→ Z/kZ,N is a k-cyclic noise. We
assume n(0) ≥ n(j) for all j 6= 0.

Similarly, we can define an ANM from Y to :

X = g (Y)+ Nx, Nx � Y , (6)

where g :Z/kZ→ Z/mZ and Nx is am-cyclic noise.
If both the ANM from X → Y and ANM from Y to X hold

then the ANM is called reversible. The selection of the integer
ANM or cyclic ANMmainly depends on the target Y domain.

The cyclic models can be used for genetic studies of complex
disease. Let Y be a binary trait to indicate the disease status of
the individual. Thus, Y is a 2-cyclic variable. Thepotential cause

variable X denotes the genotype of the individual. Thus, X is a
3-cyclic variable.

IDENTIFIABILITY

In most cases, nature selects one causal direction. The causal
inference principle states that if Y satisfies the ANM from X to
Y , but does not satisfy the ANM from Y to X, then we infer X to
be the cause for Y , which is denoted by X → Y . In some cases,
Y satisfies ANMs in two directions and hence causation does not
exist. The question is under what conditions a joint distribution
admits an ANM in at most one direction.

The causal inference principle implies that if X → Y , then
the conditional probability P(Y|X) does not depend on the
cause X. Several examples to illustrate identifiability are given in
Supplementary Note B.

GENETIC ASSOCIATION ANALYSIS AND
CAUSATION ANALYSIS

It is well known that correlation (association) and causation
are different concepts. Correlation does not imply causation
and conversely, causation also does not imply correlation. Our
experiences demonstrated that large proportions of causal loci
cannot be discovered by association analysis. This explains
why a large number of genetic variants still remain hidden.
The observed association may be in part due to chance, bias
and confounding. Furthermore, a recent study found that
“association signals tend to be spread across most of the genome,”
by the debatable omnigenic model, which again shows that
association signals provide limited information on causes of
disease, calling the future of the GWAS into question (Boyle et al.,
2017; Callaway, 2017). An observed association may not lead to
inferring a causal relationship and the lack of associationmay not
be necessary to imply the absence of a causal relationship. Finding
causal SNPs only via searching the set of associated SNPs may
not be an effective research direction in genetics. The dominant
use of association analysis for genetic studies of complex diseases
hampers the theoretical development of genomic science and its
application in practice. The examples showing that association
and causation are difference concepts are given in Supplementary
Note C.
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Algorithm 1 for Causal Genetic Analysis Using ANM:

1. Fit the following nonlinear integer regression to the data.

Y = f (X)+ NY .

Calculate the residuals N̂Y = Y − f̂ (X).

2. Fit the following nonlinear integer regression to the data.

X = g (Y)+ NX .

Calculate the residuals N̂x = X − ĝ(Y) .

3. Test for independence.

If N̂Y andX are independent (N̂Y �X), and N̂X and Y are not
independent, then X is causing Y (X→ Y)

If both N̂Y and X, and N̂X and Y are not independent or
if both N̂Y and X, and N̂X and Y are independent, then no
causation conclusion can be made.

CAUSAL GENETIC ANALYSIS

The ANMs can be used for casual genetic analysis of complex
disease. The procedures are summarized as follows Peters et al.
(2011).

The ordinary egression usually minimizes the sum of square
of errors. However, here we evaluate the proposed nonlinear
function by checking the independence of regressor and the
residuals. Therefore, Peters et al. (2011) suggested using a
dependence measure (DM) between regressor and residuals as a
lost function. If we simultaneously consider multiple SNPs, the
ANMs with a variate (SNP) can be extended to the ANMs with
multivariate variables (multiple SNPs). We assume that W is a q
dimensional vector of variables. An ANMwith multiple SNPs for
causal genetic analysis is given as follows:

Y = f (W)+ N, W � N, (7)

whereW = [W1, . . . , Wq].
Algorithm 1 in Peters et al. (2011) can be adopted to the

regression with multiple regressor. The following algorithm for
discrete regression with multiple regressor takes the discrete
regression with one regressor as its special case.

where ε and T are pre-specified.
For inferring causation involving one vector of variables,

distance correlation will be used as DM. The problem for testing
the independence between cause (regressor) and residuals can be
formulated as a 2 × q contingence table (Table 1). Let n0 and n1
be number of individuals with N = 0 and N = 1, respectively.
Let n = n0 + n1. Let gj1...jq denote the genotype of q SNPs, aj1...jq
and bj1...jq be the number of individuals with genotype gj1...jq , and
N = 0 and N = 1, respectively. Define the marginal frequencies:
n0
n ,

n1
n and

aj1... jq+bj1... jq
n . Then, we obtain

Algorithm 2 (Distance Regression With Dependence Measure)

Step 1: Calculate the sampling distribution P̂(W,Y).

Step 2: Initialization.

f (0)
(
wi

)
= argmaxyP̂

(
W = wi,Y = y

)
, t = 0,

where wi = [wi
1, . . . , w

i
q].

Step 3: Repeat

t=t+1;

Step 4: for i = 1, ..., n do

Step 5: f (t)
(
wi

)
= argminYDM(W, Y − f

(t−1)
wi→y (W))

end for

Step 6: until |
∣∣f (t) − f (t−1)

∣∣ |
2

< ε or
(
N̂ = Y − f (t) (W)

)

�

W , or t = T,

TABLE 1 | Contingency table for testing independence.

Genotype Genotype gj1 ... jq
Genotype Genotype

g1 1 ... 1 . . . . . . g3.3 ... 3

N = 0 a1 1... 1 . . . aj1... jq
. . . a3.3... 3 n0

N = 1 b1 1... 1 . . . bj1... jq
. . . b3.3... 3 n1

a1 1... 1 . . . aj1... jq
+ . . . a3.3... 3+ n = n0 + n1

+b1 1... 1 bj1... jq
b3.3... 3

E[aj1...jq ] = 1
nn0(aj1...jq+bj1...jq ) and E[bj1...jq ] =

n1
n (aj1...jq+bj1...jq ). Then, the test statistic for testing independence
is defined as

T =
∑

j1j2...jq




(
âj1...jq − E[aj1...jq ]

)2

E[aj1...jq ]
+

(
b̂j1...jq − E[bj1...jq ]

)2

E[bj1...jq ]


 ,

(8)

where âj1...jq and b̂j1...jq are observed values of aj1...jq and bj1...jq ,

respectively. Under the null hypothesis of independence, the test
statistic T is distributed as a central χ2

(3q−1) distribution with

degrees of freedom 3q − 1.
If SNPs involve rare variants or number of SNPs increases,

the expected counts of many cells will be small. Fisher’s exact test
should be used to test for independence.

CAUSATION IDENTIFICATION USING
ENTROPY

The ANM assumes that noise or any outside factor (exogenous
variable) affects the effect variable additively, i.e.,

Y = f (X)+ E, E � X.
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The ANM can be extended to more general nonlinear model
(Kocaoglu et al., 2016). We assume that variable Y is an arbitrary
function of X and an exogenous variable E:

Y = f (X,E) , X � E, (9)

where we assume that the exogenous variable E has low Renyi
entropy. Renyi entropy is defined as

H0(E) = log k, (10)

where k is the number of states of the variable E.
In other words, if the model in the wrong causal direction:

X = g(Y , Ẽ), then the exogenous variable Ẽ has higher Renyi
entropy than that of E, i.e., H0(E) ≤ H0(Ẽ).

Since Renyi entropy H0 is difficult to compute, we can
replace Renyi entropy by Shannon entropy H1. An algorithm
for inferring the true causal direction is to find the exogenous
variable E with the smallest H1(E) such that

Y = f (X,E) , X � E.

Kocaoglu et al. (2016) proposed an algorithm to calculate the
Sharon entropy H1(E). They make argument that

P
(
Y = y

∣∣X = x
)
= P(f (x,E) = y). (11)

If we define fx (E) = f (x,E), then it follows from Equation
(11) that we can use the conditional distribution P(Y|X) to
calculate the distribution of E: P

(
Y = y

∣∣X = x
)
= P(fX (E) = y).

Algorithm 1 in Kocaoglu et al. (2016) assumed that the number
of states of the variables X and Y is equal, which prevents
application of Algorithm 1 to causal genetic analysis for genotype
data. However, if we consider allele distribution data, Algorithm
1 in Kocaoglu et al. (2016) can still be applied to the causal genetic
analysis. Consider the matrix

M =
[
Py(0) Px(0)
Py(1) Px(1)

]
,

where

x =
{
0 a
1 A

, y =
{
0 Normal
1 disease

.

Algorithm 1 in Kocaoglu et al. (2016) can then be written as
follows.

Step 1. Input matrixM =
(
Pi(j)

)
2×2.

Step 2. Define e = [⊢].
Step 3. Sort each row of M in decreasing order. pi (1) =

maxj{pi
(
j
)
}.

Step 4. Search minimum of maximum of each row:
α mini(pi (1)).

Step 5. While α > 0 do
e← [e,α],
Remove α from maximum of each row: pi (1) pi (1)− α,
for all i
Sort each row of updatedM in decreasing order.
α← mini{Pi (1)}.

Step 6. End while

Step 7. Output e.

For the genotype data, we suggest to use Sharron entropy H1(E)
and H1(Ẽ) as a DM in the ANM and compare H1(E) with H1(Ẽ).
If H1 (E) < H1(Ẽ) then X→ Y ; if H1(Ẽ) < H1(E) then Y → X.

DISTANCE CORRELATION FOR CAUSAL
INFERENCE WITH DISCRETE VARIABLES

In previous sections, we introduce the basis principal for
assessing causation X → Y that the distribution P(X) of
causal X is independent of the causal mechanism or conditional
distribution P(Y|X) of the effect Y , given causal X. Now
the question is how to assess their independence. Recently,
distance correlation is proposed to measure dependence between
random vectors which allows for both linear and nonlinear
dependence (Sze’kely et al., 2007; Sze’kely and Rizzo, 2009).
Distance correlation extends the traditional Pearson correlation
in two remarkable directions:

(1) Distance correlation extends the Pearson correlation defined
between two random variables to the correlation between
two sets of variables with arbitrary numbers;

(2) Zero of distance correlation indicates independence of two
random vectors.

Discretizing distributions P(X) and P(Y|X), and viewing their
discretized distributions as two vectors P(X) and P(Y|X), the
distance correlation between P(X) and P(Y|X) can be used to
assess causation between X and Y .

Consider two vectors of random variables: p- dimensional
vectorX and q- dimensional vectorY . Let P(x) and P(y) be density
functions of the vectors X and Y , respectively. Let P(x, y) be
the joint density function of X and Y . There are two ways to
define independence between two vectors of variables: (1) density
definition and (2) characteristic function definition. In other
words, if X and Y are independent then either

(1) P(x, y) = P(x)P(y) or

(2) fX,Y (t, s) = fX(t)fY (s),

where fX,Y (t, s) = E[ei(t
Tx+sTy)], fX(t) = E[eit

Tx] and fY (s) =
E[eis

Ty] are the characteristic functions of (X,Y), X and Y ,
respectively. Therefore, we can use both distances ||P(x, y) −
P(x)P(y)|| and ||fX,Y (t, s) − fX(t)fY (s)|| to measure dependence
between two vectorsX and Y . Distance correlation (Sze’kely et al.,
2007) uses distance between characteristic function to define the
dependence measure.

Assume that pairs of (Xk,YK), k = 1, ..., n are sampled.
Calculate the Euclidean distances:

akl = ||XK − Xl||p, bkl = ||Yk − Yl||q, k = 1, ..., n, l = 1, ..., n.

Define

āk. =
1

n

∑n

l= 1
akl, ā.l =

1

n

∑n

k= 1
akl,

ā.. =
1

n2

∑n

k= 1

∑n

l= 1
akl,
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b̄k. =
1

n

∑n

l= 1
bkl, b̄.l =

1

n

∑n

k= 1
bkl and

b̄.. =
1

n2

∑n

k= 1

∑n

l= 1
bkl.

Define two matrices:

A = (Akl)n×n and B = (Bkl)n×n,

where

Akl = akl − āk. − ā.l + ā..,

Bkl = bkl − b̄k. − b̄.l + b̄.., k, l = 1, ..., n.

Finally, the sampling distance covarianceVn(X,Y), variance
Vn(X) and correlation Rn(X,Y) are defined as

V2
n(X,Y) =

1

n2

∑n

k= 1

∑n

l= 1
AklBkl, (12)

V2
n(X) = V2

n(X,X) =
1

n2

∑n

k= 1

∑n

l= 1
A2
kl,

V2
n(Y) =

∑n

k= 1

∑n

l= 1
B2kl,

R2n(X,Y) =
{

V2
n(X,Y)√

V2
n(X)V

2
n(Y)

, V2
n(X)V

2
n(Y) > 0

0 V2
n(X)V

2
n(Y) = 0,

(13)

respectively.

Independence can be formally tested by statistics based on
distance correlation. The null hypothesis is defined as H0 :X and
Y are independent.

We can use Equation (12) to define a test statistic:

TIND = n
V2
n(X,Y)

ā..b̄..
. (14)

Since distribution of test statistics is difficult to compute, we
often use permutations to calculate P-values. Specifically, we can
permutate X and Ymillions of times. For each permutation, we
compute test statistic TIND. Therefore, via permutations we can
calculate the empirical distribution of TIND. Using an empirical
distribution, we can calculate the P-value as

P − value = P(TIND > TIND0),

where TIND0 is the observed value of TIND in real data.
Distance correlation can be used to test independence between

causal and causal generating mechanisms (Liu and Chan, 2016).
Consider p- dimensional random vectorX and q- dimensional
random vectorY . Let P(X,Y) be their joint distribution. Let P(X)
and P(Y|X) be the density function of X and conditional density
function of Y , givenX, respectively. Similarly, we can define
P(Y) and P(X|Y). Unlike association analysis where dependence

FIGURE 3 | Simulation scenario 1, |N| = 2. Simulation scenario 2, |N| = 3. Simulation scenario 3, |N| = 5. Simulation scenario 4, |N| = 7.
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is measured between two random vectors, in causal analysis,
dependence is measured between two distributions.

The distance correlation dependence measures between two
distributions are defined as

1X→Y = R(P(X), P(Y|X)), (15)

1Y→X = R(P(Y), P(X|Y)), (16)

where R(., .) is a distance correlation measure between two
vectors.

Suppose that X and Y are discretized (or divided) into m and
k groups, respectively. Let mi be the number of points X in the
ith group and kij be the number of points (X,Y) where X is in
the ith group and Y is in the jth group. Then, n =

∑m
i=1mi and

mi =
∑k

j=1 kij. Let X
(i) be the collection of all points X in the ith

group and Y(j) be the collection of all points Y in the jth group.
Then, the estimated density function P(X(i)) is P(X(i)) = mi

n and

the conditional density function P(Y(j)|X(i)) = kij
mi
.

Let SX→Y = a..b... Distance covariance is defined as

V2
m(P(X), P(Y|X)) =

1

m2

∑m

i=

∑m

j=1
AijBij. (17)

Similarly, V2
m(P(Y), P(X|Y)) and SY→X can be similarly defined.

Define

1X→Y =
mV2

m(P(X), P(Y|X))
SX→Y

, (18)

1Y→X =
mV2

m(P(Y), P(X|Y))
SY→X

. (19)

The null hypothesis for testing is
H0 : no causation between two vectors X and Y .
The statistic for testing the causation between two vectors X

and Y is defined as

TC = |1X→Y −1Y→X|. (20)

When TC is large, either 1X→Y > 1Y→X which implies Ycauses
X, or 1Y→X > 1X→Y which implies that X causes Y . When
TC ≈ 0, this indicates that no causal decision can be made.

SIMULATIONS

We use simulation experiments that were presented in Liu and
Chan (2016) to compare the performance of three methods:
ANM, Distance correlation and entropy for causal inference
with discrete variables. Consider two sets of data (1) dataset 1
and dataset 2 generated in section (Additive Noise Models) and
section (Models with Randomly Generated P(X) and P(Y|X)) of
the paper written by (Liu and Chan, 2016), respectively.

The accuracies of three methods for causation discovery in
dataset 1 were shown in Figure 3. A total of 200, 300, 500, 1,000,
2,000, and 4,000 points for each model were sampled. Figure 3
showed that the Entropy-based ANMs where the independence
between cause X and residuals E are tested by entropy had the
highest accuracies to infer cause-effect direction, the distance-
correlation-based methods had the lowest accuracies, and the

FIGURE 4 | Simulation scenario 1, (|X|,|Y|)=(12,12). Simulation scenario 2, (|X|,|Y|)=(15,15). Simulation scenario 3, (|X|,|Y|)=(18,18). Simulation scenario 4, (|X|,|Y|) =
(20,20).
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classical ANMs with discrete variables had the similar accuracies
as that the entropy-based ANMs had.We observed that as sample
sizes increased the accuracies increased and when the sample
sizes are larger than 2,000 all three methods can accurately infer
cause-effect directions.

Figure 4 plotted accuracy of three methods for inferring
cause-effect direction as a function of sample sizes. Unlike the
results in Liu and Chan (2016) where they showed that distance
correlation had much higher accuracy to infer causal direction
than the ANMs, we observed in Figure 4 that both entropy-
based ANMs and classical ANMs had similar accuracies and
had higher accuracies than the distance correlation method.
We also observed that even when sample sizes reached 4,000
the distance correlation method still could not reach accuracy
beyond 80%.

To further evaluate their performance, we calculated the
type I error rates three statistics for testing causation using
simulations. We randomly selected 10 SNPs across the genome
from 1,000 Genome Project data. A total of 1,000 simulations
were conducted. We consider two scenarios: (1) no association
and no causation and (2) presence of association, but no
causation. Tables 2, 3 presented average type 1 error rates of
three tests over 10 SNPs. Tables 2, 3 showed that type 1 error
rates of the ANM based on permutation and DC method even
in the presence of association were not significantly deviated
from nominal levels, but the type 1 error rates of ANM based
on entropy under association were significantly deviated from
the Nominal levels. These results showed that the ANM with
permutation tests and DC methods can be used for testing
causation between SNP and disease, but the ANM based on
entropy cannot be applied to test causation between SNP and
disease.

To give some recommendations on when and which methods
should be used, we conducted power simulations using the data
for type 1 error calculation. We assume that both association and
causation exist as described in Supplementary Note C. The results
were summarized inTable 4.Table 4 showed that in all scenarios,
the ANM-based on permutation had the highest power among
three statistical methods for testing causation.

REAL DATA ANALYSIS

Illustrate the application of causal inference to genetic analysis
of complex diseases, three methods for causal inference were
used to infer causal relationships between four SNPs in two
genes with Alzheimer’s disease (AD). Two SNPs in genomic
positions 15528889 and 15530350 in gene TRIM16, two SNPs
15524749 and 15519576 in gene CDRT1 and other two SNPs
were types in 1,707 individuals (514 AD and 1,193 controls).
The results were summarized in Table 5. Due to limitation of
computer capability, only 1,000,000 permutations were carried
out to compute P-values of classical ANM test statistics and
entropy-based ANM test statistics. The threshold for declaring
significance of association test was 1.14 × 10−8. Since distance
correlation test requires that the potential cause should takemore
than three values of states, in general, it cannot be used for causal

TABLE 2 | Average type 1 error rates of three statistics for testing causation,

assuming no association.

Type I error rate

Methods α N = 500 N = 1,000 N = 2,000

ANM Permutation 0.05 0.0431 0.0504 0.0505

0.01 0.0090 0.0073 0.0081

ANM Entropy 0.05 0.0390 0.0392 0.0387

0.01 0.0093 0.0080 0.0078

DC 0.05 0.0470 0.0461 0.0457

0.01 0.0074 0.0091 0.0097

TABLE 3 | Average type 1 error rates of three statistics for testing causation,

assuming presence of association.

Type I error rate

Methods α N = 500 N = 1,000 N = 2,000

ANM Permutation 0.05 0.0341 0.0355 0.0337

0.01 0.0094 0.0117 0.0103

ANM Entropy 0.05 0.1962 0.2014 0.2169

0.01 0.1666 0.1679 0.1705

DC 0.05 0.0507 0.0511 0.0508

0.01 0.0103 0.0093 0.0099

TABLE 4 | Power of three statistical methods for testing causation in the presence

of both association and causation.

Number of samples

200 500 1,000 2,000 5,000

ANM P-value 0.05 0.5731 0.6983 0.7642 0.8127 0.8466

0.01 0.5193 0.6830 0.7654 0.8239 0.8783

ANM Entropy 0.05 0.1290 0.1496 0.1611 0.1686 0.1747

0.01 0.1120 0.1308 0.1470 0.1555 0.1771

DC 0.05 0.2549 0.3104 0.3458 0.3834 0.4175

0.01 0.0954 0.1214 0.1476 0.1840 0.2400

genetic analysis. Table 5 showed that P-values of the classical
ANM and entropy-based ANM were close, and that four SNPs
in two genes which showed strong association also demonstrated
causation. The literature reported that gene TRIM16 inhibited
neuroblastoma cell proliferation through cell cycle regulation and
dynamic nuclear localization and gene CDRT1 was involved in
frontotemporal dementia (Aronsson et al., 1998; Bell et al., 2013).

FUTURE PERSPECTIVE

Association analysis has been used as a major tool for dissecting
genetic architecture and unraveling mechanisms of complex
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TABLE 5 | P-values for testing the causation and association of four SNPs with AD.

P-values

Chr Gene Genomic position Association ANM ANM-Entropy Distance correlation

17 TRIM16 15528889 4.51E-09 <1.00E-06 <1.00E-06 0.5

17 TRIM16 15530350 1.01E-07 <1.00E-06 <1.00E-06 0.5

17 CDRT1 15524749 5.12E-08 <1.00E-06 <1.00E-06 0.5

17 CDRT1 15519576 5.49E-09 <1.00E-06 <1.00E-06 0.5

1 PYHIN1 158947655 0.00131 0.00011 0.00031 0.15831

4 AFAP1 7813044 0.00222 0.00083 0.00074 0.58278

diseases for more than a century (Fisher, 1918; Timpson et al.,
2017). Although significant progress in dissecting the genetic
architecture of complex diseases by genome-wide association
studies (GWAS) has been made, the overall contribution of the
new identified genetic variants to the diseases is small and a
large fraction of disease risk genetic variants is still hidden.
Understanding the etiology and causal chain of mechanism
underlying many complex diseases remains elusive. The current
approach to uncovering hidden genetic variants is (1) to
increase sample sizes, (2) to study association of rare variants
by next-generation sequencing and (3) to perform multi-omic
analysis. Association and correlation analysis are the current
paradigm of analysis for all these approaches. Our experiences
in association analysis strongly demonstrate that association
analysis lacks power to discover the mechanisms of the diseases
for the two major reasons. The first reason is that association
analysis cannot identify causal signals that are quite different
from the association signals. The second reason is that the
widespread networks that are constructed in integrated omic
analysis are undirected graphs. Using undirected graphs, we are
unable to infer direct cause-effect relations and hence cannot
discover chain of causal mechanism from genetic variation
to diseases via gene expressions, epigenetic variation, protein
expressions, metabolism variation, and phenotype variations.
The use of association analysis as a major analytical platform
for genetic studies of complex diseases is a key issue that
hampers the theoretical development of genomic science and
its application in practice. Causal inference coupled with
multiple omics, imaging, physiological and phenotypic data is

an essential component for the discovery of disease mechanisms.
It is time to develop a new generation of genetic analysis
for shifting the current paradigm of genetic analysis from
shallow association analysis to deep causal inference. This
review paper introduced major statistical methods for inferring
causal relationships between discrete variables and explored
the potential roles causal inference may play in genetic
analysis of complex diseases. Our purpose is to stimulate
discussion about what research direction in genetic studies:
causal analysis or association analysis should be taken in the
future.

AUTHOR CONTRIBUTIONS

PH perform data analysis, write paper. RJ perform data analysis;
LJ design project. MX design project and write paper.

FUNDING

PH and LJ were supported by National Natural Science
Foundation of China (31521003), Shanghai Municipal Science
and Technology Major Project (2017SHZDZX01), and the 111
Project (B13016) from Ministry of Education.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fgene.
2018.00238/full#supplementary-material

REFERENCES

Altman, N., and Krzywinski, M. (2015). Association, correlation and causation.

Nat. Methods 12, 899–900. doi: 10.1038/nmeth.3587

Aronsson, F. C., Magnusson, P., Andersson, B., Karsten, S. L., Shibasaki,

Y., Lendon, C. L., et al. (1998) The NIK protein kinase and C17orf1

genes: chromosomal mapping, gene structures and mutational screening in

frontotemporal dementia and parkinsonism linked to chromosome 17. Hum.

Genet. 103, 340–345.

Bell, J. L., Malyukova, A., Kavallaris, M., Marshall, G. M., and Cheung, B. B. (2013)

TRIM16 inhibits neuroblastoma cell proliferation through cell cycle regulation

and dynamic nuclear localization. Cell Cycle 12, 889–898. doi: 10.4161/cc.

23825

Boyle, E. A., Li, Y. I., and Pritchard, J. K. (2017). An expanded view

of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186.

doi: 10.1016/j.cell.2017.05.038

Brookes, A. J., and Robinson, P. N. (2015). Human genotype-phenotype

databases: aims, challenges and opportunities. Nat. Rev. Genet. 16, 702–715.

doi: 10.1038/nrg3932

Callaway, E. (2017). Genome studies attract criticism: geneticists question ability

of genome-wide association studies to find useful disease links. Nature 546:463.

doi: 10.1038/nature.2017.22152

Fisher, R. A. (1918). The correlation between relatives on the supposition of

Mendelian inheritance. Proc. Roy. Soc. Edinburgh. 52, 99–433.

Gottlieb, S. S. (2017). Theory and fact: revisiting association and causation. JACC

Heart Fail. 5, 327–328. doi: 10.1016/j.jchf.2017.03.005

Janzing, D., Chaves, R., and Schölkopf, B. (2016). Algorithmic independence of

initial condition and dynamical law in thermodynamics and causal inference.

New J. Phys. 18:093052. doi: 10.1088/1367-2630/18/9/093052

Janzing, D., and Schölkopf, B. (2010). Causal inference using the

algorithmic markov condition. IEEE Trans. Inf. Theory 56, 5168–5194.

doi: 10.1109/TIT.2010.2060095

Frontiers in Genetics | www.frontiersin.org 10 July 2018 | Volume 9 | Article 238

https://www.frontiersin.org/articles/10.3389/fgene.2018.00238/full#supplementary-material
https://doi.org/10.1038/nmeth.3587
https://doi.org/10.4161/cc.23825
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1038/nrg3932
https://doi.org/10.1038/nature.2017.22152
https://doi.org/10.1016/j.jchf.2017.03.005
https://doi.org/10.1088/1367-2630/18/9/093052
https://doi.org/10.1109/TIT.2010.2060095
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Hu et al. Causal Inference to Genomic Analysis

Janzing, D., and Steudel, B. (2010). Justifying additive-noise-model based causal

discovery via algorithmic information theory. Open Syst. Inf. Dyn. 17, 189–212.

doi: 10.1142/S1230161210000126

Kano, Y., and Shimizu, S. (2003). “Causal inference using nonnormality,” in

Proceedings of the International Symposium on Science of Modeling, the 30th

Anniversary of the Information Criterion (Tokyo), 261–270.

Kocaoglu, M., Dimakis, A. G., Vishwanath, S., and Hassibi, B. (2016). Entropic

causal inference. arXiv [Preprint] arXiv 1611.04035.

Liu, F., and Chan, L. (2016). Causal inference on discrete data via

estimating distance correlation. Neural Comput. 28, 801–814.

doi: 10.1162/NECO_a_00820

Peters, J., Janzing, D., and Schölkopf, B. (2011). Causal inference on discrete

data using additive noise models. IEEE Trans. Pattern Anal. Mach. Intell. 33,

2436–2450. doi: 10.1109/TPAMI.2011.71

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of Causal Inference

- Foundations and Learning Algorithms Adaptive Computation and Machine

Learning Series. Cambridge, MA: The MIT Press.

Shimizu, S., Hoyer, P. O., Hyv̈arinen, A., and Kerminen, A. J. (2006). A linear non-

gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003–2030.

Sze’kely, G. J., Rizzo, M., and Bakirov, N. (2007). Measuring and testing

dependence by correlation of distances. Ann. Stat. 35, 2769–2794.

doi: 10.1214/009053607000000505

Sze’kely, G. J., and Rizzo, M. L. (2009) Brownian distance covariance. Ann. Appl.

Stat. 3, 1236–1265. doi: 10.1214/09-AOAS312

Timpson, N. J., Greenwood, C. M. T., Soranzo, N., Lawson, D. J., and Richards, J.

B. (2017). Genetic architecture: the shape of the genetic contribution to human

traits and disease. Nat. Rev. Genet. 19, 110–124. doi: 10.1038/nrg.2017.101

Valente, B. D., Morota, G., Peñagaricano, F., Gianola, D., Weigel, K., and Rosa,

G. J. (2015). The causal meaning of genomic predictors and how it affects

construction and comparison of genome-enabled selection models. Genetics

200, 483–494. doi: 10.1534/genetics.114.169490

Wakeford, R. (2015). Association and causation in epidemiology - half a century

since the publication of BradfordHill’s interpretational guidance. J. R. Soc. Med.

108, 4–6. doi: 10.1177/0141076814562713

Xiong, M. M. (2018). Big Data in Omics and Imaging: Integrated Analysis and

Causal Inference. New York, NY: CRC Press.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Hu, Jiao, Jin and Xiong. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Genetics | www.frontiersin.org 11 July 2018 | Volume 9 | Article 238

https://doi.org/10.1142/S1230161210000126
https://doi.org/10.1162/NECO_a_00820
https://doi.org/10.1109/TPAMI.2011.71
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1038/nrg.2017.101.
https://doi.org/10.1534/genetics.114.169490
https://doi.org/10.1177/0141076814562713
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Application of Causal Inference to Genomic Analysis: Advances in Methodology
	Introduction
	Causal Markov Conditions
	Algorithmic Complexity For Causal Inference
	Additive Noise Models
	Integer Models
	Cyclic Models

	Identifiability
	Genetic Association Analysis And Causation Analysis
	Causal Genetic Analysis
	Causation Identification Using Entropy
	Distance Correlation For Causal Inference With Discrete Variables
	Simulations
	Real Data Analysis
	Future Perspective
	Author Contributions
	Funding
	Supplementary Material
	References


