AUTHOR=Knap Pieter W. , Kause Antti TITLE=Phenotyping for Genetic Improvement of Feed Efficiency in Fish: Lessons From Pig Breeding JOURNAL=Frontiers in Genetics VOLUME=9 YEAR=2018 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2018.00184 DOI=10.3389/fgene.2018.00184 ISSN=1664-8021 ABSTRACT=

Feed incurs most of the cost of aquaculture production, so feed efficiency (FE) improvement is of great importance. Our aim is to use work done in pigs to formulate a logical framework for assessing the most useful component traits influencing feed intake (FI) and efficiency in farmed fish – either to identify traits that can together be used for genetic improvement of FE, or as substitute traits for FI recording. Improvement of gross FE in growing fish can be accomplished by selection for increased growth rate. However, the correlation of growth with FE is typically only modest, and hence there is room for further improvement of FE through methods other than growth selection. Based on a literature review we propose that the most effective additional methods are selection for reduced body lipid content and for reduced residual FI (RFI). Both methods require more or less sophisticated recording equipment; in particular, the estimation of RFI requires recording of FI which is a challenge. In mammals and birds, both these approaches have been effective, and despite the high costs of FI recording, the RFI approach can be cost-efficient because maintenance requirements are high and therefore RFI variation covers a large part of FI variance. Maintenance requirements of fish are lower and therefore RFI variation covers a smaller part of FI variance. Moreover, accurate high-volume routine individual FI recording is much more challenging in fish than in mammals or birds. It follows that selection for reduced body fat content is likely a more effective (and certainly more cost-efficient) way to improve feed conversion ratio in fish than selection for reduced RFI. As long as body fat content is dealt with as an explicit selection criterion, the only valid reason for FI recording would be the requirement of RFI reduction. So, if RFI reduction is not required, there would be no need for the expense and effort of individual FI recording – and in fish breeding that would be a very desirable situation. Solid evidence for these propositions is still scarce, and their generality still needs to be confirmed.