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Genome-wide and fine mapping studies have shown that more than 90% of genetic

variants associated with autoimmune diseases (AID) are located in non-coding regions

of the human genome and especially in regulatory sequences, including microRNAs

(miRNA) target sites. MiRNAs are small endogenous noncoding RNAs that modulate

gene expression at the post-transcriptional level. Single nucleotide polymorphisms

(SNPs) located within the 3′ untranslated region of their target mRNAs (miRSNP) can

alter miRNA binding sites. Yet, little is known about their effect on regulation by miRNA

and the consequences for AID. Conversely, it is well known that two or more AID

may share part of their genetic background. Here, we hypothesized that miRSNPs

could be associated with more than one AID. To identify miRSNPs associated with

AID, we integrated results from three different prediction tools (Polymirts, miRSNP, and

miRSNPscore) using a naïve Bayes classifier approach to identify miRSNPs predicted

to affect binding sites of miRNAs. Further, to detect miRSNPs associated with two or

more AID, we integrated predictions with summary statistics from 12 AID studies. In

addition, to prioritize miRSNPs, miRNAs and AID-associated target genes, we used

public expression quantitative trait locus (eQTL) data and mRNA-seq and small RNA-seq

data. We identified 34 miRNSPs associated with at least two AID. Furthermore, we found

86 miRNAs predicted to target 18 of the associated gene’s mRNAs. Our integrative

approach revealed new insights into miRNAs and AID associated target genes. Thus,

it helped to prioritize AID noncoding risk SNPs that might be involved in the causal

mechanisms, providing valuable information for further functional studies.
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INTRODUCTION

Genome-wide association studies (GWAS) and fine mapping studies have identified approximately
250 loci associated with autoimmune disease (AID), and some of these loci are shared between two
or more diseases (Ricaño-Ponce and Wijmenga, 2013). The recent results of fine mapping studies
performed by the Immunochip platform, showed that the majority of the associated variants are
located in non-coding regions, especially in regulatory sequences such as microRNAs (miRNAs)
target sites (Ricaño-Ponce and Wijmenga, 2013).
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MiRNAs are small molecules about 22 nt long that act
by imperfect base-paring to 3′ untranslated regions (3′ UTR)
of target messenger RNAs (mRNAs), leading to translation
repression, degradation of the mRNA, or both (Bartel, 2009).
MiRNAs negatively regulate their target mRNAs primarily
through Watson and Crick base-pairing interactions, and the
seed sequence located at positions 2–8 within the miRNA
sequence is key for this action. Single nucleotide polymorphisms
(SNPs) within the seed site, or in the target mRNA at sites
complementary to miRNA seed sites, referred to as miRSNPs,
may reduce effectiveness or abolish miRNA-mediated repression
(Saunders et al., 2007), which could have functional consequences
for complex diseases (Sethupathy and Collins, 2008), including
AID (Hrdlickova et al., 2014).

In addition, it has been recently shown that numerous
miRSNPs have expression quantitative trait loci (eQTL) effect
on GWAS reported genes (Võsa et al., 2015). Moreover, the
number of miRSNPs reported to be associated with human
diseases increased in the past few years (Wei et al., 2012;
Ghanbari et al., 2015; Stegeman et al., 2015; Cipolla et al., 2016),
therefore, several in silico approaches has been developed to
identify the potential impact of these polymorphisms in miRNA
target genes (reviewed in Moszynska et al., 2017). Nevertheless, a
systematically approach that integrates predictions from different
miRSNPs algorithms has not yet been developed.

Here, we hypothesized that miRSNPs could be associated
with more than one AID and that a comprehensive analysis of
miRSNPs could identify additional still unknown risk variants.
To investigate genetic associations of miRSNPs with AID, we
applied an approach that integrates information provided by
different algorithms, which uses several different data types. First,
we used a naïve Bayes classifier to integrate results from three
major prediction tools. Next, we intersected these results with
summary statistics from GWAS of 12 common autoimmune
diseases (AID), where 10 of these studies used the high-density
platform Immunochip (Cortes and Brown, 2011). Moreover, by
integrating small and mRNA-seq with eQTL public data, we were
able to prioritize miRSNPs, miRNAs, and AID associated target
genes. The results of our analyses provide valuable information
for further functional studies.

MATERIALS AND METHODS

Data Integration
In order to find SNPs predicted to have an effect on miRNA
binding sites (miRSNPs) results from three different prediction
tools were integrated:

(1) PolymiRts v.3.0 (http://compbio.uthsc.edu/miRSNP/;
Bhattacharya et al., 2014); (2) miRNASNP2 (http://www.bioguo.
org/miRNASNP2; Liu C. et al., 2012); and (3) miRSNPscore
(http://www.bigr.medisin.ntnu.no/mirsnpscore; Thomas et al.,
2011).

PolymiRTS v3.0 (accessed 15 Feb 2016) uses dbSNP v137,
miRBase v20, and TargetScan (Friedman et al., 2009) algorithms
to predict miRNA binding sites. To predict efficacy of targeting,
this algorithm considers two major features, the probability of
targeting conservation and the perfect match between the target

and the seed sequence on the miRNA, that is, the at least 7 nt long
canonical seed region (7mer-A1, 7mer-m8, or 8mer).

miRNASNP2 (accessed 15 Feb 2016) integrates data from
miRBase v19, dbSNP v137 and uses two prediction tools:
TargetScan and the miRanda (John et al., 2004) algorithm with
stringent 2–8 nt pairing for miRNA binding site prediction.
MiRanda assumes strict complementarity between nucleotides 2
and 8 and uses a score of alignment quality and free energy for
miRNA binding site identification.

MirSNPscore uses miRBase v16, SNP data from HapMap
3 Project, and its own score algorithm to miRNA-biding site
predictions. This tool uses haplotype information to calculate a
score that corresponds to the probability of the SNP interfering
with miRNA-binding.

To integrate results from these tools, a naïve Bayesian
approach, adapted from previously successful data integration
strategies (von Mering et al., 2005; Szklarczyk et al., 2017),
was used. A naïve Bayes classifier was implemented in R
(R Development Core Team, 2017) and a combined score
was calculated for each miRSNP under the assumption of
independence for the various data sources (data harmonization
was obtained by z-score transformation of the results from each
prediction algorithm):

S = 1−
∏

i

(1− Si) (1)

MiRSNPs with naïve Bayes combined (NBC) score >0.7 were
considered candidates to affect the miRNA-binding site.

Summary Statistics From Autoimmune
Diseases (Immunochip Studies)
To investigate whether miRSNPs are associated with AID, we
downloaded summary statistics for 12 diseases available at the
Immunobase database (https://www.immunobase.org/, accessed
16 May 2016) and integrated them with the naïve Bayes classifier
results. Cohort participants and studies are shown in Table 1. Of
these studies, 10 used high-density genotype array Immunochip
and two used the first generation of chip arrays (Illumina
HumanHapMap 5, Illumina HumanHapMap3 and Affymetrix
Gene Chip 500). Quality control procedures are described in
detail in the original papers of each study (references are cited
in Table 1).

To capture also SNPs in linkage disequilibrium (LD) that
were not reported as associated by the study, we used LDlink
tool (Machiela and Chanock, 2014) using data from the 1000
Genomes Project phase 3 (Abecasis et al., 2012) with standard
parameters (r2 ≥ 0.8 and D’ = 1) and the CEU population as
reference panel.

For our purpose, only miRSNPs that either had genome-wide
threshold P-value (P < 5 × 10−8) or were in strong LD (r2 >

0.8) with a significantly associated SNP but not evaluated in the
study, were considered as candidates. In addition, only miRSNPs
associated with at least two AID were considered for further
analysis.
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TABLE 1 | Cohorts description.

Disease Cases Controls References Immunochip

Crohn’s disease 6,333 15,056 Franke et al., 2010 No (Meta-analysis)

Crohn’s disease 5,937 8,043 Jostins et al., 2012 Yes

Ulcerative colitis 6,687 19,718 Anderson et al., 2011 No (Meta-analysis)

Ulcerative colitis 6,945 13,727 Jostins et al., 2012 Yes

Celiac disease 12,041 12,228 Trynka et al., 2011 Yes

Autoimmune

thyroid disease

2,747 9,364 Cooper et al., 2008 Yes

Juvenile Idiopathic

arthritis

2,816 13,056 Hinks et al., 2013 Yes

Multiple sclerosis 14,498 24,091 Beecham et al., 2013 Yes

Rheumatoid

arthritis

11,475 15,870 Eyre et al., 2012 Yes

Systemic lupus

erythematosus

5,201 9,066 Bentham et al., 2015 Yes

Type 1 diabetes 6,670 9,416 Onengut-Gumuscu

et al., 2015

Yes

Primary biliary

cirrhosis

2,861 8,514 Liu J. Z. et al., 2012 Yes

eQTL Data Integration
eQTL data was acquired from three different databases,
BloodeQTLBrowser (http://genenetwork.nl/bloodeqtlbrowser/;
Westra et al., 2013), the Geuvadis project (Lappalainen et al.,
2013), and the GTEx v6 portal (http://www.gtexportal.org/home;
Lonsdale et al., 2013).

BloodeQTLBrowser contains data from peripheral blood of
5,311 individuals obtained with microarray chips. The Geuvadis
project (Lappalainen et al., 2013) used RNA-seq data from 465
lymphoblastoid cell lines (LCL) from 5 populations of the 1000
Genomes Project: the CEPH (CEU), Finns (FIN), British (GBR),
Toscani (TSI), and Yoruba (YRI) to perform its eQTL analysis.
Data fromGTEx v6 portal (Lonsdale et al., 2013) derived from 44
different tissues in 7,051 RNA-seq samples.

BloodeQTLBrowser and Geuvadis data were filtered using
false discovery rate (FDR) correction at the 0.05 level, which
resulted in 514,000 cis-eQTLs from BloodeQTL and 7,714 cis-
eQTLs from the Geuvadis project. The GTEx v6 data used a FDR
≤ 0.05, containing 27,159 unique cis-eQTL genes.

Small RNA-Seq, mRNA-Seq and Genotype
Data From the GEUVADIS and the 1000
Genomes Projects
mRNA-seq and small RNA-seq data from 465 LCL were
downloaded from the Geuvadis Project (Lappalainen et al.,
2013). After matching samples that have both the miRNA and
the mRNA profiles, 321 RNA-seq samples remained, which
were further log2 normalized. Further, genotype data were
downloaded from the 1000 Genomes Project (Abecasis et al.,
2012). After matching with individuals from the Geuvadis
project, 309 samples with genotype and RNA-seq (small RNA
and mRNA) data were used for Pearson correlation analysis
between the expression levels of the miRNAs and their mRNAs

targets, where P < 0.05 was considered the limit for statistical
significance.

Experimentally Validated miRNA-Target
Interactions Databases
Experimentally validated miRNA target sites were downloaded
from miRTarBase v7.0 (Chou et al., 2016; http://mirtarbase.mbc.
nctu.edu.tw/php/index.php) and Tarbase v7 (Vlachos et al., 2015;
under authorization on http://diana.imis.athena-innovation.
gr/DianaTools/index.php?r=tarbase/index). These databases
contain hundreds of thousands of published experimentally
manually curated validated miRNA-target interactions.
These databases include data generated by the main types of
functional experiments currently used to validate miRNA-mRNA
interaction, such as, western blot, microarray, luciferase report
assays and high-throughput sequencing of immunoprecipitated
RNAs after cross-linking (CLIP-seq), submitted by many other
researchers.

RESULTS

Data Integration Showed That
Autoimmune Diseases Share Associations
With miRSNPs
To identify SNPs that affect the binding site of miRNAs
(miRSNPs) in genes associated with AID, we implemented a
naïve Bayes classifier approach to integrate different miRSNPs
prediction tools and further intersection with summary statistics
from GWAS high density genotyped data (Immunochip).

We integrated three miRSNPs prediction tools with summary
statistics from 12 GWAS of AID available in the Immunobase
database (Table 1).

However, even studies using a dense genotyping custom-made
array designed to fine-map immune-related diseases, such as
the Immunochip, may still miss associations due to differences
in linkage disequilibrium (LD) pattern between populations, or
because of differences of quality control steps. To minimize this
bias, we also included miRSNPs that were in high LD (r2 ≥ 0.8
and D’ = 1 in the CEU population Abecasis et al., 2012) with the
most associated SNP of the corresponding target gene reported
by each study (Supplementary Table 1).

Additionally, to identify miRSNPs that might affect expression
levels of the reported disease-associated genes, we intersected
our results with publicly available eQTL data from the GTEx
project (Lonsdale et al., 2013), Blood eQTL Browser (Westra
et al., 2013), and the Geuvadis project (Lappalainen et al., 2013)
(Supplementary Table 2).

We found 34 miRSNPs that may alter the binding sites of 86
miRNAs predicted to target mRNAs of 18 genes (Table 2). Of
these, 28 miRSNPs displayed an eQTL effect on 13 target genes in
several tissues (Table 2). Moreover, from the 34 miRNSPs, four
(rs1054037, rs2070197, rs727088, rs7444) had been reported as
the most associated SNPs by the original studies (P < 5 × 10−8)
(Table 2). The remaining 30 miRSNPs were in strong LD with
the most associated SNP reported, but were not evaluated by the
study. For instance, two miRSNPs (rs60474474 and rs45450798),
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TABLE 2 | MiRSNPs associated with autoimmune disease.

miRSNP chr pos_bp(hg38) Ref.

allele

Minor

allele

MAF Disease P-value OR Target

gene

miRNA Effect on

miRNA

NBS eQTL (effect

direction)

rs7559479 2 102452327 A G 0.22 Crohn’s disease 2.2e-10 1.15 IL18RAP hsa-miR-3156-3p C 0.79 Yes (up)

Celiac disease 1.4e-16 1.19 hsa-miR-4301 C 0.86

Inflammatory bowel

disease

NA NA hsa-miR-136 C 0.92

rs7603250 2 102452374 A T 0.22 Crohn’s disease 1.6e-10 0.8 IL18RAP hsa-miR-455-3p C 0.94 Yes (up)

Inflammatory bowel

disease

1.8e-09 0.8

Celiac disease NA NA

rs3732421 3 119431242 A G 0.16 Multiple sclerosis 3.5e-12 0.85 TMEM39A hsa-miR-449b-3p D 0.72 No

Primary biliary

cirrhosis

1.7e-11 0.72 hsa-miR-4691-3p D 0.82

hsa-miR-449b D 0.92

rs57271503 3 119525746 G A 0.16 Multiple sclerosis 4.1e-15 0.84 CD80 hsa-miR-769-5p C 0.71 No

Primary biliary

cirrhosis

9.4e-13 0.71 hsa-miR-4802-5p C 0.80

hsa-miR-769-5p C 0.71

rs1054037 4 102631552 T C 0.49 Primary biliary

cirrhosis

8.3e-10 0.82 MANBA hsa-miR-660 D 0.90 Yes

(down/up)

Multiple sclerosis NA NA hsa-miR-5591-3p D 0.95

hsa-miR-660-5p D 0.82

hsa-miR-7151-5p C 0.71

hsa-miR-3686 C 0.94

rs4013 4 102631656 T C 0.51 Primary biliary

cirrhosis

NA NA MANBA hsa-miR-4742-3p C 0.76 Yes

(down/up)

Multiple sclerosis NA NA hsa-miR-4778-5p C 0.91

hsa-miR-630 C 0.82

rs1054029 4 102631896 A G 0.51 Primary biliary

cirrhosis

NA NA MANBA hsa-miR-124-5p D 0.80 Yes

(down/up)

Multiple sclerosis NA NA hsa-miR-4255 D 0.99

hsa-miR-4766-5p D 0.74

hsa-miR-124 D 0.90

hsa-miR-33a D 0.77

rs39602 5 97028750 G C 0.41 Ankylosing

spondylitis

NA NA LNPEP hsa-miR-6800-5p D 0.99 Yes (down)

Crohn’s disease 6.9e-11 1.1

Juvenile idiopathic

arthritis

NA NA

rs2070197 7 128948946 T C 0.1 Systemic lupus

erythematosus

3.0e-40 1.7 IRF5 hsa-miR-3136-3p D 0.91 Yes (up)

Primary biliary

cirrhosis

1.8e-18 1.5 hsa-miR-7155-3p D 0.89

rs10114470 9 114785492 C T 0.33 Crohn’s disease 1.5e-15 1.1 TNFSF15 hsa-miR-376a-3p D 0.84 Yes (up)

Inflammatory bowel

disease

1.5e-16 0.8 hsa-miR-4753-5p D 0.74

(Continued)
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TABLE 2 | Continued

miRSNP chr pos_bp(hg38) Ref.

allele

Minor

allele

MAF Disease P-value OR Target

gene

miRNA Effect on

miRNA

NBS eQTL (effect

direction)

rs3088081 9 136375697 A G 0.42 Inflammatory bowel

disease

1.9e-22 0.8 SNAPC4 hsa-miR-3661 C 0.80 yes (down)

Crohn’s disease 2.1e-17 0.8

Ulcerative colitis 1.0e-11 0.8

rs9943 13 39752145 A G 0.34 Juvenile idiopathic

arthritis

NA NA COG6 hsa-miR-628-5p C 0.98 Yes (down)

Rheumatoid

arthritis

NA NA

rs3839999 13 99385548 AT A 0.22 Crohn’s disease NA NA UBAC2 hsa-miR-365a-3p C 0.93 No

Inflammatory bowel

disease

NA NA

rs907091 17 39765489 C T 0.51 Primary biliary

cirrhosis

1.0e-10 0.79 IKZF3 hsa-miR-4497 D 0.97 Yes (down)

Type 1 diabetes

mellitus

NA NA hsa-miR-3649 C 0.85

Ulcerative colitis 8.1e-09 0.8 hsa-miR-4518 C 0.92

Inflammatory bowel

disease

3.3e-13 0.8 hsa-miR-330-5p C 0.99

hsa-miR-518c C 0.86

hsa-miR-4314 C 0.84

hsa-miR-326 C 0.99

hsa-miR-3192 C 0.73

rs16940681 17 45834793 G C 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-6740-5p D 0.84 Yes (up)

Type 1 diabetes

mellitus

NA NA

rs2316765 17 45835088 T C 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-3192 D 0.73 Yes (up)

Type 1 diabetes

mellitus

NA NA hsa-miR-30c-2-

3p

D 0.97

hsa-miR-30c-1-

3p

D 0.90

rs878886 17 45835124 C G 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-4685-5p D 0.96 Yes (up)

Type 1 diabetes

mellitus

NA NA hsa-miR-1915-3p D 0.71

hsa-miR-3918 D 0.86

hsa-miR-7160-3p D 0.76

rs878887 17 45835216 C T 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-198 C 0.85 Yes (up)

Type 1 diabetes

mellitus

NA NA hsa-miR-3186-5p D 0.88

hsa-miR-136 C 0.92

rs878888 17 45835269 A G 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-5708 C 0.70 Yes (up)

Type 1 diabetes

mellitus

NA NA hsa-miR-1226-5p D 0.72

(Continued)
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TABLE 2 | Continued

miRSNP chr pos_bp(hg38) Ref.

allele

Minor

allele

MAF Disease P-value OR Target

gene

miRNA Effect on

miRNA

NBS eQTL (effect

direction)

rs4640231 17 45835420 G C 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-6841-5p D 0.81 Yes (up)

Type 1 diabetes

mellitus

NA NA hsa-miR-6755-5p D 0.77

rs4482334 17 45835464 T C 0.24 Primary biliary

cirrhosis

NA NA CRHR1 hsa-miR-6890-5p D 0.93 Yes (up)

Type 1 diabetes

mellitus

NA NA hsa-miR-6742-5p D 0.94

hsa-miR-4722-5p D 0.77

hsa-miR-6796-5p D 0.75

hsa-miR-4459 D 0.80

rs12373168 17 45846971 A C 0.24 Primary biliary

cirrhosis

NA NA SPPL2C hsa-miR-33b-3p D 0.87 No

Type 1 diabetes

mellitus

NA NA hsa-miR-519e-3p D 0.87

rs60474474 18 12792737 C T 0.14 Inflammatory bowel

disease

1.4e-10 1.1 PTPN2 hsa-miR-4290 D 0.99 No

Crohn’s disease 2.2e-12 1.2

Type 1 diabetes

mellitus

NA NA

Celiac disease NA NA

Juvenile idiopathic

arthritis

NA NA

rs45450798 18 12792941 C G 0.14 Inflammatory bowel

disease

2.0e-10 0.8 PTPN2 hsa-miR-4531 C 0.73 No

Crohn’s disease 2.9e-12 0.8

Type 1 diabetes

mellitus

NA NA

Celiac disease NA NA

Juvenile idiopathic

arthritis

NA NA

rs9950174 18 69846569 T C 0.53 Psoriasis NA NA CD226 hsa-miR-5189-3p D 0.85 Yes (up)

rs727088 18 69863203 G A 0.53 Inflammatory

bowel disease

4.6e-9 1.08 CD226 hsa-miR-513a-3p D 0.75 Yes (up)

Ulcerative colitis 1.9e-8 1.1 hsa-miR-181c D 0.75

Psoriasis NA NA

rs571689 19 48704297 C T 0.47 Crohn’s disease 7.3e-09 1.1 FUT2 hsa-miR-648 D 0.89 Yes (down)

Type 1 diabetes

mellitus

NA NA hsa-miR-552-3p C 0.92

rs570794 19 48704394 T C 0.47 Crohn’s disease 1.0e-08 0.8 FUT2 hsa-miR-4430 D 0.71 Yes (down)

Type 1 diabetes

mellitus

NA NA hsa-miR-1295b-

5p

C 0.79

hsa-miR-4463 C 0.95

hsa-miR-1912 C 0.94

rs507766 19 48705286 T C 0.47 Crohn’s disease 1.4e-08 0.8 FUT2 hsa-miR-136-5p C 0.83 Yes (down)

Type 1 diabetes

mellitus

NA NA hsa-miR-675 C 0.80

hsa-miR-887 C 0.92

hsa-miR-410 C 0.73

hsa-miR-191 C 0.75

(Continued)
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TABLE 2 | Continued

miRSNP chr pos_bp(hg38) Ref.

allele

Minor

allele

MAF Disease P-value OR Target

gene

miRNA Effect on

miRNA

NBS eQTL (effect

direction)

rs506897 19 48705372 G C 0.47 Crohn’s disease 7.3e-09 1.1 FUT2 hsa-miR-4530 C 0.81 Yes (down)

Type 1 diabetes

mellitus

NA NA

rs503279 19 48705753 T C 0.47 Crohn’s disease 6.7e-09 0.8 FUT2 hsa-miR-675-3p C 0.86 Yes (down)

Type 1 diabetes

mellitus

NA NA

rs1056441 20 63738996 C T 0.28 Crohn’s disease 5.4e-11 0.8 LIME1 hsa-miR-4745-3p C 0.97 Yes (down)

Inflammatory bowel

disease

1.5e-15 0.8 hsa-miR-1538 C 0.97

hsa-miR-4467 C 0.87

hsa-miR-6770-3p C 0.78

hsa-miR-3940-3p D 0.82

hsa-miR-762 D 0.94

rs7444 22 21622645 T C 0.2 Systemic lupus

erythematosus

1.8e-22 1.27 UBE2L3 hsa-miR-4741 D 0.90 Yes (up)

Crohn’s disease 1.3e-12 1.1 hsa-miR-4763-3p D 0.89

Inflammatory bowel

disease

6.9e-10 0.8 hsa-miR-3918 D 0.86

hsa-miR-1207-5p D 0.92

rs7445 22 21622758 C T 0.19 Crohn’s disease 6.3e-09 1.1 UBE2L3 hsa-miR-3064-5p C 0.93 Yes (up)

Inflammatory bowel

disease

3.5e-10 1.1

Systemic lupus

erythematosus

1.0e-12 1.27

NA, P-value was not available in the source study but this miRSNP is in linkage disequilibrium (r2 ≥ 0.8) with the most associated SNP reported; P-value obtained from each study.

Bold: reported as associated in the original study. C, creates a binding site; D, disrupts a binding site; chr, chromosome; MAF, global minor allele frequency from the 1000 Genomes

project; up, upregulated effect; down, downregulated effect; pos_bp, position in base pair; OR, odds ratio. OR was calculated based on the minor allele of the respective variant; eQTL,

expression quantitative trait locus; NBC, naïve Bayes combined score.

both located in the 3′ UTR of PTPN2, were not reported in any
of the GWAS. However, these two miRSNPs display maximum
possible LD (r2 = 1 and D’= 1) (Supplementary Table 1) with the
most associated SNP reported for five AIDs inflammatory bowel
disease (IBD), Crohn’s disease (CD), type 1 diabetes (T1D), celiac
disease (CeD), juvenile idiopathic arthritis (JIA) (Table 2). Both
miRSNPs were predicted to alter miRNA binding sites in the 3′

UTR of the PTPN2 mRNA: miRSNP rs60474474 disrupts the
binding site of miR-4290 (NBC Score = 0.99) and miRSNP
rs45450798 creates a new binding site for miR-4531 (NBC Score
= 0.73) (Table 2).

Among the investigated 12 diseases, Crohn’s disease was the
one that displayed more associated miRSNPs. In total, we found
16 miRSNPs associated with CD, affecting the binding sites of 31
miRNAs in the mRNAs of the CD-associated genes (Table 2).

The most significantly associated miRSNP (rs2070197) was
associated with two diseases, systemic lupus erythematosus (SLE)
(P = 3.04 × 10−40) and primary biliary cirrhosis (PBC) (P =

1.8 × 10−18) (Table 2). This miRSNP is located in the 3′ UTR of
the IRF5 gene and may disrupt the binding sites of two miRNAs
(miR-3136-3p NBC Score = 0.91 and miR-7155-3p NBC Score

= 0.89). Thus, it is an eQTL predicted to downregulate the
expression of IRF5 at least in LCL.

The miRSNP rs7444, which is in the 3′ UTR of the UBE2L3
gene, was associated with three AIDs (SLE, CD, and IBD). This
miRSNP was predicted to affect binding of four miRNAs (miR-
4741 NBC Score = 0.9, miR-4763-3p NBC Score = 0.89, miR-
3918 NBC Score = 0.86, miR-1207-5p NBC Score = 0.92) and
is an eQTL that upregulates the target gene in whole blood
(Figure 1).

Moreover, the gene FUT2, which was associated with three
AID (CD, IBD, and T1D), had five miRSNPs affecting 13
miRNAs. These miRSNPs are eQTL with a downregulation effect
on the target mRNAs in several tissues, including small intestine
and whole blood (Table 2).

To verify if the expression levels of miRNAs could be
correlated with the mRNA levels of the associated target genes,
we used public available RNA-seq data from the Geuvadis
Project (Lappalainen et al., 2013). First, we matched all samples
that had both, small RNA-seq and mRNA-seq data (N = 321
samples). Further, we performed Pearson correlation analysis of
the expression of all miRNAs and the mRNA of their targets.
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Of the 86 miRNAs in our dataset (Table 2) we found 19 whose
expression levels were correlated with those of 15 predicted
targets (Figure 2). Nevertheless, only 9 of these 19 miRNAs were

FIGURE 1 | eQTL effect on whole blood of SNP rs7444 genotypes on

expression of UBE2L3 mRNA (P = 1.7 × 10−7, effect size = 0.16). Figure

adapted from the Gtex database (https://www.gtexportal.org).

correlated with expression levels of their target genes in the same
direction (up- or downregulated) corresponding to that predicted
by the algorithms (Figure 3).

To investigate whether correlation of expression levels of
these 9 miRNAs and their targets were dependent on the
genotype, we extracted genotype data from the 1000 Genomes
Project, and RNA-seq data (small RNA and mRNA) from
the Geuvadis project. We then performed Pearson correlation
analysis with only homozygous individuals for the minor and
the reference alleles of each miRSNP. We found that expression
levels of three miRNAs correlated with those of two target
genes (P < 0.05) depending on the genotype (Figures 4–
6). Nevertheless, when comparing the correlation between
the mRNA and microRNA expression data between genotypes,
the predictions of the miRSNP’s effect on the expression of the
target gene could not be clearly demonstrated. In the sample
of individuals homozygous for the minor allele (T) of miRSNP
rs907091 located in the 3′ UTR of IKZF3, expression of miR-
326, and IKZF3 were negatively correlated (P = 0.006479,
r2 = −0.35) (Figure 4). This miRSNP is predicted to create a
binding site for miR-326 with a high NBC Score (NBC Score
= 0.99), which fits the negative correlation observed between
expression of miR-326 and the IKZF3 mRNA. Yet, although not
significant, the correlation follows the same trend in the sample
of individuals homozygous for allele C (Figure 4). Furthermore,
the expression levels of miR-4518 and the IKZF3 mRNA were
positively correlated (P = 0.02, r2 = 0.2) in the presence

FIGURE 2 | Pearson correlations between the expression levels of the miRNAs and their target mRNAs.
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FIGURE 3 | Expression levels of nine microRNA were correlated with expression levels of their target mRNAs as expected according with TargetScan and miRanda

predictions.

FIGURE 4 | (A) Individuals homozygous for the protective allele T (T/T).

(B) Individuals homozygous for the reference allele C (C/C).

of homozygosity for allele rs907091 T, which is predicted to
create a binding site for miR-4518 in the 3′ UTR of that
mRNA.

In addition, miRSNP rs9943 allele G, which is an eQTL
associated with downregulation of the target gene COG6
(Figure 6), was predicted to create a binding site for miR-628-5p.

FIGURE 5 | (A) Individuals homozygous for the risk allele rs9943G (G/G).

(B) Individuals homozygous for the reference allele A (A/A).

Notwithstanding, expression of this miRNA and of the mRNA
of its target COG6 are positively correlated (P = 0.01, r2 =

0.43) for genotype G/G but are not significantly correlated for
genotype A/A (Figure 5). It should be noticed that data from the
Geuvadis project derive from LCL only and may not reflect the
expression pattern in cells relevant for pathogenesis of the AID.
Altogether, these results reveal the complexity of inferences based
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FIGURE 6 | eQTL effect on muscle skeletal of rs9943 genotypes on

expression of COG6 mRNA (P = 2.0e-25, effect size = −0.53). Figure

adapted from the Gtex database (https://www.gtexportal.org).

on predictions and the importance of functional validation of the
hypotheses.

Furthermore, in order to verify if the predictions of miRNA-
target interactions had been experimentally validated, we
integrated our results with data available in the DIANA-Tarbase
v7 (Vlachos et al., 2015) and the MiRTarbase (Chou et al., 2016).
We found two miRNA—target interactions (UBAC2—miR-
365a-3p and SNAPC4—miR-3661) which were experimentally
validated by the CLIP-seq method (Supplementary Table 3).
Variants of both validated target genes are associated with
IBD and CD (Table 2), and SNAPC4 is also associated with
UC. In addition, the rs3088081 miRSNP is an eQTL with a
downregulation effect of gene SNAPC4 in thyroid and skeletal
muscle tissues (Supplementary Table 2).

DISCUSSION

We used an approach to integrate miRNAs targets predictions,
GWAS summary statistics and RNA-seq publicly available data,
to investigate whether SNPs associated with two or more AID
may affect miRNAs binding sites. Furthermore, we integrated
eQTL results with RNA sequencing data (miRNA-seq and
mRNA-seq) to verify if the genotypes of the selected miRSNPs
influence the expression levels of the miRNAs and the mRNAs of
their predicted target genes.

We identified 34 miRNSPs that may affect the binding sites of
86 miRNAs in 18 target genes, of which 30 were not previously
reported by any of the original GWAS.

The gene PTPN2 displayed highest number of associated
diseases, five in total. This gene had two miRSNPs in its 3′

UTR. The risk allele (T) of miRSNP rs60474474 is predicted
to disrupt the binding of miR-4290. On the other hand, the
miRSNP rs45450798 also located in the 3′ UTR of PTPN2, has

its protective allele (G) predicted to create a binding site for
miR-4531. Tyrosine-protein phosphatase non-receptor type 2
(PTPN2) attenuates JAK/STAT signaling, among other effects.
In mice, PTPN2 deficiency results in perturbations of T cell
tolerance and enhanced T cell and B cell responses, resulting
in severe inflammatory disease and autoimmunity (Wiede et al.,
2017). Although we could not find evidence of an eQTL effect
for these miRSNPs in any of the public databases, it has been
shown that non-coding SNPs repressing PTPN2 are associate
with several immune related diseases, including T1D (Bottini
et al., 2004), RA (Begovich et al., 2004), and CD (Festen et al.,
2011). This agrees with our findings, once deregulation of
PTPN2 expression by the creation of a miRNA binding site
by the risk allele could eventually reduce expression PTPN2,
favoring autoimmune disease. Additionally, miR-4290 is present
in exosomes (Leidinger et al., 2014) but not in any blood cell type
or whole blood, suggesting that ectopic or increased expression of
this miRNA could be a candidate biomarker for immune-related
diseases.

eQTL mapping studies have shown that SNPs associated with
complex diseases, detected in GWAS, are more likely to be an
eQTL compared to non-associated SNPs (Nicolae et al., 2010).
In autoimmune disease it has been shown that approximately
12% of causal non-coding SNPs are eQTL (Farh et al., 2015).
In addition, eQTL data integration with prediction of miRSNPs
can help to link causal non-coding disease variants to specific
genes (Võsa et al., 2015). We found that 28 miRSNPs associated
with AID were eQTLs for their target genes. Interestingly,
these results agree with results obtained with our naïve Bayes
classifier predictions. One interesting example of this scenario
is the miRSNP rs7444. This miRSNP is an eQTL that may
upregulate UBE2L3 (the gene that encodes the ubiquitin-
conjugating enzyme E2 L3) and is predicted to disrupt the
binding of four miRNAs to the mRNA of this target gene. The
risk allele (C) disrupts binding of miRNAs with the UBE2L3
mRNA, resulting in overexpression of UBE2L3, which is in
perfect agreement with the eQTL results. Although UBE2L3
polymorphisms have been associated with seven AID (Ricaño-
Ponce and Wijmenga, 2013), after applying our approach and
considering the stringent genome-wide P-value threshold (P < 5
× 10−8), we found three AID (SLE, CD, and IBD) sharing
association with UBE2L3, indicating deregulation of miRNAs
pathways at least in these three diseases. UBE2L3 participates
of ubiquitination of the NF-κB precursor (Whiteside, 1995), a
major transcription factor for genes involved in inflammation
and immune responses. Loss of normal regulation of NF-κB is
a major contributor to a variety of diseases, including AID. In
addition, a SNP (rs140490) in absolute LD (r2 = 1 and D’ = 1)
with miRSNP rs7444, was correlated with basal NF-kB activation
in unstimulated B cells and monocytes (Lewis et al., 2015),
suggesting an effect of miRSNP rs7444 in the regulation of this
gene through miRNAs.

Moreover, the UBE2L3 protein has been described as involved
in the cytotoxic function of NK cells, which is a key cell type in the
innate immune response (Fortier and Kornbluth, 2006). Hence,
it is conceivable that if any of the miRNAs predicted to target
this gene are expressed in NK cells, they could regulate UBE2L3

Frontiers in Genetics | www.frontiersin.org 10 April 2018 | Volume 9 | Article 139

https://www.gtexportal.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


de Almeida et al. Genetic Variants Affecting MicroRNA Binding

expression in this cell type. Although it is not known if these
four miRNAs are expressed in NK cells, according to miRmine
database (Panwar et al., 2017), apart frommiR-4741 that presents
low levels in blood, the other miRNAs are highly expressed in
blood and in plasma, and display normal levels of expression in T-
cells (miRmine database Panwar et al., 2017; accessed July 2017).
Functional NK cell-specific assays might help to confirm these
predictions.

Another interesting example is the miRSNP rs907091 which
is an eQTL for IKZF3 and was previously reported as one of
the possible causal SNPs of this autoimmune associated region
(Farh et al., 2015). We found that the allele T of this SNP
was predicted to affect the binding site of eight miRNAs to
IKZF3 mRNA. The same allele T had a protective effect in
four AID (T1D, PBC, UC, and IBD). By integrating genotype
and RNA-seq (mRNA and microRNA) data, we found miR-
326 levels negatively correlated with IKZF3 mRNA levels, in
homozygous (T/T) individuals. Additionally, miR-326 displayed
a high NBC Score (0.99) and is highly expressed in whole blood
and plasma (miRmine database; Panwar et al., 2017, accessed
July 2017), in agreement with the possible effect of this miRNA
on IKZF3 expression levels, which is also expressed in these
tissues. The IKZF3 gene (also known as AIOLOS) encodes an
IKAROS family transcription factor involved in regulation of
lymphocyte development (Cortes et al., 1999). Loss of IKZF3 in
mice can prevent autoreactive B cells and decrease peritoneal,
marginal and recirculating B cells (Wang et al., 1998; Cariappa
et al., 2001), suggesting that low expression of IKZF3 could limit
autoimmunity. This again matched our predictions, and eQTL
results available in public databases. Furthermore, our results
suggest that the downregulation of IKZF3 showed by the eQTL
results for blood (P = 3.9 × 10−5, Z-score = −4.11, Blood
eQTL database Westra et al., 2013; accessed July 2017) could
be caused through the interaction between miRNA and mRNA
of this target gene. Functional experiments are necessary to
confirm these results. We hypothesize that knockdown of miR-
326 in blood cells would counteract the deregulation of IKZF3.
Anyhow, this miRNA could be a candidate for future therapy
of AID.

Although our correlation analyses did not show that levels
of all 86 miRNAs correlated with expression levels of their
respective predicted target genes, we still have found correlations
with 9 target genes. Since the miRNA and mRNA expression
analyses were performed on LCL, the lack of correlation could be
explained by tissue-specific expression, either of the target genes,
themiRNAs, or other interacting proteins and non-coding RNAs.
Moreover, predicted tissue-specific target genes are typically
expressed in the same tissue as the miRNA but at significantly
lower levels than in tissues where themiRNA is not present (Sood
et al., 2006). Therefore, levels of miRNAs and the cognate target
mRNA would correlate only in certain tissues. In addition, under
certain circumstances, the effect of an miRNA on its target can
only be observed when the protein level is measured (Li et al.,
2015; Seo et al., 2017).

Furthermore, after integrating our results with data of
experimentally validated assays available in two databases,
we found two genes and two miRNAs (Supplementary Table
3) reported as functionally validated in these databases.
Interestingly, the rs3088081 miRSNP of the SNAPC4 gene is
an eQTL that affects interaction with only one miRNA (miR-
3661). Although little is known about this gene, this observation
indicates the need of further functional validation of our results
in the specific cell types, which could confirm whether these
miRNAs should be considered candidates to regulate AID
associated genes.

GWAS has identified more than 250 susceptibility loci for
AID (Ricaño-Ponce and Wijmenga, 2013). Many risk loci are
shared between these diseases, which is consistent with them
having an overlapping genetic background. The majority of
genetic variants identified by GWAS were located in non-coding
regions of the genome. A few AID studies reported association
of differential susceptibility with SNPs at miRNA binding sites,
such as rs3190930 in the PTPRK locus in CeD that alters the
binding site for miR-1910 (Trynka et al., 2011). However, our
study is the first that showed, in a systematic integrative manner,
that immune associated non-coding SNPs could alter miRNAs
binding sites. Overall, our integrative approach allowed us to
find possible functional SNPs that were not described by the
original GWAS. In addition, this approach could be extended to
other complex diseases where GWAS summary statistics data are
available. Thus, we highlighted miRNAs and genetic variarion
at their binding sites as new candidates to be involved in the
development of the AID.
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