AUTHOR=Bertini Veronica , Azzarà Alessia , Legitimo Annalisa , Milone Roberta , Battini Roberta , Consolini Rita , Valetto Angelo TITLE=Deletion Extents Are Not the Cause of Clinical Variability in 22q11.2 Deletion Syndrome: Does the Interaction between DGCR8 and miRNA-CNVs Play a Major Role? JOURNAL=Frontiers in Genetics VOLUME=8 YEAR=2017 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2017.00047 DOI=10.3389/fgene.2017.00047 ISSN=1664-8021 ABSTRACT=
In humans, the most common genomic disorder is the hemizygous deletion of the chromosome 22q11.2 region, that results in the “22q11.2 deletion syndrome” (22q11.2DS). A peculiarity of 22q11.2DS is its great phenotypic variability that makes this pathology a classic example of a syndrome with variable expressivity and incomplete penetrance. The reasons for this variability have not been elucidated yet, and the molecular substrates underlying the different clinical features of 22q11.2DS are still debated. A cohort of 21 patients has been analyzed by array CGH in order to detect some of the genetic differences that may influence this variability. Two aspects have been investigated: (1) the precise localization of the deletion breakpoints within the low copy repeats (LCRs), (2) the additional Copy Number Variations (CNVs) elsewhere in the genome, by analyzing their gene content. Both protein-coding genes and miRNAs were considered, in order to discover possible epistatic interactions between genes of the 22q11.2 region and the rest of the genome. Eighteen out of twenty-one patients had a deletion of ~3 Mb mediated by LCR22-A and D, whereas 3/21 had a smaller deletion. The breakpoints within the LCR22-A and D do not have a major role in the phenotypic variability since they are rather clustered and the small differences concern genes that are not directly related to clinical signs of 22q11.2DS. A detailed analysis of the gene content of 22q11.2 deleted region indicates that this syndrome could be a bioenergetic disorder or consequence of an altered post-transcriptional gene regulation, due to the presence of