AUTHOR=Schrynemackers Marie , Kueffner Robert , Geurts Pierre TITLE=On protocols and measures for the validation of supervised methods for the inference of biological networks JOURNAL=Frontiers in Genetics VOLUME=4 YEAR=2013 URL=https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2013.00262 DOI=10.3389/fgene.2013.00262 ISSN=1664-8021 ABSTRACT=
Networks provide a natural representation of molecular biology knowledge, in particular to model relationships between biological entities such as genes, proteins, drugs, or diseases. Because of the effort, the cost, or the lack of the experiments necessary for the elucidation of these networks, computational approaches for network inference have been frequently investigated in the literature. In this paper, we examine the assessment of supervised network inference. Supervised inference is based on machine learning techniques that infer the network from a training sample of known interacting and possibly non-interacting entities and additional measurement data. While these methods are very effective, their reliable validation