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The gut-heart axis is an emerging concept highlighting the crucial link between

gut microbiota and cardiovascular diseases (CVDs). Recent studies have

demonstrated that gut microbiota is pivotal in regulating host metabolism,

inflammation, and immune function, critical drivers of CVD pathophysiology.

Despite a strong link between gut microbiota and CVDs, this ecosystem’s

complexity still needs to be fully understood. The short-chain fatty acids,

trimethylamine N-oxide, bile acids, and polyamines are directly or indirectly

involved in the development and prognosis of CVDs. This review explores the

relationship between gut microbiota metabolites and CVDs, focusing on

atherosclerosis and hypertension, and analyzes personalized microbiota-based

modulation interventions, such as physical activity, diet, probiotics, prebiotics,

and fecal microbiota transplantation, as a promising strategy for CVD prevention

and treatment.

KEYWORDS

gut microbiota, gut-heart axis, dysbiosis, cardiovascular diseases, atherosclerosis,
hypertension, TMAO, SCFAs
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fgstr.2023.1235126/full
https://www.frontiersin.org/articles/10.3389/fgstr.2023.1235126/full
https://www.frontiersin.org/articles/10.3389/fgstr.2023.1235126/full
https://www.frontiersin.org/articles/10.3389/fgstr.2023.1235126/full
https://www.frontiersin.org/articles/10.3389/fgstr.2023.1235126/full
https://www.frontiersin.org/journals/gastroenterology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fgstr.2023.1235126&domain=pdf&date_stamp=2023-10-16
mailto:c.rafaela.f.almeida@gmail.com
https://doi.org/10.3389/fgstr.2023.1235126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/gastroenterology#editorial-board
https://www.frontiersin.org/journals/gastroenterology#editorial-board
https://doi.org/10.3389/fgstr.2023.1235126
https://www.frontiersin.org/journals/gastroenterology


Almeida et al. 10.3389/fgstr.2023.1235126
1 Introduction

Humans have a diverse and dense ecosystem of microorganisms

called the human microbiota, which has been known for almost a

century. However, we are only now starting to grasp many of these

microorganisms’ functions in human health and development (1).

The human microbiota comprises more than 100 trillion

microbial species, within which bacteria, fungi, viruses, and

protozoa are distinguished (1, 2). These microorganisms, together

with their genes (microbiome), form a dynamic microbial

community that inhabits different areas of the human body,

playing a vital role in the host’s health (1). The site of the human

body that hosts the most significant number and diversity of

microorganisms is the gastrointestinal tract, more precisely the

gut, having a significant impact on human homeostatic processes

such as nutrient metabolism, maintenance of intestinal mucosal

barrier integrity, regulation of satiety, defense against pathogens

either by pH modification or secretions of antimicrobial peptides or

changes in cell signaling pathways, and development of the immune

system (3, 4). These microorganisms coexist in harmony with their

host, demonstrating a symbiotic relationship. Although a balance

between the microbiota and its host must be observed to optimize

metabolic and immunological functions, there is no ideal

composition because each person has a unique microbiota (5).

Thus, considering gut microbiota characteristics such as high

diversity, stability, and resilience, and the symbiotic interactions

with the host, we can define it as a superorganism (6, 7). Firmicutes,

Bacteroidetes, Proteobacteria, and Actinobacteria, are the four

major phyla in the gut microbiota, and in healthy adult

individuals, the first two prevail (8, 9). Its composition remains

stable over time, but the microbiota is characterized by some

volatility, demonstrated by a diverse set of genetic and

environmental factors like dietary composition, social

interactions, infections, and antibiotic exposure, that can shape its

composition (10, 11).

Most studies prove that the balance between the microbial

species in the gut microbiota is fundamental for maintaining the

body’s homeostasis (11). The term dysbiosis refers to an imbalance

in the microbiota composition with a consequent change in its

functions, whereby its normal beneficial state changes to a possible

harmful state for human health, with pro-inflammatory effects and

immune dysregulation associated with several disorders (12).

Increasing evidence points to the possibility of using variations in

the F/B ratio, the ratio of the microbial communities Firmicutes and

Bacteroidetes, as a biomarker for pathological disorders (13).

However, a growing body of proof suggests that gut microbiota

impacts intestinal disorders and numerous extra-intestinal

disorders such as neurological disorders, cardiovascular diseases

(CVDs), cancer, and many others (14). Understanding the cause or

consequence of this situation and how to maintain or restore the

composition of the gut microbiota will be very helpful in developing

new therapeutic interventions (15).

In the past decade, CVDs have emerged as the leading cause of

death worldwide, taking an estimated 17.9 million lives yearly (16,

17). Besides genetic factors, environmental factors and intestinal
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microbiota were also acknowledged as one of the main factors for

the development of CVD. Also, diabetes, obesity, and metabolic

syndrome, three major risk factors for CVDs, have been linked to

intestinal dysbiosis as a risk factor for development (18, 19). One

example of the potential link between gut microbiota and CVD is

the production of trimethylamine N-oxide (TMAO), a compound

that has been linked to CVD, with high plasma TMAO levels having

a close association with the risk of developing atherosclerosis (16,

19, 20).

The purpose of the present review is to explore the role of the

gut microbiota concerning the development of CVD, focusing on

our previous works (20), and the most current evidence regarding

TMAO as a biomarker for CVD and the effects of its precursors,

choline, and carnitine, on TMAO formation and the associated high

CVD risk, as well as the beneficial effects of short-chain fatty acids,

bile acids and polyamines in CVD development (21–23).
2 Gut microbiota ecology and its
implication on cardiovascular diseases

2.1 Bacterial microbiota

Emerging evidence suggests that the gut microbiota may be an

essential contributor to the development of CVDs, such as

atherosclerosis, hypertension, coronary artery disease, and stroke.

Many researchers have reported a connection between CVD

phenotypes and changes in the relative abundance of specific

microbial taxa or the richness or variety of the bacteria in the gut

(24, 25).

The gut barrier is a complex system that separates the intestinal

lumen from the rest of the body (26). It plays a critical role in

maintaining the health and integrity of the body by preventing the

translocation of harmful substances and microorganisms from the

gut into the rest of the systemic circulation (26, 27). In a healthy

individual, the intestinal barrier is intact and functions

appropriately, being maintained by physical factors like tight

junctions between epithelial cells, mucus production, and mucosal

immunity (28, 29). The barrier comprises several layers, including

the mucus layer, the epithelial cell layer, and the underlying

immune system (26, 30). The mucus layer is a thin layer that

coats the gut’s surface and acts as a physical barrier to prevent the

adherence of pathogens and harmful substances. The epithelial cell

layer is composed of a single layer of cells that forms the outermost

layer of the gut and acts as a selective barrier allowing the passage of

nutrients and water into the body while preventing the

translocation of harmful substances. The underlying immune

system also plays a role in maintaining the integrity of the

intestinal barrier, helping to prevent the invasion of pathogens

and other harmful substances by producing antibodies and other

immune cells that can target and neutralize them (26, 27).

According to the leaky gut theory, decreased gut barrier function

has been linked to health problems, causing bacterial compounds to

enter the bloodstream of the host, which causes an inflammatory

response (31). Numerous studies demonstrate altered intestinal
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integrity in heart failure patients, and higher blood levels of pro-

inflammatory cytokines are associated with more severe symptoms

and worse outcomes. These situations have also been reported in

conditions like inflammatory bowel disease, food allergies,

autoimmune disorders, and CVD (31, 32).

Some evidence suggests that lipopolysaccharides (LPS) and leaky

gut may be related (33). The LPS are large molecules found in the outer

membrane of gram-negative bacteria, also known as endotoxins. They

are released when gram-negative bacteria die and lyse, releasing their

content into the surrounding environment. Therefore, LPS can cause

acute and chronic inflammatory reactions when they enter the

bloodstream, as the immune system recognizes them as foreign

invaders and mounts a range of physiological responses with toll-like

receptors (TLR)-4 being the key interlocutor and determine cytokine

cascade and caspase activation (33, 34). Recently, studies have been

shown to increase intestinal permeability in animals, with some

describing that individuals with leaky gut have higher levels of LPS

in their bloodstream and aremore predisposed to developing CVD (35,

36). However, the relationship between LPS and leaky gut still needs to

be fully understood, and more research is needed to confirm these

findings. Another example is the pathogenic gram-negative bacteria

Salmonella spp. which can breach the intestinal epithelium and alter

tight junctions, causing diarrhea via water and electrolyte loss into the

intestinal lumen (26). There, inflammation brought on by bacterial

translocation to the gut mucosa because of gastroenteritis might

worsen gut barrier failure and create a vicious cycle (37, 38).

One way the bacteria from gut microbiota may affect

cardiovascular health is through its impact on inflammation (39).

Inflammation is a normal immune response to injury or infection;

however, chronic low-grade inflammation is a critical factor in the

development of CVDs, and gut microbiota dysbiosis has been

shown to lead to inflammation through the production of various

signaling molecules and the activation of immune cells (40). This

may be due to certain types of bacteria that can produce substances

that can stimulate an inflammatory response, like pro-

inflammatory cytokines that can stimulate acute-phase reactants

and contribute to atherosclerosis (41). In addition, the gut

microbiota may also influence CVD through its effects on

metabolism by affecting lipids and glucose and leading to

dyslipidemia and insulin resistance, known risk factors for CVD

(39). There is also evidence that the gut microbiota may be involved

in developing arterial stiffness, a key predictor of CVD. This may be

due to the influence of the gut microbiota on the production of

SCFAs, which have been shown to affect arterial stiffness in animal

models (42).

Altogether, the evidence suggests that bacteria from the gut

microbiota play a significant role in the development of CVDs.

However, further research is needed to understand the mechanisms

underlying this relationship and how this information can prevent

or treat CVD.
2.2 Viral microbiota

The viral microbiota refers to the DNA and RNA viruses,

including eukaryotic viruses, bacteriophages, retroviruses and
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archaeal viruses, living in and on the human body, which are

highly heterogeneous across populations (43, 44). These viruses

can significantly impact the overall microbiota (44). Phages are

classified as either lytic or lysogenic; lytic phages reproduce by

infecting and killing their host cells, while lysogenic phages

integrate their genetic material into the host cell’s genome and

replicate. Some phages are thought to have a symbiotic relationship

with their host cells, while others may cause harm (45). The virome

is a relatively new area of research, and much is still unknown about

the types and roles of phages in the human body. It is thought to be

highly diverse, with thousands of different types of phages present

in the body. Recent studies have characterized the virome at several

body sites, including the skin, mouth, gut, and respiratory tract.

Some phages are thought to play a role in maintaining the

microbiota’s balance and protecting against infection by harmful

bacteria (46).

There is evidence suggesting that the viral microbiota may be

related to CVD. Some studies have found that individuals with

CVD have a different virome profile than those without and that

specific phages may be associated with an increased risk of CVD. De

Jonge PA et al. study has provided us with the knowledge that

viromes from individuals with metabolic syndrome, a well-known

risk factor for CVD, have less richness and relative abundance than

those belonging to healthy controls (47). This study identified

increased viral clusters associated with Bacteroidaceae in the

metabolic syndrome population. Moreover, Bacteroides prophages

may influence bacterial metabolism, hence modifying microbiota

composition in the gut. Additionally, the authors discovered a

potential new viral biomarker of metabolic syndrome, VC_818_0,

a phage from Roseburia/Blautia bacteria belonging to the

Candidatus Heliusviridae phage family. Since the abovementioned

bacteria are usually found in healthy microbiota compositions,

VC_818_0 phage, which contains genes with metabolic

expression, may change the metabolic behavior of these bacteria

(already described in marine environments) (48, 49), promoting a

deleterious modification of their virulence, hence, enhancing

metabolic syndrome (47).

Furthermore, evidence sheds light on the effect of the

Microviridae family on coronary heart disease (CHD). First, it

was observed that CHD patients had an increased quantity of

Virgaviridae and lower amounts of enteric viruses than healthy

controls, perhaps due to the type of diet or even the medical therapy

(50). Afterward, it was noted that the virome from normal gut

individuals was dominated by phages from Siphoviridae,

Podoviridae, and Myoviridae with lower quantities of

Microviridae. In contrast, CHD viromes are mainly dominated by

Microviridae and Virgaviridae, with fewer Siphoviridae,

Podoviridae, and Myoviridae (51, 52). So, this study found no

causal correlation between CHD patients and their viromes (53).
2.3 Fungi microbiota

Fungi are a diverse group of microorganisms found in various

body sites. Like bacteria, fungi are an essential part of the

microbiota and play multiple roles in human health. Several fungi
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types are considered standard parts of the human microbiota,

including yeasts, such as Candida and molds (54). These fungi

are typically harmless when present in small amounts, but when

they grow out of control, they can have harmful effects on human

health. For example, some fungi in the gut produce enzymes that

help to break down food, while others may have a role in regulating

the immune system (55). Some evidence suggests that the

mycobiome may be related to CVD, a condition affecting the

heart and blood vessels. One example is Candida, which is more

prevalent in individuals with CVD than those without (56, 57).

Candida has been shown to produce toxins that can damage blood

vessels and promote inflammation, which may contribute to the

development of CVD (57). Other fungi, such as Aspergillus, have

also been linked to an increased risk of CVD (58).

The CVD does not happen randomly. Indeed, some risk factors

are already identified, such as atherosclerosis, and hypertension,

among others (19, 59). With that being said, a new study explored

the role of mycobiome in the physiopathology of the

abovementioned risk factors. Atherosclerosis is a significant risk

factor involved in CVD, extensively analyzed, and is related to the

acute and chronic expression of CVD. It was demonstrated that

some fungus species might be correlated with atherosclerosis.

Mucor spp., from the family Mucoraceae and phylum

Zygomycota, is associated with decreased carotid intima-media

thickness (cIMT). Moreover, individuals with obesity, when the

mentioned fungus is detected, had the same risk as non-obese

individuals. With further exploration of Mucor spp., it was possible

to demonstrate that Mucor racemosus can be used as a

cardiovascular risk biomarker since it was related to a decreased

risk on Framingham Risk Score and cIMT (60).

A more relevant risk factor for CVD is hypertension.

Mycobiome has a relevant influence on hypertension

development. It was observed that individuals in a state of pre-

hypertension share the same bacterial and fungal microbiota

modifications as individuals with diagnosed hypertension.

Interestingly, bacterial richness and diversity reduce when an

unhealthy state is reached, while fungal diversity is increased

precisely when a pathology, like hypertension, is present.

Moreover, some fungi can be used as potential biomarkers for

hypertension, such as the increased quantity of Malassezia spp.,

which is known to promote pro-inflammatory states, as well as

diminished concentrations of Mortierella, which can be found in

healthy individuals, with an apparent probiotic effect in the bacterial

species (61). However, the relationship between the fungi

microbiota and CVD still needs to be fully understood; more

research is required in order to confirm these findings and

determine the exact role of fungi in the development and

progression of CVD. In the meantime, maintaining a healthy

lifestyle, including following a healthy diet and regular exercise, is

crucial to reducing the risk of CVD and other health problems.
3 Gut microbiota metabolites

Gut microbiota can modulate human metabolism by producing

small molecules, such as the transformation of dietary components
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into hormone-like signals or physiologically active metabolites, that

play vital roles in inflammatory signaling and interact directly and

indirectly with host immune cells. These metabolites can have a

variety of effects on the body, both positive and negative (62). Some

metabolites, such as SCFAs, have been shown to have several

beneficial effects on the body, while others, like TMAO, have

been linked to an increased risk of certain diseases (63, 64). The

role of gut microbiota metabolites in health and disease is an active

area of research, but it still needs to be fully understood how these

metabolites influence the body. However, understanding the role of

gut microbiota metabolites may help researchers develop strategies

to prevent or treat several conditions.
3.1 Short chain fatty acids

The SCFAs are carboxylic acids with less than six carbons,

produced by the fermentation of dietary fibers and non-digestible

carbohydrates, that evade digestion by host enzymes in the upper gut

and are metabolized by bacteria in the cecum and colon, with decline

concentrations from proximal to the distal colon as the substrates used

for fermentation are exhausted gradually (63). These compounds are

essential for maintaining gut health and have been shown to have

several beneficial effects on the body, including reducing inflammation,

improving insulin sensitivity, regulation of gene expression, and

regulating the immune system (62, 65). Diet composition directly

influences the production of SCFAs; specifically, Bacteroidetes and

Firmicutes can ferment indigestible fibers in the gut to produce acetate,

propionate, and butyrate, respectively, that can be absorbed and used as

an energy source (63, 66).

Acetate is the most abundant SCFA and is thought to have

diverse beneficial effects on the body, including reducing

inflammation, preventing the overgrowth of harmful bacteria,

regulating pH, and improving gut barrier function. Propionate is

also thought to have anti-inflammatory effects, limiting the growth

of dangerous bacteria. It has been shown to improve insulin

sensitivity in animal studies, which may be beneficial for people

with diabetes or at risk of developing diabetes. Moreover, its

potential role in appetite control has been studied, suggesting that

propionate may help reduce food intake and promote weight loss,

affecting the release of hormones involved in appetite regulation,

like ghrelin (67). Butyrate is considered the primary energy source

for colonic epithelial cells, and its deficiency has been associated

with the development of colitis and cancer (68). Furthermore, it

plays a role in maintaining gut barrier integrity by strengthening the

tight junctions between epithelial cells that control intracellular

molecular pathways between the lumen and the hepatic portal

system, reducing gut permeability, preventing toxins from

entering the bloodstream, and causing systemic inflammation (19,

69). Thus, butyrate has been shown to have anti-inflammatory and

anti-cancer effects, persuading apoptosis of colon cancer cells and

regulating gene expression by histone deacetylase inhibition (5).

Some studies have found that acetate and propionate are

associated with weight loss and improved insulin sensitivity,

possibly by reducing the absorption of carbohydrates in the gut,

so it has been studied as a potential treatment for conditions such as
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obesity, type 2 diabetes, and certain types of cancer (68). On the

other hand, studies have also found that butyrate may have

neuroprotective effects and may benefit people with multiple

sclerosis and Alzheimer’s disease (70, 71).

Recent research has suggested that SCFAs have a beneficial

effect on cardiovascular health. Several studies have found that

consuming a diet high in dietary fibers, which promote the

production of SCFAs in the gut, is associated with a lower risk of

CVD. One of the ways in which SCFAs may protect against CVD is

by reducing inflammation, a known risk factor for CVD, and

suppressing the inflammatory response. The SCFAs may also help

improve lipid metabolism, essential for cardiovascular health (19).

Some studies have found that consuming SCFAs can improve lipid

profiles, such as lower low-density lipoprotein (LDL) and higher

high-density lipoprotein (HDL) levels (72). Chen et al. treated

Caco-2 cells with SCFAs to see whether they affected the genes’

expression in cholesterol absorption. Butyrate was shown to inhibit

NPC1L1 and to increase ABCG5/G8 gene expression in a dose-

dependent manner while increasing the transcriptional activity of

liver X receptors in these cells, suggesting that butyrate protects

against the development of atherosclerosis (73). Moreover, SCFAs

have been found to play a role in regulating glucose metabolism,

which is vital for preventing type 2 diabetes, a risk factor for CVD,

with studies finding that consuming SCFAs can lead to

improvements in insulin sensitivity, lowering blood sugar levels

and reduce the risk of developing diabetes (74, 75).

Inhibiting the growth of dangerous pathogens such as

Salmonella spp. and Escherichia coli while promoting the growth

of good bacteria like Lactobacillus and Bifidobacteria are also effects

of high concentrations of SCFAs in the gut lumen (72).

Additionally, they may help improve the endothelial cells’

function that lines the blood vessels, helping to reduce the risk of

atherosclerosis and other cardiovascular problems.

Once SCFAs are absorbed into the bloodstream through the

walls of the large intestine by a process known as passive diffusion,

they are transported to the liver via the portal vein and then

distributed to several tissues, where they can interact with specific

receptors such as G protein-coupled receptors (GPRs) and influence

gene expression, cellular metabolism and immune response (66,

76). Acetate and butyrate will mainly participate in lipid

biosynthesis, and propionate will mainly participate in

gluconeogenesis (66).

Overall, SCFAs and gut microbiota are closely interlinked.

Maintaining a healthy balance of gut microbiota and sufficient

intake of dietary fibers and non-digestible carbohydrates can

support the production of SCFAs and help promote overall gut

health, positively affecting cardiovascular health. However, more

research is needed to fully understand the effects of SCFAs on CVD,

and more human studies are needed to confirm the findings.
3.2 Trimethylamine N-oxide

The gut microbiota plays a crucial role in TMAO formation, as

different types of bacteria have different abilities to break down and

produce trimethylamine (TMA) and TMAO. Some studies have
Frontiers in Gastroenterology 05
shown that certain types of bacteria, such as those from the

Prevotella and Bacteroides genera, are more efficient at producing

TMA and TMAO than others (3, 16). The TMAO is a metabolite

produced by certain gut bacteria when they break down foods

containing choline, lecithin, and carnitine, commonly found in red

meat, eggs, fish, and dairy products. It depends on the initial

formation of the TMA compound by the microbiota present,

especially in the first portion of the colon, which is absorbed and

transported to the liver by the portal circulation, where it is

metabolized by hepatic flavin-containing monooxygenase 3

(FMO3) to form TMAO (21). Then, the liver can release TMAO,

which will be taken up by extra-hepatic tissues or eliminated by

perspiration or urine (Figure 1). However, this compound can also

be absorbed by macrophages during the formation of

atherosclerotic plaque, with TMAO molecules binding to specific

receptors on the surface of the macrophages, which triggers a series

of signaling events inside the cell that activate specific pathways that

induce the expression of genes involved in cholesterol metabolism,

inflammation, and oxidative stress (77, 78). This can lead to the

accumulation of cholesterol in macrophages and the formation of

foam cells, a type of fat-filled cells that can accumulate in the arteries

walls and contribute to the development of atherosclerosis (78). In

addition, TMAO can regulate the differentiation of monocytes into

macrophages and foam cells, influencing pro-fibrotic processes in

the heart and kidney through growth factors (79); it can also

facilitate the release of calcium ions due to the stimulation of

platelet activity, which will activate the prothrombotic pathways

(78), and also impairs reverse cholesterol transport, in which the

cholesterol is removed from peripheral tissues and transported back

to the liver for excretion (80). So, TMAO can play an essential role

in regulating inflammation and result in protective or causative

effects, stimulating or attenuating the production of inflammatory

cytokines that can attract more immune cells, forming a vicious

circle that leads to foam cells formation and atherosclerosis

development (81).

Some researchers have suggested that TMAO may have a few

different functions. It may play a role in regulating gut function,

affecting gut motility and modulating the gut barrier function and

immune response. Also, it has a role in regulating energy metabolism

by modulating the activity of enzymes involved in fatty acid oxidation

(82). Nevertheless, TMAO play a role in regulating cardiovascular

function, by modulating the function of blood vessels and platelets,

which may contribute to the development of CVDs (21). Therefore,

studies have shown that high levels of TMAO in the blood may be

associated with an increased risk of heart attack and stroke, and high

levels of TMAO can cause platelet hyper-responsiveness to various

agonists in both humans and animals, which increases vascular

inflammation and has a prothrombotic direct effect (21, 83). These

effects are likely related to the pathophysiology of type 2 diabetes,

obesity, and CVDs (84). Nevertheless, TMAO has also positively

affected diabetic peripheral neuropathy, glucose tolerance, and

arterial hypertension (85).

The mechanisms by which TMAO promotes atherosclerosis are

not fully understood; however, several potential mechanisms have

been proposed. One of the most outstanding is related to the

activation of NLRP3 inflammasome, a crucial mediator of
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inflammation, and a significant contributor to the development of

atherosclerosis, along with the modulation of the gut microbiota,

leading to the production of other harmful metabolites (16, 86).

Heianza et al. aimed to evaluate the relationship between gut

microbiota metabolites and the risk of major adverse CVD events

and death, and after analyzing 19 prospective studies, the authors

found that higher levels of TMAO and its precursors were

associated with a higher risk of major adverse cardiovascular

events and all-cause mortality (87). This may be a potential

biomarker for predicting CVD risk, and further research is

needed to understand the mechanisms underlying the association

between gut microbiota metabolites and CVDs.

Overall, TMAO is recognized as one of the most promising

metabolites that may be an independent risk factor for CVDs. A

potential therapeutic target for CVDsmeasuring TMAO levels in blood

or urine may help identify individuals at high risk for CVD (59, 88).

Research on TMAO and how it contributes to the onset of

atherosclerosis is still emerging, but TMAO may be a significant

factor in this condition. More research is required to establish the

most effective approaches to prevent or treat CVDs and better

understand the mechanisms underlying this connection. Therefore,

this complex process involves multiple steps and signaling pathways,

and understanding this is essential to develop new strategies to prevent

or treat atherosclerosis and other related conditions.
3.3 Bile acids

Traditionally, bile acids (BAs) were known only for their

relevance in lipid metabolism. They are essential molecules

produced in the liver and secreted into the small intestine,

influencing dietary fats’ breakdown and absorption (89).

However, recently, BA has been associated, directly or indirectly,

with immune signaling, metabolism, differentiation, and microbiota

modulation (90, 91).
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The substrate for BAs is cholesterol, and then, through the

enterohepatic circulation, these BAs are deposited in the gallbladder.

The BAs can be divided into primary or secondary. The most common

primary BAs, produced in the liver are cholic acid (CA) and

chenodeoxycholic acid (CDCA). After the conjugation with bile salts,

glycolic acid (GCA), taurocholic acid (TCA), glycochenodeoxcholic

acid (GDCA), taurochenodeoxycholic acid (TDCA), and

ursodeoxycholic acid (UDCA) are obtained. The secondary BAs

result from the synthesis of the bacterial portion of microbiota,

through 7a dihydroxylation, in the small intestine and is deoxycholic

acid (DCA) and lithocholic acid (LCA), the latter being the most

hydrophobic (24, 91). One of the recently discovered functions of BAs

is the fact that they can be used as hormones, mainly for farnesoid X

receptor (FXR) and G Protein-coupled membrane receptor 5 (TGR5),

to decrease fatty acid oxidation, triglyceride accumulation, and NF-kB

inactivation in the aorta (23, 92).

These compounds can affect the diversity of the gut microbiota

by altering the growth and survival of certain bacterial species, as

they can act as signaling molecules that regulate the expression of

genes involved in bacterial metabolism, virulence, and antibiotic

resistance, which could result in alterations to the gut microbiota,

having both favorable and unfavorable consequences on human

health. Recently An et al. demonstrated that depending on the type

of microbial strain and particular BA, they can have marked

antibacterial effects against the gut microbiota, both in vitro and

in vivo, and according to the findings of this investigation, colonic

microorganisms are more vulnerable to BAs than cecal microbes

(93). Also, Quinn et al. established the ability of the gut microbiota

to conjugate BAs with different molecules like amino acids,

producing phenylalanocholic acid, tyrosochilic acid, and

lithocholic acid, which are found in humans and enriched in

patients with inflammatory bowel disease or cystic fibrosis (94).

In addition to their impact on bacterial diversity, BAs can serve as

growth substrates for specific bacterial species, including those that

produce SCFAs. They can also stimulate the gut epithelium’s
FIGURE 1

Trimethylamine N-oxide pathway: from food intake to CVDs development – transformation of dietary choline, lecithin, and carnitine into TMAO
through gut microbiota metabolism and hepatic oxidation by the hepatic flavin-containing monooxygenase 3 (FMO3), which can be absorbed by
extrahepatic tissues or excreted in urine. Atherosclerosis, hypertension and heart failure are all impacts of TMAO that can lead to CVDs. TMA -
Trimethylamine; TMAO - Trimethylamine N-oxide.
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production of antimicrobial peptides, which helps protect against

pathogenic bacteria (95). Also, BAs can alter the function of the gut

barrier by controlling the production of tight junction proteins,

which are crucial for preserving intestinal integrity and limiting the

translocation of bacteria and toxins across the gut epithelium (96).

Nevertheless, the intestinal microbiota can impact the

metabolism of BAs. Some types of gut bacteria can convert

primary BAs into secondary BAs, which are different from

primary BAs and have other purposes. For instance, studies have

demonstrated secondary BAs’ anti-inflammatory and anti-cancer

properties (97, 98).

While the specific mechanisms underlying these effects are still

being elucidated, it is clear that BAs play a crucial role in

maintaining the health of the gut ecosystem, and their interaction

is dynamic and complex. In summary, elevated secondary BAs and

increased ratios of secondary BAs: primary BAs are more associated

with CVD (23, 99). One of the best research pathways to

understand the impact of microbiota in cardiovascular disease is

focusing on BAs metabolism, particularly secondary BA, its effects,

and its relevance in CVD physiopathology (24). Additional research

may lead to new therapeutic approaches for the treatment of gut-

related disorders like inflammatory bowel disease, obesity, type 2

diabetes, and CVDs, and is essential for developing a

comprehensive understanding of human health and disease.
3.4 Polyamines – cadaverine, putrescine
and spermidine

Cadaverine and putrescine are polyamines synthesized by

bacteria. Bacteria often produce them during the decomposition

of animal or plant tissue, contributing to unpleasant odors

associated with decay and putrefaction. Cadaverine originated

from L-lysine through lysine decarboxylase LdcC or acid-

inducible CadA (100, 101). Moreover, putrescine arises from

synthesizing the substrate L-carnitine, by SpeC or SpeF or the

substrate L-arginine, through SpeA and SpeB (102, 103).

Spermidine originated from the substrate S-adenosine-L-

methionine decarboxylated and putrescine through SpeE (104,

105). Cadaverine and putrescine are later degraded, by the lysine

degradation pathway, to succinate (106, 107). Spermidine is only

degraded to N-acetylspermidine through SpeG (108, 109). All these

polyamines have modulatory effects on the microbiota to promote

cardiovascular protection (22, 110).

However, the causal relationship between polyamines and

cardiovascular benefits is still in the beginning. Liu S. et al.

exploited the effect of one of the polyamines, spermidine, in a

mouse model of abdominal aortic aneurysms (AAAs). First, AAAs

are associated with a remarkable microbiota dysbiosis, with

diminished alpha and beta diversity, accompanied by a shift in

bacterial composition, namely increased Bacteroides spp., which are

pro-inflammatory species, and lower concentrations of Oscillospira

spp. and Ruminococcus spp., species with anti-inflammatory

properties. Moreover, the described microbiota dysbiosis upheld

functional modifications, especially in polyamines. Furthermore,

when spermidine was administered, the intestinal microbiota was
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modulated with increased concentrations of Prevotella and

Desulfovibrionaceae and decreased wholes of Parabacteroides

(111). In this study, it was observed that the protective effect of

spermidine seems to be associated with a modulation of gut

microbiota composition into a more anti-inflammatory one, as

well as in the increment of Desulfovibrionacea species that can

improve polyamine metabolism and promote a more resilient

intestinal barrier (111, 112).

Moreover, spermidine is essential for a better heart failure

prognosis. This polyamine can act by two different pathways: 1)

Direct pathway, where spermidine can avoid cardiac hypertrophy,

diminish systolic blood pressure, improve echocardiographic

parameters, decrease fibrosis, and, therefore, postpone the

progression of heart failure; 2) Indirect pathway, where

spermidine can modify intestinal microbiota, decreasing F/B ratio

and raising the levels ofMuribaculaceae spp., therefore ameliorating

the intestinal microenvironment Muribaculaceae spp. are Gram-

negative bacteria found in mice intestines (113), especially after

acarbose treatments, since these bacteria produce propionate, a

SCFA with anti-inflammatory properties, which is associated with

increased longevity in mice (114).

Both cadaverine and putrescine are toxic to humans and

animals in large quantities, and they can cause a range of adverse

health effects, including nausea, vomiting, and respiratory problems

(115). However, polyamines’ relationship with cardiovascular

benefits are important since they might have implications for the

promotion of improved cardiovascular health.

4 Interactions between the gut
microbiota and cardiovascular
diseases

4.1 Atherosclerosis

Atherosclerosis is a chronic inflammatory condition in which

the arteries become narrowed and hardened, with an accumulation

of lipids and cells, such as white blood cells, endothelial cells, and

foam cells in the membranes, resulting in the formation of plaques

in the arteries (116, 117). In this condition, innate and acquired

immunity are involved, and inflammation of vessel walls is an

essential feature of atherosclerosis, contributing to plaque instability

and thrombotic occlusion of arteries (118, 119). This process can

lead to serious health problems, like heart attacks, strokes, and acute

CHD (117).

Recent research has highlighted the potential role of gut

microbiota in the development of atherosclerosis by promoting

inflammation and altering lipid metabolism (41). In fact, by

describing a case of bacterial translocation from the gut to the

heart and the discovery of gut bacterial DNA in atherosclerotic

plaques, recent studies have established the gut as a potential

reservoir of pathogenic microorganisms and with TMAO shown

to be involved in the development of the disease (39). One way gut

microbiota can promote inflammation is by producing pro-

inflammatory compounds such as LPS that can activate immune

cells and promote the recruitment of inflammatory cells to the
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arterial wall (120). Additionally, gut microbiota can also modulate

the production of other pro-inflammatory molecules, such as TNF-

a, IL-1b, and IL-6, which can contribute to the development of

atherosclerosis (120, 121). Another way is by altering lipid

metabolism, converting dietary components such as choline,

lecithin, and carnitine into TMAO which can increase the uptake

of lipids by cells in the blood vessel walls and promote the formation

of plaques (122). Moreover, gut microbiota can also affect the host’s

insulin resistance and glucose metabolism and the levels of certain

hormones such as leptin and ghrelin, which can lead to increased

inflammation or regulate appetite, leading to the development of

atherosclerosis (123).

This disease develops gradually over time; one of the critical

pathways involved in its development is the independent-

metabolism pathway, characterized by the accumulation of lipids,

particularly cholesterol, in the endothelial cells lining the blood

vessels (39, 124). The process begins with injury to the endothelial

cells, which can be caused by several factors, such as hypertension,

smoking, and diabetes (119). Once the endothelial cells are

damaged, they become more permeable, allowing lipids to

accumulate in the blood vessels tunica intima, the innermost layer

of the arteries. This accumulation triggers an inflammatory

response which results in the recruitment of monocytes to the

injury site, converting them into foam cells, which are characterized

by their high content of lipids, resulting in foam cells and other

inflammatory cells, along with extracellular matrix components and

smooth muscle cells, to form a plaque on the inner wall of the

vessels (124). As the plaque grows, it can block blood flow through

the vessel, and if a blood clot forms or a rupture occurs, it can cause

serious complications such as heart attack or stroke (125, 126). So,

the independent-metabolism pathway is a pivotal contributor to the

deve lopmen t o f a the ro s c l e ro s i s and i t s a s soc i a t ed

complications (121).

The metabolism-dependent pathway is another mechanism that

contributes to the development of atherosclerosis. By changing the

production of different metabolites, dysbiosis can also have pro-

atherosclerotic effects. The TMAO is one of the primary metabolites

that play a significant role in atherosclerosis progression, as

mentioned above (41, 121, 122). This pathway is also

characterized by the accumulation of lipids, particularly

triglycerides, in the liver and adipose tissue, and the process

begins with the overconsumption of calories and/or a diet high in

saturated and trans fats, which leads to an increase in the

production of very low-density lipoprotein (VLDL) particles in

the liver. These particles are rich in triglycerides and are transported

to adipose tissue, where they are taken up by adipocytes and

converted into triglyceride-rich lipoproteins (TRLs). Their

accumulation in adipose tissue leads to insulin resistance and

inflammation, both of which contribute to the development of

atherosclerosis as insulin resistance progresses, the adipose tissue

secretes higher levels of adipokines, signaling molecules that

promote inflammation and increase the risk of atherosclerosis.

Additionally, the accumulation of TRLs in the liver produces

more extensive and denser LDL particles, which are more prone

to sticking to the blood vessel walls and contribute to developing

plaques (124). It is important to note that, like the independent-
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metabolism pathway, the dependent-metabolism pathway is not the

only mechanism that contributes to the development of

atherosclerosis, and it may act together with multiple pathways to

contribute to the disease (122).

It is important to note that the relationship between gut

microbiota and atherosclerosis is complex and still not fully

understood, so more research is needed to determine the specific

mechanisms by which gut bacteria contribute to the development of

this disease and how to exploit this information to develop new

therapeutic strategies. Therefore, controlling the risk factors, such as

maintaining a healthy diet, regular physical activity, and avoiding

smoking, can help lower the risk of developing atherosclerosis.

4.2 Hypertension

One of the most critical public health issues is hypertension,

which increases the risk of pathological strokes, CHD, kidney

failure, and early mortality, estimated to affect around one-third

of adults worldwide (127). Genome-wide association analyses reveal

that only 5% of hypertension occurrence can be explained by

genetics, being assumed to be fueled by a combination of genetics

and lifestyle variables (128). Environmental elements like dietary

salt intake, alcohol use, and inactivity are also linked to increased

blood pressure (59, 127).

The exact mechanism by which gut microbiota influence

hypertension is not fully understood, but their link has recently

been the subject of numerous animal and human studies (129, 130).

Hypertension occurrence is often accompanied by gut microbiota

imbalance, including decreased diversity, altered enterotype

distribution, and variation in bacterial populations, and it is

thought that certain types of gut bacteria may produce substances

that can affect blood pressure; for example, some bacteria may

produce SCFAs that have anti-inflammatory effects, while others

may produce substances that increase inflammation and contribute

to the development of hypertension (130). Additionally, gut

microbiota may influence hypertension by affecting how the body

processes and metabolizes nutrients, such as sodium and potassium,

given that these nutrients play a crucial role in regulating blood

pressure, and an imbalance can lead to high blood pressure (131).

Dysbiosis can accelerate the development of hypertension,

described as a slight reduction in the artery lumen that raises

peripheral vascular resistance and leads to high blood pressure

and atherosclerosis (132). Although the direct connection between

hypertension and TMAO has not yet been fully established, it is

known that it prolongs the hypertensive effect of angiotensin II and

determines an increase of vascular inflammation and a direct

prothrombotic effect by the promotion of platelet hyper-

responsiveness to multiple agonists both in humans and rodents

(133, 134). Blood pressure regulation is generally linked to the

renin-angiotensin system, which involves the angiotensin-

converting enzyme (ECA) (83). Studies have also found that

individuals with higher levels of TMAO in their blood tend to

have higher blood pressure compared to those with lower levels, and

reducing TMAO levels through dietary interventions, such as

decreasing the intake of animal-based protein and fat, has been

shown to lower blood pressure in some individuals (84).
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To sustain host immunity and gut microbiota homeostasis,

SCFAs are essential. Kang et al. demonstrated that SCFAs produced

by gut microbiota are involved in modulating blood pressure and

can potentially affect the secretion of renin and blood pressure by

stimulating host G-protein-coupled receptor (GPR) pathways

(135). Yang et al. demonstrated in two rat models that

hypertension was associated with gut microbiota dysbiosis,

characterized by an increased F/B ratio, a sharp decline in acetate

and butyrate-producing bacteria, and an accumulation of lactate-

producing bacteria (13). Li et al. demonstrated that hypertension is

associated with an increase in the populations of Klebsiella,

Prevotella, Coprobacillus, and Enterobacter and a decrease in the

populations of Anaerotruncus, Coprococcus, Ruminococcus,

Clostridium, Roseburia, Blautia and Bifidobacterium, correlated

with a reduction of F/B ratio and in the production of SCFAs

(136). Also, in a review by Verhaar et al. these results were discussed

(137). In animal studies, acetate and propionate were also associated

with lowering blood pressure and had cardiovascular preventive

effects (130).

Animal models of hypertension, such as Dahl-sensitive rats,

spontaneously hypertensive rats, angiotensin-II-induced

hypertensive rats, and deoxycorticosterone acetate-salted mice,

exhibit different gut microbiota compositions from wild-type

animals, like a lower abundance of SCFAs-producing bacteria and

Bacteroidetes, and higher abundance of lactate-producing bacteria,

Proteobacteria and Cyanobacteria (129, 138, 139). Overall, animal

models of hypertension help study the disease’s underlying

mechanisms and test potential treatments; however, it should be

noted that the results obtained from animal models may not always

translate to humans.

Therefore, the relationship between gut microbiota and

hypertension is complex and not fully understood, but gut

microbiota may contribute to developing and managing high blood

pressure. Further research is needed to fully understand this

relationship and determine the best ways to manipulate the gut

microbiota, reduce TMAO levels, and improve cardiovascular health.
5 Therapeutical interventions

Therapeutic interventions on gut microbiota use several

strategies to manipulate the composition and function of the gut

microbiota to improve health. They can include a variety of

strategies, such as probiotics, prebiotics, antibiotics, diet, physical

activity, and fecal microbiota transplantation (140). These have

been used to treat a variety of conditions, and studies have also

suggested that gut microbiota modulation could have the potential

to not only improve gut health but also reduce the risk of developing

CVDs and improve overall health and well-being (6, 141). To

restore gut barrier integrity, treatments like probiotics or drugs

are probably doomed to failure if used alone. Instead, lifestyle

adjustments that consider factors like exercise, sunlight exposure
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and vitamin D levels, circadian rhythm modulation, and stress

management are more likely to produce favorable outcomes (26).
5.1 Probiotics, prebiotics, and symbiotics

Some studies suggest that therapeutic interventions aiming at

the gut microbiota are effective in treating and preventing CVDs,

and they mainly involve probiotics, prebiotics, or symbiotics (142,

143). Probiotics and prebiotics have a critical role in nutrition,

sickness, and health, which has boosted their importance in

research and commercial circles worldwide. Their use has been

studied concerning CVDs, including atherosclerosis, hypertension,

diabetes, and metabolic syndrome, with promising results (144–

146), as observed in Table 1.

Probiotics are ‘live strains of strictly selected microorganisms

which, when administered in adequate amounts, confer a health

benefit on the host’, so strictly selected strains can have this

potential and only in adequate amounts, as higher doses doesn’t

offer the same benefit (154). Probiotics’ positive impact on human

health or their ability to prevent disease is mainly brought on by

their ability to compete with pathogenic microorganisms,

antagonize pathogens, modulate gut microbiota composition, alter

pH, or regulate the host’s immune response (146). Lactobacillus,

Bifidobacterium, Lactococcus, Streptococcus, and Enterococcus are

among the lactic acid bacteria that make up most of these. Their

effects on CVDs are strain-specific and depend on the dose,

duration, and specific population studied (144, 145). Several

studies have suggested that probiotics can have a beneficial effect

on CVDs by reducing inflammatory mediators and blood glucose

levels, ameliorating the epithelial barrier function, and competing

against pathogens with nutrients and adhesion sites, with some

probiotic strains being found to lower blood pressure, and

regulating cholesterol levels (26, 145).

Prebiotics are ‘non-digestible food ingredients that beneficially

affects the host by selectively stimulating the growth and/or activity of

one or a limited number of bacteria in the colon, and thus improves

host heath’ (155, 156). Just like probiotics, one way in which

prebiotics may be beneficial to CVDs is through their effects on gut

microbiota, helping improve gut barrier function and reducing

inflammation. Some prebiotics like fructooligosaccharides (FOS)

and galactooligosaccharides (GOS) have been found to lower

cholesterol levels by reducing the absorption of cholesterol from

the gut and by increasing the production of BAs (157). Intestinal

enzymes can break down neither oligosaccharides nor

polysaccharides. Hence, the gut microbiota transports prebiotics to

the colon, where they are fermented, and consequently, their adverse

effects are caused mainly by their osmotic properties (155). Besides

that, prebiotics are believed to have no severe or potentially fatal

adverse effects (144, 158).

Symbiotics are a combination of probiotics and prebiotics; the

idea behind it is that by combining the two, the probiotic will have
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better survival and colonization in the gut, leading to a more

significant beneficial effect on the host (158). These have been

studied for various health benefits, including improving gut health,

boosting the immune system, and reducing the risk of certain

diseases such as allergies, obesity, and diabetes. Also, they have

been studied for their potential in treating certain gastrointestinal

disorders such as inflammatory bowel diseases (IBD) and irritable

bowel syndrome (IBS) (159, 160). These supplements could help

restore the normal gut microbiota, encourage the growth of good

bacteria, and stop the spread of pathogens. By focusing on the gut

microbiota and preserving immune homeostasis in the body,

probiotics, prebiotics, and symbiotics may be considered

promising intervention strategies to prevent or improve CVDs.

However, it is essential to note that while health benefits are

observed, they should not be relied upon solely to treat or

prevent CVD.
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Antibiotics are a class of drugs used to treat bacterial infections;

however, they can also have unintended consequences on the gut

microbiota (161). When antibiotics are taken, they target the

pathogenic bacteria causing the infection and the beneficial

bacteria that comprise the gut microbiota. The high intake of

antibiotics disrupts the delicate balance of the gut microbiota,

causing an imbalance and favoring systemic diseases (162). One

of the most common effects is diarrhea, caused by the overgrowth of

pathogenic bacteria such as Clostridium difficile (163). Antibiotics

can also increase the risk of other infections and contribute to the

development of antibiotic resistance. Additionally, antibiotics can

have long-term effects on the human microbiota. Studies have

shown that they can alter the gut microbiota composition for up

to a year after the treatment, leading to a decrease in the diversity of

bacteria present and an overgrowth of potentially harmful bacteria

(162). This disruption could lead to an increase of pro-
TABLE 1 Animal studies and clinical trials using probiotics and prebiotics in several cardiovascular diseases as a therapeutic approach.

Study Year Disease Treatment
Type
of

study
Via Outcome Reference

Sun
et al.

2016
Ischemic
stroke

C. butyricum
No

mention
Animal
study

Protective effects against ischemic stroke; attenuate
neurological deficit, ameliorate histopathological changes

alleviate oxidative stress and inhabit apoptosis.
(147)

Tenorio-
Jiménez
et al.

2018
Metabolic
Syndrome

Lactobacillus reuteri
V3401

5 × 109
CFU/mL

Clinical
trial

2-week administration of L. reuteri V3401 in capsules was
associated with lower levels of inflammation biomarkers,
such as TNF-, IL-6, IL-8, and sICAM-1, and a reduced
risk of CVD in obese adults with metabolic syndrome.

(148)

Raygan
et al.

2018

Type 2
diabetic

patients with
Coronary

Heart Disease
(CHD)

L. acidophilus, L.
reuteri, L. fermentum,

Bifidobacterium
bifidum and Selenium

200 mg/
day

selenium
+ 8×109
CFU/day
probiotic

Clinical
trial

Probiotic and selenium co-supplementation reduce
inflammatory factors and oxidative damage through
producing short chain fatty acids in the gut and the

decreasing production of free radicals, and due to blocking
activation of nuclear factor-kB through modulating

selenoprotein genes expression and inhibiting production
of reactive oxygen species.

(149)

Hassan
et al.

2020 Atherosclerosis
Lactobacillus

plantarum ATCC
14917

0.2 mL
(109
CFU)

Animal
study

L. plantarum ATCC 14917 supplementation decreases the
progression of atherosclerotic lesion formation by
alleviating the inflammatory process and lowering

oxidative stress.

(150)

Mähler
et al.

2020 Hypertension

L. paracasei, L.
plantarum, L.

acidophilus, and L.
delbrueckii;

Bifidobacteria longum,
B. infantis, and B.
breve; Streptococcus

thermophilus

9 × 1011
CFU

Clinical
trial

Probiotic can convert dietary components into active
metabolites that cause a reduction of pro-inflammatory
immune cell function and promote a BP-lowering effect.

(151)

Li et al. 2021 Heart Stroke
Bacillus licheniformis

CMCC 63516
1 × 108
CFU/mL

Animal
study

Preventive effects on heat stroke in rats by sustaining
intestinal barrier function, such as increasing tight

junctions and decreasing intestinal injury and modulating
gut microbiota by increasing the ratio of Lactobacillus and

Lactococcus.

(152)

Wang
et al.

2023 Hypertension
Clostridium

butyricum-pMTL007-
GLP-1

109 CFU/
mL

Animal
study

CB-GLP-1 had markedly reduced blood pressure and
improved cardiac marker ACE2, AT2R, AT1R, ANP,
BNP, b-MHC, a-SMA and activating AMPK/mTOR/

p70S6K/4EBP1 signaling pathway.

(153)
ACE-2 -Angiotensin-converting enzyme type 2; ANR/BNR - Atrial/brain natriuretic receptor; AT1R/2R - angiotensin-II receptor type 1/2; BP - blood pressure; BCKADC - Branched-chain
alpha-keto acid dehydrogenase complex; CFU - colony-forming unit; CVD - cardiovascular disease; F/B - Firmicutes-Bacteroides; FMT - Faecal Microbiota Transplant; GLP -1 - Glucagon-lyke
peptide type 1; IL - interleukin; MHC - major histocompatibility complex; SCFA - Short chain fatty acids; SMA - spine muscular atrophy; TMAO - Trimethylamine N-oxide; TNF - tumour
necrosis factor.
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inflammatory cytokines production, oxidative stress, and impaired

endothelial function, which could trigger systemic inflammation,

insulin resistance, and endothelial dysfunction, all of which

contribute to the pathogenesis of CVDs (164–166). In fact, some

studies demonstrated an increased risk of CVDs, such as

myocardial infarction and stroke, in patients who received specific

classes of antibiotics, like macrolides or fluoroquinolones (167–

169). Beyond all, this can lead to other health problems such as

allergies, obesity, inflammatory bowel disease, and mental health

disorders (170, 171). Therefore, by introducing probiotics and/or

prebiotics during or after antibiotic treatments, the balance of the

gut microbiota can be restored, through eliminating harmful

bacteria and enhancing the gut barrier function, contributing to

reduce risk of CVDs and others (172, 173).

Thus, probiotics, prebiotics, and symbiotics all play a role in

maintaining digestive and overall health, including cardiovascular

health, especially when antibiotics are in question; however, while

these supplements can be helpful, they should not replace a

balanced diet, exercise, and medical advice in the prevention and

treatment of CVDs.
5.2 Nutrition and physical activity

Various factors can influence gut microbiota composition,

including age, genetics, and lifestyle (141, 174). In addition to

probiotics and prebiotics, dietary and lifestyle changes can also be

effective in restoring balance to the gut microbiota and improving

cardiovascular health, including increasing the intake of fruits,

vegetables, and whole grains and reducing the intake of processed

and sugar foods (175). Exercise, stress management, and getting

enough sleep are essential to maintaining healthy gut microbiota

and preventing CVD, even in high-fat diet situations (176, 177).

As mentioned above, gut microbiota composition can be

influenced by various factors, including diet, age, genetics, and

lifestyle. Diet plays a significant role in shaping the composition and

function of the gut microbiota, and its modulation is one way to

improve the gut microbiota and promote overall health (175, 178).

The types and amounts of nutrients that are consumed can have a

direct impact on the growth and survival of different microbial

species. A diet high in processed foods, refined sugars, and saturated

fats has been linked to an increase in harmful bacteria, like

Proteobacteria and Bacteroides fragilis, and a decrease in

beneficial bacteria in the gut, which can contribute to the

development of CVD, such as hypertension, high cholesterol, and

obesity by the production of pro-inflammatory compounds. On the

other hand, a diet rich in plant-based fiber, fruits, vegetables, and

whole grains can help promote the growth of beneficial bacteria in

the gut, such as Bifidobacteria and Lactobacilli, and reduce the risk

of these diseases. These bacteria can ferment dietary fibers and

produce SCFAs linked to health benefits, like improving gut barrier

integrity, increasing mucus production, antimicrobial proteins, and

Treg cells, and affecting tight junction assembly (179, 180).

According to multiple clinical trials, the Mediterranean diet, rich

in fruits, vegetables, and whole grains, which are all good sources of

fiber, has been associated with a reduced risk of CVD and other
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chronic diseases, as it promotes the growth of beneficial bacteria

and blood pressure reduction, as well as promotes protective effects

on coronary events, strokes, and heart failure (81, 84). Some studies

have also shown that certain dietary fats, such as omega-3 fatty

acids, can benefit the gut microbiota and improve CVD (181).

Additionally, research has shown that different diets can lead to

distinct gut microbiota, and some have suggested that switching to

another diet can rapidly change its composition (182). For instance,

some studies have shown that switching from a Western diet to a

Mediterranean diet can rapidly alter the gut microbiota, with

beneficial effects attributed to the high proportion of fibers,

mono- and poly-unsaturated fatty acids, antioxidants, and

polyphenols (183, 184).

Besides diet, physical activity has won much praise for its

capacity to control metabolism, insulin sensitivity, weight, and

other aspects of health. However, the importance of exercise in

controlling the human gut microbiota is becoming increasingly

supported by research. Regular physical activity is part of a healthy

lifestyle and helps reduce the risk of developing CVD. Exercise can

improve cardiovascular health by reducing blood pressure and

cholesterol levels, improving blood flow and reducing the risk of

blood clots, strengthening the heart muscle and improving its

functions, and controlling weight which will reduce the risk of

obesity (12, 185). A critical study by Matsumoto et al. discovered

that five weeks of exercise training in rats led to an increase in the

production of SCFA-butyrate, which is a metabolite from dietary

fiber fermentation by bacteria like Bifidobacteria, and this shift was

also associated with improved endothelial function and a reduction

in the development of CVDs (186). In another study, Monda et al.

described that even with a high-fat diet, exercise could reduce

inflammatory infiltration and protect gut morphology and

integrity (176). However, it is essential to note that while exercise

can have many beneficial effects, it is not a substitute for a

healthy diet.
5.3 Fecal microbiota transplantation

The FMT is a medical procedure involving transferring healthy

gut bacteria from a donor to a recipient. The idea behind FMT is to

restore a healthy balance of gut bacteria in individuals with an

imbalance or lack of beneficial bacteria, a condition known as

dysbiosis. In individuals with this condition, the balance of gut

bacteria is disrupted, leading to a reduction in the diversity and

abundance of beneficial bacteria, resulting in a variety of symptoms,

such as diarrhea, abdominal pain, and weight loss, as well as an

increased risk of developing chronic diseases like inflammatory

IBD, Clostridium difficile infection, and metabolic disorders (187).

So far, FMT has had a resoundingly positive clinical impact on

recurrent Clostridium difficile infection. Recently, ulcerative colitis

has been extensively studied in other microbiota-related disorders

like CVDs (188, 189). This procedure is typically performed by

administering a stool sample from a healthy donor, usually via a

colonoscopy, sigmoidoscopy, enema, or orally, to the recipient,

aiming to repopulate the recipient’s gut with a diverse and balanced

community of bacteria that can improve the overall health of the gut
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microbiota, and in turn, improve the overall health of the individual

(190, 191).

Despite the evidence surrounding CVDs and gut microbiota,

few studies have explored the potential effect of FMT on these

diseases. Hu et al. centered on the question of whether FMT could

be helpful in myocarditis treatment, with a murine model of

experimental autoimmune myocarditis, resulting in reduced

inflammatory infi l t rat ion, improved functions of the

blood vessels, and gut microbiota rebalance, proposing a

potential therapeutical strategy (192). In another study, Toral

et al. demonstrated that transplanting healthy feces into

spontaneously hypertensive rats reduces blood pressure by

modifying sympathetic nerve activity associated with increased

levels of SCFAs (193). Kim et al. also studied FMT impact on

CVDs, observing that when hypertensive donors’ feces were

transferred to germ-free mice, the recipient mice’s blood

pressure rose compared to germ-free mice that received healthy

FMT (194). A recent study by Hatahet et al. demonstrated that gut

microbiota modulation with FMT associated with butyrate

treatment, could alleviate systolic and diastolic function in obese

mice (195). On the other hand, Gregory et al. discussed the

transmission of atherosclerosis susceptibility using FMT in an

animal model, proving that not only positive effects can come

from FMT procedure (196). In Table 2 we resume the findings of

some animal studies and clinical trials from the last years.

Altogether, these findings point to a significant role of the gut

microbiota in the development of CVDs; nevertheless, more human
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data and clinical trials are required to support the use of FMT in

CVD before it can be applied broadly.

While some researchers considered FMT as a safe and effective

treatment option for various conditions, with success rates that are

often higher than traditional medical treatments, others are still

suspicious of the procedure’s benefits. Therefore, it’s still considered

an experimental treatment and not yet widely available or approved

by regulatory agencies worldwide (187, 198).
6 Conclusions

In conclusion, the gut microbiota is a complex and dynamic

community of microorganisms that plays a critical role in human

health and disease. Emerging evidence suggests that the gut

microbiota may be linked to the development of CVD, such as

atherosclerosis, hypertension, diabetes, and others. Recent studies

have highlighted the importance of the gut-heart axis in the

pathogenesis of CVDs, with an increasing body of evidence

linking gut dysbiosis its development. Despite the promising

results from animal models and some human studies, further

research is needed to better understand the mechanisms by which

gut microbiota influence the cardiovascular system and to

determine the safety and efficacy of these interventions in clinical

settings. The potential prophylactic and therapeutic implications of

this research are exciting and we look forward to continued

advancement of scientific knowledge in this field.
TABLE 2 Fecal microbiota transplantation results in animal studies and clinical trials in various cardiovascular diseases.

Study Year Disease Treatment
Type of
study

Via Outcome Reference

Hu et al. 2019 Myocarditis FMT
Animal
study

Oral gavage

Reduced inflammatory infiltration, improved functions
of the blood vessels, and gut microbiota rebalance with

an increase in microbial richness and diversity.
Increase F/B ratio.

(192)

Toral
et al.

2019 Hypertension FMT
Animal
study

Oral gavage
Reduced blood pressure by modifying sympathetic
nerve activity associated with increased levels of

SCFAs.
(193)

Kim
et al.

2017
Hypertension

and
Myocarditis

FMT
Animal
study

Oral gavage

Hypertensive donors’ feces were transferred to germ-
free mice and the recipient mice’s blood pressure rose
compared to germ-free mice that received healthy

FMT. Also, obese mice receiving FMTs from healthy
resveratrol-fed mice have improved glucose

homeostasis, and decreased inflammation and
myocarditis

(194)

Gregory
et al.

2015 Atherosclerosis FMT
Animal
study

Oral gavage
Atherosclerosis susceptibility was transmitted with

FMT
(196)

Hatahet
et al.

2023 Heart failure FMT
Animal
study

Oral gavage

Improvement systolic and diastolic early dysfunction
following FMT. Both FMT and butyrate plays a
significant role in reducing the level of inactive p-

BCKDH in the heart.

(195)

Smits
et al.

2018
Metabolic
Syndrome

FMT
Randomized
Controlled

Trial

Nasoduodenal
infusion

Single lean vegan-donor FMT in metabolic syndrome
patients resulted in detectable changes in intestinal

microbiota composition but failed to elicit changes in
TMAO production capacity or parameters related to

vascular inflammation.

(197)
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