Check for updates

OPEN ACCESS

EDITED BY Birendra Kumar Sah, Shanghai Jiao Tong University, China

REVIEWED BY Endrit Shahini, National Institute of Gastroenterology S. de Bellis Research Hospital (IRCCS), Italy Xinxing Duan, Jiujiang First People's Hospital, China

*CORRESPONDENCE Dekui Zhang Zhangdk8616@126.com

RECEIVED 20 January 2023 ACCEPTED 04 April 2023 PUBLISHED 28 April 2023

CITATION

Chen T, Liu Y, Gao J and Zhang D (2023) Visual analysis of the research hotspots in neoadjuvant therapy for patients with gastric cancer. *Front. Gastroenterol.* 2:1148787. doi: 10.3389/fastr.2023.1148787

COPYRIGHT

© 2023 Chen, Liu, Gao and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Visual analysis of the research hotspots in neoadjuvant therapy for patients with gastric cancer

Tianxing Chen^{1,2}, Yating Liu^{1,2}, Jing Gao² and Dekui Zhang^{1,2*}

¹Lanzhou University Second School of Clinical Medicine, Lanzhou, Gansu, China, ²Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu, China

Objective: This study aimed to analyze the research hotspots and frontiers in the field of neoadjuvant therapy for patients with gastric cancer (GC) using bibliometric and identify its developmental trends.

Methods: The literature related to neoadjuvant therapy for GC systematically retrieved between 1991 and 2021. Bibliometric methods were used to analysis the research hotspots and trends by CiteSpace and VOS-viewer software.

Results: The number of studies related to neoadjuvant therapies for GC showed an upward trend. Moreover, the current research directions were mostly focused on the clinical trials and applications of neoadjuvant therapies for GC. The frontier research directions included microsatellite instability, peritoneal metastasis, randomized controlled trials, multicenter studies, and regression analysis.

Conclusions: The interest and attention of researchers in this field are still growing. In the past five years, the literature related to neoadjuvant therapy and immunotherapy for gastric cancer has exploded. It is still an important period and a key stage for the development of neoadjuvant therapy for gastric cancer.

KEYWORDS

gastric cancer, neoadjuvant chemotherapy, research hotspot frontier, visual analysis, bibliometric study

Gastric cancer (GC) is the most common malignancy of the digestive system. According to the latest data from the International Agency for Research on Cancer (IARC) GLOBOCAN 2020 (1), the morbidity and mortality rates of GC ranked fifth and fourth, respectively, among 36 cancer types in 185 countries and regions worldwide with about one million new cases and 768,000 deaths. China ranked first with a high morbidity of GC, accounting for half of the incidence and mortality rates of the total GC cases worldwide (2). The result of national cancer clinical research center in 2020 (3, 4) showed that the morbidity and mortality rates of GC were the third highest rates among malignant tumors in China. There are about 479,000 new GC cases, and 374,000 deaths. These

observations showed that the research, diagnosis, and treatment of GC in China have a long way to go. Currently, the individualized comprehensive treatment strategies for GC include surgery, chemotherapy, radiotherapy, targeted drugs, and immunotherapy; however, the overall results are not effective and have a poor outcome (5, 6). In order to improve the surgical resection and proportion of radical resection rates, and reduce the risk of recurrence and metastasis of GC, neoadjuvant therapy is emerging and has shown significant benefits (7-9). Globally, the neoadjuvant therapy of GC has received more and more attention, and there are more and more related studies. Although the continuous improvement in modern medical theory and experimental knowledge is continuously developing research hotspots in the field of neoadjuvant therapy for GC, the research on, on comprehensively related research and exploration of research hotspots in neoadjuvant therapy is still very limited, and there are still many controversies. Therefore, this study aims to clarify the frontiers and development trends in this field by describing the knowledge base and current research o, and to analysis the cutting-edge and developmental trends, and applying the software to process and draw a visual view. This study can provide a reference for clinical studies of neoadjuvant therapy for gastric cancer.

1 Methods

1.1 Literature search strategy

Web of Science Core Collection (WoSCC) database from Clarivate Analytics is one of the best choices for bibliometric analysis in academia (10, 11). In this study, the WoSCC database was selected as the data source. The studies related to the new adjuvant treatment of GC from January 1, 1980, to December 31, 2021, were searched in the SCI-E database. In order to ensure the accuracy of search results, the medical subject headlines (MeSH) terms were used to identify the relevant studies (12).

1.2 Inclusion and exclusion criteria

The following inclusion and exclusion criteria were adopted during this study: (1) the type of literature was limited to "article" or "review"; (2) the language was limited to English; (3) the publication period was limited from inception, to June 31, 2022. The studies that did not meet these criteria were excluded by reading its abstract. Finally, a total of 2390 articles after removing duplicated articles were included, which involve 1937 original research and 403 reviews, as shown in Figure 1.

1.3 Data processing and statistical analysis

All relevant literature were exported as "full records and cited references" and stored as "pure text". The information of studies was imported to CiteSpace (5.8.R3) (13) and VOSviewer (14). Since the first study, was published in 1991 in the WoSCC database, duration for literature retrieval was 1991-2021. Use Microsoft Office Excel 2019 to conduct statistical analysis on the annual publication volume of literature, and fit the publication volume curve. The threshold value of each time slice was set as Top N = 50 or k = 25. The critical path algorithm is used for the cluster analysis, presentation, cooperation network of countries, research institutions, and scholars. The co-citation analysis of the journal information in the cited literature is carried using the matrix operation, and the cocitation map was drawn. Using the weighted calculation of co-word analysis, the keywords are subjected to co-occurrence cluster analysis; this results in obtaining the top 50 keywords with the highest reference surge index. Thus, the timeline view was drawn.

2 Result

2.1 Publication trend of literature

The concept of neoadjuvant chemotherapy was first proposed in a study published by Frey et al. in 1982 (15). Until

1991, published studies on neoadjuvant chemotherapy for GC were based on methotrexate and 5-fluorouracil (16). Most of the current consensus or guideline recommendations for neoadjuvant chemotherapy for gastric cancer are based on important evidence from the UK's MAGIC (ECF chemotherapy regimen) and France's FNCLCC/FFCD(CF chemotherapy regimen)studies (17). South Korea's PRODGY study and China's RESOLVE study were released at the ESMO (European Society for Medical Oncology)Annual Meeting in 2019. The PRODIGY study showed that for locally advanced gastric cancer, DOS regimen (docetaxel + oxaliplatin + Tiggio) significantly improved 3-year progression-free survival (18). RESOLVE study results showed that in the treatment of locally advanced gastric cancer, the perioperative SOX regimen significantly improved 3-year disease-free survival compared with postoperative XELOX regimen, and SOX regimen was no worse than XELOX regimen. Based on the above research results, DOS and SOX protocols can also be recommended as new adjuvant chemotherapy protocols for gastric cancer, and the above protocols have been included in perioperative chemotherapy in the 2020 edition of CSCO(Chinese Society of Clinical Oncology)guidelines for Gastric cancer. In 2009, the German POET trial showed that neoadjuvant chemoradiotherapy significantly improved pCR in patients with gastric cancer compared with neoadjuvant chemoradiotherapy (15.6% vs. 2.0%, P=0.03) (19). Many countries have also conducted a large number of studies on neoadjuvant therapy with targeted chemotherapy drugs. The results of the HER-FLOT study in Germany showed that FLOT chemotherapy regimen combined with trastuzua monoclonal antibody 4 cycles before surgery could enable 21.4% of AEG patients to achieve pCR and 92.9% to obtain R0 resection (20). The NEOHX study in Spain also suggested that neoadjuvant chemotherapy with XELOX protocol combined with trastuzua monoclonal antibody could achieve pCR in 8% of patients (21). In 2020, PETRARCA research results: FLOT+ human epidermal growth factor receptor 2 double target drugs (trastuzol monoclonal antibody and Pertuzol monoclonal antibody) group can effectively improve pCR and lymph node negative conversion rate. During the selected 30-year period (1991-2021), a total of 2390 published articles were obtained from the WoSCC database. From 1991 to 1994, the number of published articles was relatively small, with an average of only 3.5 articles per year. Since 2013, more than 100 articles have been published, and the fluctuations continue to increase. The average number of published articles in 2017-2021 is about 247.2. The number of published articles in the past five years accounted for 51.72% of the total number of published articles. The number of published articles will reach a peak of 314 in 2021.

Based on these founds, the published articles in the field of GC neoadjuvant therapy in the past 30 years showed an exponential trend (R2 = 0.9876) (Figure 2). According to the results of the fitting curve, the number of studies on neoadjuvant therapy for gastric cancer may reach nearly 350 in 2022. These results suggest that neoadjuvant therapy of gastric cancer has been paid more and more attention in the treatment of gastric cancer.

2.2 Distribution of literature sources based on countries and institutions

A total of 2,390 articles on neoadjuvant therapy for gastric cancer were published in 93 countries and regions. Among these countries and regions, China, the United States and Japan rank among the top three countries with the largest number of articles. China has the largest number of published articles (n=488), accounting for 20.42% of the total number of published articles. The United States ranks in the middle (betweenness centrality = 0.52), as shown in Figure 3.

A total of 555 institutions participated in the publication of 2,390 articles on GC neoadjuvant therapy, of which the top 10 institutions published 341 articles, accounting for 14.27% of all articles. Germany's Technical University of Munich published 77 articles, the highest number and betweenness centrality (betweenness centrality = 0.11). Among the top 10 institutions are the Sloan Kettering Cancer Center in the US, the National Institute of Cancer Center in Japan, Peking University in China (ranked fifth) and the Chinese Academy of Medical Sciences (ranked tenth) (Figure 4).

2.3 Distribution and co-citation of journal sources and authors

VOSviewer software was used to draw the co-authorship and citation network among journals and authors of published studies included in this study. In Figure 5, each node on the chart represents a journal or author, and the size of the circle represents the number of articles published by the source journal or author. The lines connecting circles indicate citation relationship between individual journals or authors.

According to these results, the top three journals for the number of publications on neoadjuvant therapy for gastric cancer are "Annals of Surgical Oncology", "Journal of Surgical Oncology", and "Gastric Cancer", while the "Journal of Clinical Oncology", "New England Journal of Medicine", and "Annals of Surgical Oncology" were identified as the most cited journals, as shown in Figure 5.

Publication trends of literature on GC neoadjuvant chemotherapy from 1991 to 2021.

According to the source and influence of the authors, the most published articles (n=39) related to GC neoadjuvant therapy were published by Professor Ji Jiafu from Peking University Cancer Hospital. In addition, Prof. Katja Ott and Prof. Lordick Florian of Technical University of Munich published 36 and 32 articles respectively. However, most of the high-impact authors are from Western countries. The most cited authors include Professor Cunningham David from the Royal Marsden Hospital, UK, Professor Ajani Jaffer from MD Anderson Cancer Center, USA, and Professor Ychou Marc from Montpellier Cancer Center, France. Professor Cunningham David's publication was cited 991 times, and his 2006 tome in the New England Journal of Medicine was cited 122 times (Figure 6).

2.4 Top 10 that highly cited papers in the field of neoadjuvant therapy

The relevant information of the top 10 highly cited articles in the co-citation analysis is shown in the Table 1. These articles mainly focus on clinical trials of neoadjuvant therapy in GC

diagnosis and treatment guidelines, Japan (22), European Society for Medical Oncology guidelines (23) and global cancer statistics completed by the International Cancer Society (24–27). Institute for Cancer Research, 2018 (28). These articles are of great significance and are the cornerstone of research in the field of neoadjuvant therapy for gastric cancer.

2.5 Research hotspots in the field of neoadjuvant therapy for gastric cancer

Statistical analysis was performed on the frequency of keywords in the published literature related to neoadjuvant therapy for gastric cancer, with a total of 768 nodes and 1494 lines, as shown in Each node in the graph represents a keyword, and the lines represent the relationship between co-occurring keywords. Also, the size of the circle indicates the frequency of the keyword.

Noun terms were extracted from the keywords, and the logarithmic likelihood ratio algorithm was used for clustering to obtain 10 clustering items, including surgery, neoadjuvant chemotherapy, cytoreductive surgery, endoscopic ultrasonography, preoperative chemoradiotherapy, tumor, classification type, body composition analysis, esophageal cancer, etc. (Figure 7).

2.6 Research frontier of neoadjuvant therapy for GC

Based on the co-occurrence of keywords, a burst index and its duration were used to detect the sudden increases in the occurrence of keywords. "Postoperative complications", "Gastric tumor", "Microsatellite tumor", "Microsatellite instability", "Surgical instability,", "Surgical complications", "Diagnosis", "Open-label", "Multicenter", "Tumor spread", "Regression", "Capecitabine", and other keywords showed a upward trend. Therefore, these were the research hotspots in the field of neoadjuvant therapy for GC in the last five years. The top 50 keywords in the field of neoadjuvant therapy for GC are shown in Figure 8.

3 Discussion

3.1 Published papers and research strength analysis

The concept of neoadjuvant therapy for gastric cancer has gradually become popular and has become an indispensable part of gastric cancer treatment (29). Neoadjuvant chemotherapy, neoadjuvant radiotherapy, chemoradiotherapy combined with targeted immunotherapy and other related studies have continuously updated the knowledge in the field of GC treatment strategies (30, 31).

The growth trend of the annual publication volume can reflect the overall development of the research field. From 1991 to 2021, the total number of articles published on GC neoadjuvant therapy showed an upward trend, with little fluctuation. This indicates the

success of neoadjuvant therapy for GC. Due to its great therapeutic potential for GC, the interest and attention of researchers in this field are still increasing. The research on neoadjuvant therapy for gastric cancer has increased rapidly in the past five years, indicating the critical significance of neoadjuvant therapy for the treatment of gastric cancer. Therefore, the focus, breadth and depth of research are constantly developing, and a large number of in-depth studies have made important progress in the application of clinical trials.

This study reviewed the literature related to GC neoadjuvant therapy and analyzed relevant information, including national and institutional journals and authors, and a collaborative network map. The results show that China, the United States and Japan carry out the highest level of research and academic activities in this field. In addition, China has the largest number of articles published in this

field. Peking University, Chinese Academy of Medical Sciences and other research institutions have made contributions in the field of neoadjuvant therapy for gastric cancer. However, due to various reasons, there is still a gap between China and Western countries in the study of neoadjuvant therapy for gastric cancer, and the influence of Chinese authors and cited scholars is still lower than that of Western countries.

In addition, China has less than one-fifth of the world's total population, but has about half of the world's gastric cancer cases, which shows the lack and challenges of China's gastric cancer prevention and control strategies. Relatively few patients received neoadjuvant chemotherapy. According to the relevant data report of China Gastrointestinal Cancer Surgical Alliance in 2020, the number of neoadjuvant therapy patients with locally advanced gastric cancer in 2019 was about 2 900 cases, accounting for only 13.8%. In the pathological complete rate, pCR was 11.4%, mainly in patients with neoadjuvant chemotherapy, fewer patients received neoadjuvant chemoradiotherapy (7).

3.2 Analysis of research hotspots and frontiers in the field of GC neoadjuvant therapy

Research hotspots can be identified by analyzing citations and keywords obtained from the literature. The rapid growth and high surge index of keywords herald the research front overview and development trend in the field of neoadjuvant therapy for gastric cancer. In the present study, a high-profile value of 0.8 was found in the top ten clusters in the GC neoadjuvant field, indicating that the clusters were homogeneous and reasonable (32).

In this study, bibliometric methods were used to analyze studies related to neoadjuvant therapy for gastric cancer, and the results were visualized using CiteSpace and VOSviewer software. Research trends in neoadjuvant therapy for gastric cancer are summarized and visualized (Figure 7). Highlights of the research area are explored and predictions for future research fronts are made. The study showed that among the top 10 most cited articles, most were related to clinical trials or clinical guidelines for neoadjuvant treatment of GC (Table 1). The analysis of the keywords revealed that recent studies have focused on the classification, diagnosis and treatment of tumors. The results also showed that "Open-label", "Multi-center" and "Tumor spread" were the top three keywords with the highest outbreak index, indicating the research frontier of GC neoadjuvant therapy in the past five years.

3.3 Research deficiencies and prospects

To the best of our knowledge, this study is the first to systematically analyze publications and research trends related to GC neoadjuvant therapy in an intuitive, objective and accurate manner. The study serves as an introductory guide for clinicians and researchers in the field. However, the current research also has some unavoidable limitations or deficiencies. First, the included literature may not be exhaustive, as only the WoSCC database was

Highly cited literature	Citation fre- quency	Journal of document source	Main content of the study
Ychou M et al. (17) (2011)	172	J Clin Oncol	Multicenter open-label randomized controlled phase III clinical trial
Bray F et al. (18) (2018)	159	Ca-Cancer J Clin	Global Cancer Statistics 2018
Al-Batran SE et al. (19) (2019)	152	Lancet	Multicenter open-label randomized controlled phase II/III clinical trial
Japanese Gastric Canc Assoc (20) (2017)	136	Gastric Cancer	Japanese Guidelines for the Treatment of GC
Van Hagen P et al. (21) (2012)	129	New Engl J Med	Multicenter randomized controlled phase II/III clinical trial
Cunningham D et al. (22) (2006)	122	New Engl J Med	Multicenter randomized controlled clinical trial
Smyth EC et al. (23) (2016)	107	Ann Oncol	EMSO Clinical Practice guidelines for GC
Al-Batran SE et al. (24) (2016)	107	Lancet Oncol	Multicenter open-label randomized controlled phase II/III clinical trial
Bang YJ et al. (25) (2012)	103	Lancet	Multicenter open-label randomized controlled phase III clinical trial
Ferlay J et al. (26) (2015)	98	Int J Cancer	Multicenter randomized controlled clinical trial

TABLE 1 Top 10 co-cited articles related to GC neoadjuvant chemotherapy.

searched and only articles published in English were included. Therefore, this study may not fully reflect all research in the field of neoadjuvant therapy for GC. Secondly, the included studies are limited to December 31, 2021, and some newly published or withdrawn documents may not have been updated at the time of this study due to database lag. Therefore, there may be bias or omission in the relevant literature included in this study.

Keywords such as "postoperative complications", "gastric neoplasms", "microsatellite instability", "surgical complications", "diagnosis", "open label", "multicenter", "tumor spread", "Regression" and "Capecitabine" are identified as future research frontiers in the field of neoadjuvant therapy for gastric cancer. Among them, keywords such as "stomach cancer", "microsatellite instability", "diagnosis", and "tumor spread" focus on the molecular biological characteristics, pathological classification and diagnostic methods of cancer. In addition, keywords such as "postoperative complications" and "surgical complications" focused on the diagnosis, treatment, and management of complications in GC treatment, while keywords such as "open label", "multicenter", "regression" and "Capecitabine" focuses on new treatment methods and clinical trial design for GC neoadjuvant therapy. In order to promote the development of gastric cancer prevention and treatment strategies, future research should explore new treatment approaches on the basis of fully mining the characteristics of gastric cancer.

4 Conclusions

In conclusion, using bibliometric analysis, this study shows that the number of published studies related to neoadjuvant therapy for GC is gradually increasing; however, the research direction is mainly focused on the application of neoadjuvant therapy in gastric cancer to clinical trials. Multicenter randomized controlled trials and regression analysis related to neoadjuvant therapy for gastric cancer are research directions in recent years. Based on the above studies on neoadjuvant therapy for gastric cancer, the regimen and cycle of neoadjuvant chemotherapy for gastric cancer are still controversial. The "Norms for the Diagnosis and Treatment of Gastric Cancer (2018 Edition)" formulated by European ESMO and the National Health Commission of China also recommended the use of two or three drugs combined with chemotherapy regimen (platinum and fluorouracil based or combined with yew drugs), but did not recommend the use of single drugs. Although neoadjuvant chemotherapy for gastric cancer has been promoted in the past 30 years, there is currently no consensus on the selection of indications, regimen and cycle of neoadjuvant chemotherapy. Since 2001, the United States, Germany, the Netherlands, Australia, Japan, China and other countries have also conducted a large number of studies on neoadjuvant chemoradiotherapy for gastric cancer, and it has been shown that neoadjuvant chemoradiotherapy can increase pCR, reduce tumor staging, improve R0 resection rate, and make gastric cancer patients survive. However, the radiotherapy mode, dose and chemotherapy drugs of concurrent chemoradiotherapy have not been completely unified, so large-scale prospective clinical trials are urgently needed to verify the results. Neoadjuvant therapy in combination with targeted drugs may have great potential. Large phase III clinical trials are still needed to demonstrate the efficacy of combined targeted drugs. In recent years, immunocheckpoint inhibitors such as programmed death receptor 1/programmed death ligand 1 and cytotoxic T lymphocyte-associated protein 4 have been focused on tumor therapy, but their role in the treatment of many tumors, including gastric cancer, remains uncertain and there are therapeutic side effects. Although the prospect of neoadjuvant therapy for gastric cancer is promising, there is still a long way to go. At present, there is no consensus on many treatment

FIGURE 7

Visualization map of the timeline viewer of the studies related to neoadjuvant chemotherapy for GC from 1991 to 2021.

Top 50 Keywords with the Strongest Citation Bursts

esophageal carcinoma 1991 5.62 1991 2012 radiation therapy 1991 9.53 1992 2000 carcar 1991 9.33 1992 2000 cardioma 1991 19.73 1993 2012 cardioma 1991 15.81 1994 2004 methotrexate 1991 6.62 1994 1999 etoposide 1991 5.62 1994 2004 cardia 1991 5.62 1994 2004 cardia 1991 5.62 1994 2007 combination 1991 5.62 1994 2007 combination 1991 4.47 1994 2007 gastric cardioma 1991 4.48 1995 2014 combined modality therapy 1991 4.83 1997 2008 presporative chemotherapy 1991 4.83 1997 2003 prognostic significance 1991 4.72 2000 2007 randomized trial 1991 1.73 2000 2013 squamous cell cardnoma 1991 1.74 2001 <th>Keywords</th> <th>Year</th> <th>Strength Begin</th> <th>End</th> <th>1991 - 2021</th>	Keywords	Year	Strength Begin	End	1991 - 2021
radiation therapy 1991 4.98 1991 2008 adjuwn therapy 1991 9.53 1992 2000 cardnoma 1991 19.73 1993 2012 cardnoma 1991 15.81 1994 2004 doxorubicin 1991 15.81 1994 2004 etoposide 1991 6.24 1994 2010 cardia 1991 6.24 1994 2010 cardia 1991 4.47 1994 2007 combination 1991 4.47 1995 2010 cardia 1991 4.47 1995 2005 gastric cardia 1991 4.46 1995 2011 gastric cardia 1991 4.46 21996 2011 combined modality therapy 1991 13.88 1999 2007 proporatic significance 1991 13.72 2000 2013 cardia 1991 13.72 2000 2013 cardia cardia 1991 13.23 2002 2014 folinic add 1991 4.52 2004 2015 squamous cell cardnoma 1991 4.52 2004 2014	esophageal carcinoma	1991	5.62 1991	2012	
adjuvant therapy 1991 9.53 1992 2001 cancer 1991 9.33 1992 2004 cardnoma 1991 15.81 1994 2004 doxorubicin 1991 15.81 1994 2004 actore 1991 5.62 1994 1999 etoposide 1991 5.62 1994 2007 combination 1991 5.62 1994 2007 combination 1991 4.76 1995 2007 sittorcardia 1991 14.62 1996 2011 gastric cardia 1991 14.83 1997 2008 combined modality therapy 1991 13.88 1999 2007 preoperative chemotherapy 1991 14.42 2000 2007 preopartic significance 1991 13.23 2002 2011 cartive resection 1991 13.23 2002 2011 squamous cell cardnoma 1991 13.23 2002 2011 ecophageal cancer 1991 4.52 2004 2014 esophageal cancer 1991 4.52 2004 2014 esophagogastric junction 1991	radiation therapy	1991	4.98 1991	2008	
cancer 1991 9.33 1992 2000 cardinoma 1991 19.73 1993 2012 doxorubicin 1991 15.62 1994 1999 etoposide 1991 6.62 1994 1999 etoposide 1991 6.62 1994 2010 cardia 1991 5.62 1994 2007 combination 1991 5.01 1994 2010 displatin 1991 4.76 1995 2013 gastric cardia 1991 4.83 1997 2008 combined modality therapy 1991 1.83 1996 2011 combined modality therapy 1991 1.83 1997 2008 preaperative chemotherapy 1991 1.83 1997 2003 curative resection 1991 1.74 6200 2013 curative resection 1991 1.74 6200 2013 curative resection 1991 1.74 6200 2014 folinic add 1991 1.74 6200 2014 folinic add 1991 4.52 2004	adjuvant therapy	1991	9.53 1992	2011	
cardinoma 1991 19.73 1993 2012 doxorubicin 1991 15.81 1994 2004 methotrexate 1991 6.62 1994 1999 cardia 1991 5.62 1994 2007 combination 1991 5.62 1994 2007 combination 1991 5.04 1994 2007 mitomydn c 1991 4.76 1995 2005 5 fluorouradi 1991 14.62 1995 2011 gastric cardia 1991 6.43 1996 2014 combined modality therapy 1991 4.83 1997 2008 preoperative chemotherapy 1991 1.42 2000 2017 randomized trial 1991 1.42 2000 2013 carative resection 1991 1.42 2000 2013 carative resection 1991 1.42 2000 2014 endoscopic ultrasound 1991 4.92 2005 2014 endoscopic ultrasound 1991 4.92 2005 2014 ectal cancer 1991 <td< td=""><td>cancer</td><td>1991</td><td>9.33 1992</td><td>2000</td><td></td></td<>	cancer	1991	9.33 1992	2000	
dexcrubicin 1991 15.81 1994 2004 methotrexate 1991 6.21 1994 2010 cardia 1991 5.24 1994 2010 combination 1991 5.04 1994 2010 combination 1991 5.04 1994 2010 cisplatin 1991 4.76 1995 2005 5 fluorouracil 1991 19.3 1996 2013 gastric cardina 1991 14.62 1995 2014 gastric cardina 1991 4.83 1997 2008 preoperative chemotherapy 1991 13.81 1999 2007 pradomized trial 1991 14.62 1001 2013 curdive resection 1991 13.37 2000 2013 curdive resection 1991 13.23 2002 2014 endoscopic ultrasound 1991 13.23 2002 2014 esophageal cancer 1991 192 2005 2008 endoscopic ultrasound 1991 4.62 2004 2014 esophageal cancer 1991 4.92 2005 2008 lung cancer 1991 5.03 20	cardnoma	1991	19.73 1993	2012	
methotrexate 1991 6.62 1994 1999 cardia 1991 6.24 1994 2010 cardia 1991 5.62 1994 2007 cisplatin 1991 4.47 1994 2007 mitornydin c 1991 4.47 1994 2007 gastric cardia 1991 4.46 1995 2013 gastric cardia 1991 6.43 1995 2014 combined modality therapy 1991 4.81 1995 2007 preoperative chemotherapy 1991 1.81 1995 2007 prognostic significance 1991 1.42 2000 2007 randomized trial 1991 1.42 2000 2013 carative resection 1991 1.42 2000 2013 carative resection 1991 1.42 2000 2013 carative resection 1991 1.42 2000 2014 exophageal cancer 1991 8.92 2005 2011 ecophageal cancer 1991 4.92 2005 2014 esophagogastric junction 199	doxorubicin	1991	15.81 1994	2004	
etoposide 1991 6.24 1994 2010 cardia 1991 5.62 1994 2007 combination 1991 4.76 1995 2005 Sfluorouradi 1991 4.76 1995 2005 gastric cardnoma 1991 14.62 1996 2011 gastric cardnoma 1991 6.43 1996 2014 combined modality therapy 1991 4.83 1997 2008 preoperative chemotherapy 1991 14.82 2000 2007 randomized trial 1991 14.42 2000 2007 randomized trial 1991 14.42 2000 2007 randomized trial 1991 14.42 2000 2013 curative resection 1991 17.45 2001 2013 squamous cell cardnoma 1991 13.23 2002 2011 rectal cancer 1991 4.52 2004 2014 call cancer 1991 4.52 2004 2014 rectal cancer 1991 4.52 2004 2014 call cancer 1991	methotrexate	1991	6.62 1994	1999	
cardia 1991 5.62 1994 2007 combination 1991 5.04 1994 2007 cisplatin 1991 4.47 1995 2005 5 fluorouradi 1991 14.62 1995 2013 gastric cardina 1991 14.62 1995 2014 combined modality therapy 1991 6.83 1996 2014 cornbined modality therapy 1991 4.83 1997 2006 preoperative chemotherapy 1991 14.82 2007	etoposide	1991	6.24 1994	2010	
combination 1991 5.04 1994 2010 displatin 1991 4.47 1994 2007 mitomydn c 1991 4.47 1995 2005 fluorouradi 1991 19.3 1996 2011 gastric cardia 1991 6.43 1995 2014 combined modality therapy 1991 14.82 1997 2008 preoperative chemotherapy 1991 14.82 2000 2003 pradomized trial 1991 14.42 2000 2013 curative resection 1991 17.46 2001 2013 curative resection 1991 17.46 2004 2014 endoscopic ultrasound 1991 17.42 2005 2014 endoscopic ultrasound 1991 4.52 2004 2014 esophageal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.92 2005 2011 esophagogastric junction 1991 5.03 2006 2009 positron emission tomography 1991 5.71 2012 2017	cardia	1991	5.62 1994	2007	
displatin 1991 4.47 1994 2007 mitomydn c 1991 4.76 1995 2005 5 fluorouradi 1991 19.1 1996 2011 gastric cardnama 1991 14.62 1996 2011 gastric cardia 1991 4.83 1997 2008 preoperative chemotherapy 1991 13.88 1999 2007 pragnostic significance 1991 14.72 1999 2003 pradet trial 1991 14.32 7000 2013 curative resection 1991 13.23 2002 2011 endoscopic ultrasound 1991 14.52 2004 2015 endoscopic ultrasound 1991 4.52 2004 2014 esophageal cancer 1991 4.92 2005 2014 esophagogastric junction 1991 4.82 2005 2014 edig pet 1991 4.92 2005 2014 esophagogastric junction 1991 4.92 2005 2014 fluorouradi 1991 6.93 2007 2014 positron emission tomography 1991 10.97 2007 2014 fluorouradi <td>combination</td> <td>1991</td> <td>5.04 1994</td> <td>2010</td> <td></td>	combination	1991	5.04 1994	2010	
mitomydn c 1991 4.76 1995 2005 5 fluorouradi 1991 19.3 1996 2013 gastric cardina 1991 14.62 1996 2014 combined modality therapy 1991 4.83 1997 2008 preoperative chemotherapy 1991 13.88 1998 2007 prognostic significance 1991 14.42 2000 2007 phase il trial 1991 13.37 2000 2013 curative resection 1991 13.23 2002 2011 endoscopic ultrasound 1991 13.23 2002 2011 endoscopic ultrasound 1991 4.92 2004 2014 esophageal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.92 2005 2014 esophagogastric junction 1991 5.03 2006 2014 esophagogastric junction 1991 5.93 2007 2014 fluorouradi 1991 5.93 2007 2014 progression 1991 5.83 2017 2014	cisplatin	1991	4.47 1994	2007	
S fluorouracil 1991 19.3 1996 2013 gastric cardnoma 1991 14.62 1995 2011 gastric cardia 1991 6.43 1996 2014 combined modality therapy 1991 6.43 1996 2007 prognostic significance 1991 13.88 1999 2007 pradomized trial 1991 14.42 2000 2007 randomized trial 1991 13.78 2002 2013 squamous cell cardnoma 1991 17.46 2001 2013 curative resection 1991 4.69 2004 2014 endoscopic ultrasound 1991 4.69 2004 2015 folinic acid 1991 4.69 2004 2014 esophageal cancer 1991 4.92 2005 2008 cell lung cancer 1991 4.81 2005 2008 cell lung cancer 1991 5.03 2006 2009 positron emission tomography 1991 5.03 2007 2014 fluorouracil 1991 5.71 2012 2017 expression 1991 5.82 2017 2014 postoperative	mitomydn c	1991	4.76 1995	2005	
gastric cardinoma 1991 14.62 1996 2011 gastric cardia 1991 6.43 1996 2014 combined modality therapy 1991 13.88 1999 2005 preoperative chemotherapy 1991 14.72 1999 2003 phase ii trial 1991 14.42 2000 2007 randomized trial 1991 17.46 2001 2013 curative resection 1991 17.46 2002 2011 endoscopic ultrasound 1991 4.69 2004 2015 folinic acid 1991 4.52 2004 2014 esophageal cancer 1991 4.92 2005 2008 cetl lung cancer 1991 4.92 2005 2008 cell lung cancer 1991 4.41 2005 2014 esophagogastric junction 1991 5.11 2006 2009 positron emission tomography 1991 5.71 2012 2017 expression 1991 5.71 2012 2017 postoparative complication 1991 5.72 2012 104	5 fluorouracil	1991	19.3 1996	2013	
gastric cardia 1991 6.43 1996 2014 combined modality therapy 1991 4.83 1997 2008 progpostic significance 1991 4.72 1999 2003 phase ii trial 1991 13.87 2000 2007 andomized trial 1991 14.42 2000 2007 curative resection 1991 17.46 2001 2013 curative resection 1991 17.46 2004 2014 endoscopic ultrasound 1991 4.69 2004 2014 esophageal cancer 1991 4.92 2005 2008 cell lung cancer 1991 4.92 2005 2008 cell lung cancer 1991 5.03 2006 2009 positron emission tomography 1991 1.97 2007 2014 fdg pet 1991 5.71 2012 2017 progrossion 1991 5.83 2007 2012 positron emission tomography 1991 1.97 2007 2014 fluorouradi 1991 5.58 2017 2012 pus cisplatin 1991 5.58 2017 2014 progression	gastric cardnoma	1991	14.62 1996	2011	
combined modality therapy 1991 4.83 1997 2008 preoperative chemotherapy 1991 13.88 1999 2007 phase ii trial 1991 14.42 2000 2007 phase ii trial 1991 14.42 2000 2007 curative resection 1991 17.46 2001 2013 curative resection 1991 17.46 2004 2015 squamous cell cardnoma 1991 17.46 2004 2015 endoscopic ultrasound 1991 4.82 2004 2014 folinic add 1991 4.92 2005 2008 esophageal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2009 esophagogastric junction 1991 5.03 2006 2014 fduorouradi 1991 5.97 2017 2014 fuorouradi 1991 5.82 2017 2014 pregression 1991 5.82 2013 2014 pregression 1991 5.82 2017 2014 postperative complication 1991 5.82 2017 2014 protologica	gastric cardia	1991	6.43 1996	2014	
preoperative chemotherapy 1991 13.88 1999 2007 prognostic significance 1991 4.72 1999 2003 phase ii trial 1991 14.42 2000 2007 randomized trial 1991 13.37 2000 2013 curative resection 1991 17.46 2011	combined modality therapy	1991	4.83 1997	2008	
prognostic significance 1991 4.72 1999 2003 phase ii trial 1991 14.42 2000 2013 curative resection 1991 17.46 2013	preoperative chemotherapy	1991	13.88 1999	2007	
phase ii trial 1991 14.42 2000 2007 randomized trial 1991 13.37 2000 2013 curative resection 1991 17.46 2001 2013 squamous cell cardnoma 1991 13.23 2002 2011 endoscopic ultrasound 1991 4.69 2004 2014 esophageal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2001 cell lung cancer 1991 4.81 2005 2014 esophagogastric junction 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluororacil 1991 5.78 2013 2014 progression 1991 5.82 2013 2014 postperative complication 1991 5.58 2017 2012 pathological complete	prognostic significance	1991	4.72 1999	2003	
randomized trial 1991 13.37 2000 2013 curative resection 1991 17.46 2001 2013 squamous cell cardnoma 1991 13.23 2002 2011 endoscopic ultrasound 1991 4.69 2004 2015 folinic add 1991 4.52 2004 2014 esophageal cancer 1991 4.92 2005 2008 rectal cancer 1991 4.92 2005 2014 esophagogastric junction 1991 4.81 2005 2014 esophagogastric junction 1991 5.03 2006 2009 positron emission tomography 1991 5.03 2007 2012 plus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 double blind 1991 4.62 2015 2018 junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.82 2018 2021 pathological completer response 1991 5.82 2017 2018 gunctional cancer 1991 5.82 2017 2021	phase ii trial	1991	14.42 2000	2007	
curative resection 1991 17.46 2001 2013 squamous cell cardnoma 1991 13.23 2002 2011 endoscopic ultrasound 1991 4.69 2004 2015 folinic acid 1991 4.52 2004 2014 esophageal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2008 cell lung cancer 1991 4.42 2005 2011 esophagogastric junction 1991 5.11 2006 2009 positron emission tomography 1991 5.03 2007 2014 fluorouracil 1991 5.71 2012 2017 progression 1991 5.82 2013 2014 progression 1991 4.62 2016 2013 junctional cancer 1991 4.62 2017 2014 postoperative complication 1991 5.82 2013 2014 postoperative complication 1991 4.62 2016 2018 junctional cancer 1991 5.82 2017 2018 postoperative complication 1991 5.82 2017 2014 <tr< td=""><td>randomized trial</td><td>1991</td><td>13.37 2000</td><td>2013</td><td></td></tr<>	randomized trial	1991	13.37 2000	2013	
squamous cell cardnoma 1991 13.23 2002 2011 endoscopic ultrasound 1991 4.69 2004 2015 folinic acid 1991 4.52 2004 2014 esophageal cancer 1991 4.92 2005 2008 jymph node dissection 1991 4.92 2005 2008 cell lung cancer 1991 4.42 2005 2011 esophagogastric junction 1991 5.11 2006 2014 fdg pet 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.62 2016 2015 qubic bilind 1991 4.62 2015 2014 progression 1991 4.62 2016 2018 punctional cancer 1991 5.82 2017 2021 pathological complete response 1991 5.82 2018 2021 storach neoplasm 1991 5.82 2018 2021 open label	curative resection	1991	17.46 2001	2013	
endoscopic ultrasound 1991 4.69 2004 2015 folinic add 1991 4.52 2004 2014 esophageal cancer 1991 8.95 2005 2012 rectal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2008 cell lung cancer 1991 4.81 2005 2014 esophagogastric junction 1991 5.03 2005 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 5.82 2013 2014 progression 1991 4.62 2015 2017 expression 1991 4.62 2015 2018 postoperative complication 1991 5.58 2017 2018 postoperative complication 1991 5.58 2017 2018 stomach neoplasm 1991 5.82 2018 2021 stomach neoplasm 1991 5.82 2018 2021 open label <td< td=""><td>squamous cell cardnoma</td><td>1991</td><td>13.23 2002</td><td>2011</td><td></td></td<>	squamous cell cardnoma	1991	13.23 2002	2011	
folinic acid 1991 4.52 2004 2014 esophageal cancer 1991 8.96 2005 2012 rectal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2008 eell lung cancer 1991 4.81 2005 2011 esophagogastric junction 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.68 2007 2012 plus cisplatin 1991 5.68 2007 2014 expression 1991 5.82 2013 2014 progression 1991 5.82 2013 2014 garcer 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.48 2015 2019 randomized controlled trial 1991 4.52 2017 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 5.82 2018 2021 surgical completative <td>endoscopic ultrasound</td> <td>1991</td> <td>4.69 2004</td> <td>2015</td> <td></td>	endoscopic ultrasound	1991	4.69 2004	2015	
esophageal cancer 1991 8.96 2005 2012 rectal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2008 cell lung cancer 1991 4.42 2005 2014 esophagogastric junction 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.71 2012 2017 pus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 double blind 1991 4.62 2015 2018 junctional cancer 1991 4.62 2015 2018 junctional cancer 1991 5.58 2017 2018 postoperative complication 1991 5.82 2018 2021 microsatellite instability 1991 5.82 2018 2021 microsatellite instability 1991 5.82 2018 2021 open label 1991 5.82 2018 2021 open label 1991 5.82 2018 2021 open label	folinic acid	1991	4.52 2004	2014	
rectal cancer 1991 4.92 2005 2008 lymph node dissection 1991 4.81 2005 2008 cell lung cancer 1991 4.42 2005 2011 esophagogastric junction 1991 5.11 2006 2009 fdg pet 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.71 2012 2017 pus cisplatin 1991 5.82 2013 2014 progression 1991 4.62 2015 2019 double blind 1991 4.62 2015 2018 junctional cancer 1991 5.58 2017 2018 postoperative complication 1991 5.82 2018 2021 pathological complete response 1991 6.11 2018 2021 microsatellite instability 1991 5.82 2018 2021 open label 1991 5.12 2019 2021 open label 1991 5.12 2019 2021 open label 1991 1.85 2019 2021 open label 19	esophageal cancer	1991	8.96 2005	2012	
lymph node dissection 1991 4.81 2005 2008 cell lung cancer 1991 4.42 2005 2011 esophagogastric junction 1991 5.11 2006 2004 fdg pet 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.82 2015 2014 double blind 1991 4.82 2015 2014 andomized controlled trial 1991 4.82 2015 2018 junctional cancer 1991 5.58 2017 2021 pathological complete response 1991 5.82 2018 2021 microsatellite instability 1991 5.87 2017 2018 surgical complication 1991 5.82 2017 2021 postoperative complication 1991 5.82 2017 2018 gurdical sability 1991 5.82 2018 2021 open label 1991 5.82 2018 2021	rectal cancer	1991	4.92 2005	2008	
cell lung cancer 1991 4.42 2005 2011 esophagogastric junction 1991 5.11 2006 2014 fdg pet 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.62 2015 2014 progression 1991 4.62 2016 2018 junctional cancer 1991 5.58 2017 2021 pathological complete response 1991 5.82 2018 2021 stomach neoplasm 1991 5.82 2018 2021 surgical complication 1991 5.82 2018 2021 open label 1991 5.18 2019 2021 open label 1991 11.85 2019 2021 cardomatosis 1991 7.8 2019 2021 cardomatosis 1991 7.8 2019 2021 cardomatosis 1991 6.87 201	lymph node dissection	1991	4.81 2005	2008	
esophagogastric junction 1991 5.11 2006 2014 fdg pet 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 6.58 2007 2012 plus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.62 2015 2019 randomized controlled trial 1991 4.62 2016 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 5.82 2018 2021 stomach neoplasm 1991 5.82 2018 2021 open label 1991 5.87 2019 2021 open label 1991 1.867 2019 2021 cardomatosis 1991 7.8 2019 2021 cardomatosis 1991 7.8 2019 2021 cardomatosis 1991	cell lung cancer	1991	4.42 2005	2011	
fdg pet 1991 5.03 2006 2009 positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 6.58 2007 2012 plus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.62 2015 2018 junctional cancer 1991 5.58 2017 2021 postoperative complication 1991 5.58 2017 2018 postoperative complication 1991 5.82 2018 2021 stomach neoplasm 1991 6.11 2018 2021 surgical complete response 1991 5.82 2018 2021 diagnosis 1991 5.87 2019 2021 open label 1991 11.85 2019 2021 multicenter 1991 6.87 2019 2021 cardiomatosis 1991 7.8 2019 2021 cardiomatosis 1991 6.87 2019 2021 impact 1991 6.51 2019 </td <td>esophagogastric junction</td> <td>1991</td> <td>5.11 2006</td> <td>2014</td> <td></td>	esophagogastric junction	1991	5.11 2006	2014	
positron emission tomography 1991 10.97 2007 2014 fluorouracil 1991 6.58 2007 2012 plus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 cauble blind 1991 4.62 2015 2018 junctional cancer 1991 5.58 2017 2018 postoperative complication 1991 5.58 2017 2018 postoperative complete response 1991 6.18 2017 2018 microsatellite instability 1991 5.82 2018 2021 microsatellite instability 1991 5.82 2018 2021 open label 1991 11.85 2019 2021 open label 1991 11.85 2019 2021 cardinomatosis 1991 7.82 2019 2021 cardinomatosis 1991 7.82 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 </td <td>fdg pet</td> <td>1991</td> <td>5.03 2006</td> <td>2009</td> <td></td>	fdg pet	1991	5.03 2006	2009	
fluorouracil 1991 6.58 2007 2012 plus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.62 2015 2018 junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.58 2017 2018 pathological complete response 1991 5.82 2018 2021 microsatellite instability 1991 5.82 2017 2018 surgical completer response 1991 5.82 2017 2018 microsatellite instability 1991 5.18 2017 2011 open label 1991 5.17 2018 2021 open label 1991 11.85 2019 2021 open label 1991 11.85 2019 2021 open label 1991 7.82 2019 2021 open label 1991 7.82 2019 2021 open label 1991 7.82 2019 2021 cardiomatosis 1991	positron emission tomography	1991	10.97 2007	2014	
plus cisplatin 1991 5.71 2012 2017 expression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.48 2015 2018 randomized controlled trial 1991 4.62 2016 2018 junctional cancer 1991 5.58 2017 2021 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 6.11 2018 2021 microsatellite instability 1991 5.87 2018 2021 surgical complication 1991 5.87 2018 2021 open label 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.51 2019 2021	fluorouracil	1991	6.58 2007	2012	
expression 1991 5.82 2013 2014 progression 1991 4.53 2014 2015 double blind 1991 4.48 2015 2019 randomized controlled trial 1991 4.62 2016 2018 junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 6.11 2018 2021 stomach neoplasm 1991 6.12 2018 2021 surgical complication 1991 5.82 2018 2021 surgical complication 1991 5.82 2018 2021 open label 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 cardiomatosis 1991 7.8 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021	plus cisplatin	1991	5.71 2012	2017	
progression 1991 4.53 2014 2015 double blind 1991 4.48 2015 2019 randomized controlled trial 1991 4.62 2016 2018 junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 6.11 2018 2021 stomach neoplasm 1991 5.82 2018 2021 surgical complication 1991 5.82 2018 2021 diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 regression 1991 7.8 2019 2021 impact 1991 6.87 2019 2021	expression	1991	5.82 2013	2014	
double blind 1991 4.48 2015 2019 randomized controlled trial 1991 4.62 2016 2018 junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 6.11 2018 2021 stomach neoplasm 1991 5.18 2017 2018 microsatellite instability 1991 5.82 2018 2021 surgical complication 1991 5.37 2018 2021 diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	progression	1991	4.53 2014	2015	
randomized controlled trial 1991 4.62 2016 2018 junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 4.83 2017 2018 stomach neoplasm 1991 6.11 2018 2021 microsatellite instability 1991 5.82 2018 2021 diagnosis 1991 5.87 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.87 2019 2021 capecitabine 1991 5.52 2018 2021	double blind	1991	4.48 2015	2019	
junctional cancer 1991 5.59 2017 2018 postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 4.83 2017 2018 stomach neoplasm 1991 6.11 2018 2021 microsatellite instability 1991 5.82 2018 2021 surgical complication 1991 5.82 2018 2021 diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 regression 1991 7.8 2019 2021 impact 1991 6.67 2019 2021 impact 1991 5.52 2019 2021	randomized controlled trial	1991	4.62 2016	2018	
postoperative complication 1991 5.58 2017 2021 pathological complete response 1991 4.83 2017 2018 stomach neoplasm 1991 6.11 2018 2021 microsatellite instability 1991 5.82 2018 2021 surgical complication 1991 5.82 2018 2021 open label 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.51 2019 2021	junctional cancer	1991	5.59 2017	2018	
pathological complete response 1991 4.83 2017 2018 stomach neoplasm 1991 6.11 2018 2021 microsatellite instability 1991 5.82 2018 2021 surgical complication 1991 5.87 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 cardinomatosis 1991 7.8 2019 2021 impact 1991 6.87 2019 2021 impact 1991 5.82 0218 2021	postoperative complication	1991	5.58 2017	2021	
stomach neoplasm 1991 6.11 2018 2021 microsatellite instability 1991 5.82 2018 2021 surgical complication 1991 5.37 2018 2021 diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 cardnomatosis 1991 7.8 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	pathological complete response	1991	4.83 2017	2018	
microsatellite instability 1991 5.82 2018 2021 surgical complication 1991 5.37 2018 2021 diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 cardnomatosis 1991 7.8 2019 2021 regression 1991 6.67 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	stomach neoplasm	1991	6.11 2018	2021	
surgical complication 1991 5.37 2018 2021 diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 cardnomatosis 1991 7.8 2019 2021 regression 1991 6.87 2019 2021 capeditabine 1991 5.1 2019 2021	microsatellite instability	1991	5.82 2018	2021	
diagnosis 1991 4.56 2018 2021 open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 cardinomatosis 1991 7.8 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	surgical complication	1991	5.37 2018	2021	
open label 1991 11.85 2019 2021 multicenter 1991 8.87 2019 2021 cardnomatosis 1991 7.8 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021 capeditabine 1991 5.1 2019 2021	diagnosis	1991	4.56 2018	2021	
multicenter 1991 8.87 2019 2021 cardnomatosis 1991 7.8 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	open label	1991	11.85 2019	2021	
cardnomatosis 1991 7.8 2019 2021 regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	multicenter	1991	8.87 2019	2021	
regression 1991 6.87 2019 2021 impact 1991 6.55 2019 2021 capecitabine 1991 5.1 2019 2021	cardnomatosis	1991	7.8 2019	2021	
impact 1991 6.55 2019 2021	regression	1991	6.87 2019	2021	
capecitabine 1991 5.1 2019 2021	impact	1991	6.55 2019	2021	
	capecitabine	1991	5.1 2019	2021	

FIGURE 8

Top 50 keywords with strong citation bursts in the articles related to GC neoadjuvant chemotherapy from 1991 to 2021.

methods in the world, which requires the joint efforts of researchers all over the world. Further research requires higher quality and high-level prospective clinical trials, so as to form more powerful, more standardized and unified clinical diagnosis and treatment guidelines, so as to bring benefits to many gastric cancer patients.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

Author contributions

TC, First authorship: contributed to editing, revising, and approving the manuscript. DZ contributed to the writing and revision of the manuscript. YL, JG contributed to collecting clinical data. All authors contributed to the article and approved the submitted version.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* (2021) 71(3):209–49. doi: 10.3322/ caac.21660

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin (2016) 66(2):115-32. doi: 10.3322/caac.21338

3. Cao W, Chen HD, Yu YW, Li N, Chen WQ. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. *Chin Med J (Engl)* (2021) 134(7):783–91. doi: 10.1097/CM9.00000000001474

4. Cao MM, Chen WQ. GLOBOCAN 2020 interpretation of global cancer statistics Chinese. J Med Frontier (Electronic Edition) (2021) 13(03):636–9. doi: 10.12037/ YXQY.2021.03-10

5. Chen JL, Wang FH. Updated interpretation of metastatic gastric cancer in the 21st edition of CSCO guidelines for the diagnosis and treatment of gastric cancer. *China Cancer Clinic* (2022) 49(07):325-30. doi: 10.12354/j.issn.1000-8179.2022.20211529

6. Xu HM, Pan SW. 2021 Annual inventory of research progress in diagnosis and treatment of gastric cancer. J Oncol (2022) 28(02):81–5. doi: 10.11735/j.issn.1671-170X.2022.02.B001

7. Zhao LY, Hu JK. Current status and challenges of neoadjuvant therapy for gastric cancer. *Chin J Digestive Surg* (2021) 20(09):933-7. doi: 10.3760/cma.j.cn115610-20210622-00301

8. Tan Z. Recent advances in the surgical treatment of advanced gastric cancer: a review. *Med Sci Monit* (2019) 25:3537–41. doi: 10.12659/MSM.916475

9. Ao S, Wang Y, Song Q, Ye Y, Lyu G. Current status and future perspectives on neoadjuvant therapy in gastric cancer. *Chin J Cancer Res* (2021) 33(2):181–92. doi: 10.21147/j.issn.1000-9604.2021.02.06

10. Ke L, Lu C, Shen R, Lu T, Ma B, Hua Y. Knowledge mapping of drug-induced liver injury: a scient metric investigation (2010-2019). *Front Pharmacol* (2020) 11:842. doi: 10.3389/fphar.2020.00842

11. Aggarwal A, Lewison G, Idir S, Peters M, Aldige C, Boerckel W, et al. The state of lung cancer Research: A global analysis. *J Thorac Oncol* (2016) 11(7):1040–50. doi: 10.1016/j.jtho.2016.03.010

12. Baumann N. How to use the medical subject headings (MeSH). Int J Clin Pract (2016) 70(2):171–4. doi: 10.1111/ijcp.12767

13. Synnestvedt MB, Chen C, Holmes JH. CiteSpace II: visualization and knowledge discovery in bibliographic databases. AMIA Annu Symp Proc (2005) 2005:724–8.

14. Van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. *Scientometrics* (2017) 111(2):1053–70. doi: 10.1007/s11192-017-2300-7

Funding

This work obtained funding support from the Gansu Province Science and Technology Department Key R&D Program (21)R1RA121), China.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

15. Frei E, 3RD. Clinical cancer research: an embattled species. *Cancer* (1982) 50 (10):1979-92. doi: 10.1002/1097-0142(19821115)50:10<1979::aid-cncr2820501002>3.0.co;2-d

16. Plukker JT, Mulder NH, Sleijfer DT, Grond J, Verschueren RC. Chemotherapy and surgery for locally advanced cancer of the cardia and fundus: phase II study with methotrexate and 5-fluorouracil. *Br J Surg* (1991) 78(8):955–8. doi: 10.1002/bjs.1800780820

17. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. *N Engl J Med* (2006) 355(1):11–20. doi: 10.1056/NEJMoa055531

18. Al-Batran SE, Homann N, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-esophageal junction adenocarcinoma (FLOT4): a randomized, phase 2/3 trial. *Lancet* (2019) 393(10184):1948–57. doi: 10.1016/S0140-6736(18)32557-1

19. Ajani JA, Mansfield PF, Morris J, Pisters PW, Lynch PM, Feig B, et al. Multiinstitutional trial of preoperative chemoradiotherapy in patients with potentially resectable gastric carcinoma. *J Clin Oncol* (2004) 22(14):2774–80. doi: 10.1200/ JCO.2004.01.015

20. Hofheinz RD, Hegewisch-Becker S, Kunzmann V, Thuss-Patience P, Fuchs M, Homann N, et al. Trastuzumab in combinationwith 5-fluorouracil, leucovorin, oxaliplatin and docetaxel as perioperative treatment for patients with human epidermal growth factor receptor 2-positive locally advanced esophagogastric adenocarcinoma: a phase II trial of the arbeitsgemeinschaft internistische onkologie gastric cancer study group. Int J Cancer (2021) 149(6):1322–31. doi: 10.1002/ijc.33696

21. Chiari D, Orsenigo E, Guarneri G, Baiocchi GL, Mazza E, Albarello L, et al. Effect of neoadjuvant chemotherapy on HER-2 expression in surgically treated gastric and oesophagogastric junction carcinoma: a multicentre Italian study. *Updates Surg* (2017) 69(1):35–43. doi: 10.1007/s13304-017-0423-2

22. Japanese Gastric Cancer Association. Japanese Gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer :official J Int Gastric Cancer Assoc Japanese Gastric Cancer Assoc (2017) 20(1):1–19. doi: 10.1007/s10120-016-0622-4

23. Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Piessen G, et al. Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and followup. *Ann Oncol* (2016) 27(suppl 5):v38–49. doi: 10.1093/annonc/mdw350

24. Ychou M, Boige V, Pignon JP, Conroy T, Bouché O, Lebreton G, et al. Perioperative chemotherapy compared with surgery alone for resectable gastroesophageal adenocarcinoma: an FNCLCC and FFCD multicenter phase III trial. J Clin Oncol (2011) 29(13):1715–21. doi: 10.1200/JCO.2010.33.0597

25. AI-Batran SE, Hofheinz RD, Pauligk C, Goetze TO, Meiler J, Kasper S, et al. Histopathological regression after neoadjuvant docetaxel, oxaliplatin, fluorouracil, and leucovorin versus epirubicin, cisplatin, and fluorouracil or capecitabine in patients with resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4-AIO): results from the phase 2 part of a multicenter, open-label, randomized phase 2/3 trial. *Lancet Oncol* (2016) 17(12):1697–708. doi: 10.1016/S0140-6736(18)32557-1

26. Van Hagen P, Hulshof MC, Van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven B, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med (2012) 366(22):2074–84. doi: 10.1056/NEJMoa1112088

27. Bang YJ, Kim YW, Yang HK, Chung HC, Park YK, Lee KH, et al. Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC):a phase 3 open-label, randomized controlled trial. *Lancet* (2012) 379(9813):315–21. doi: 10.1016/S0140-6736(11)61873-4

28. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA:a Cancer J Clin* (2018) 68(6):394–424. doi: 10.3322/caac.21492

29. Joshi SS, Badgwell BD. Current treatment and recent progress in gastric cancer. *CA:a Cancer J Clin* (2021) 71(3):264–79. doi: 10.3322/caac.21657

30. Kang YK, Chen LT, Ryu MH, Oh DY, Oh SC, Chung HC, et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-esophageal junction cancer (ATTRACTION-4):a randomized, multicentre, double-blind, placebo-controlled, phase3 trial. *Lancet Oncol* (2022) 23(2):234–47. doi: 10.1016/S1470-2045 (21)00692-6

31. Kang YK, Yook JH, Park YK, Lee JS, Kim YW, Kim JY, et al. PRODIGY: a phase III study of neoadjuvant docetaxel, oxaliplatin, and s-1 plus surgery and adjuvant s-1 versus surgery and adjuvant s-1 for resectable advanced gastric cancer. *J Clin oncology: Off J Am Soc Clin Oncol* (2021) 39(26):2903–13. doi: 10.1200/ JCO.20.02914

32. Chen Y, Chen C, ZY W. The methodological function of cite space knowledge atlas. *Sci Res* (2015) 33(02):242-53. doi: 10.16192/j.cnki.1003-2053.2015.02.009