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Tumor metabolism is mandatory for the proper adaptation of malignant cells to

the microenvironment and the acquisition of crucial cellular skills supporting

the systemic spread of cancer. Throughout this journey, the contribution of the

gut microbiota to the bioavailability of nutrients supporting the bioenergetic

and biosynthetic requirements of malignant cells is an issue. This review will

focus on the role of cysteine as a coin that mediates the metabolic crosstalk

between microbiota and cancer. The key points enclose the way cysteine can

be made available by the microbiota, by degradation of more complex

compounds or by de novo synthesis, in order to contribute to the

enrichment of the colonic microenvironment as well to the increase of

cysteine systemic bioavailability. In addition, the main metabolic pathways in

cancer that rely on cysteine as a source of energy and biomass will be pointed

out and how the interspecific relationship with the microbiota and its dynamics

related to aging may be relevant points to explore, contributing to a better

understanding of cancer biology.

KEYWORDS

gut microbiota, cancer metabolism, cysteine reliance, cysteine bioavailability, aging-
related dynamics
Introduction

In the human organism, several interspecific relationships are constantly in

operation, which are established between the different species that make up the

microbiota and the human cells of the various organs where it resides. These

interspecific relationships are mainly symbiotic in which both partners benefit. This is

the case in health, but in disease, there are still some doubts about the role of the

microbiota in the pathophysiology, namely, in the context of cancer, at both the organ

and systemic levels. Currently, new clues have been proposed, and several studies have

been developed to determine the influence of microbiota in cancer initiation, progression,

and therapy, as it is extensively reviewed (1–7).
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Metabolic adaptation in cancer is undoubtedly an essential

requirement for the establishment, growth, and spread of a

malignant neoplasm. Cellular plasticity is crucial for the

adaptation of the tumor cell to the microenvironment of the

organ where carcinogenesis occurs and to the emergence of

stress conditions, such as drug exposure. Recent studies prove

that cysteine metabolic circuits are a relevant component of the

metabolic network, sustaining biosynthesis and bioenergetics

and allowing chemoresistance (as reviewed in 8–10). This review

intends to confront some of the most recent findings in the field

of cysteine metabolism in cancer and the role of the intestinal

microbiota in the dynamic balance of the control of cysteine

bioavailability and its putative impact on the progression of

oncological disease.
Gut microbiota composition,
interplay, and aging-
related evolution

Microbiota is defined as a group of microorganisms that live

in a given environment, and it includes bacteria, fungi, protozoa,

and viruses, even though viruses are not living organisms.

Considering the fungal community, a minor component of gut

microbiota compared to bacteria (11), the prevalent genera are

Saccharomyces, Candida, and Cladosporium (11–14), with

Candida albicans the most frequently found in feces of healthy

individuals (15). Nevertheless, C. albicans, like other intestinal

yeasts (16), also presents an opportunistic behavior pattern,

being implicated in the development of some infectious

diseases (11). Albeit the main studies dedicated to gut

microbiota are focused on bacteria, it is known that fungi are

important in microbiota reestablishment and equilibrium,

immune control, and gut protection (17, 18). The role of fungi

and bacteria in the immune response is similar, and these two

populations interact and control their own density (16).

Importantly, gut fungi seem to be pivotal not only in gut

physiology but also in other organs physiology such as the

liver, brain, lungs, and kidney (16). Since fungi present

specificities that are not deeply explored in cancer, this review

will be mainly focused on the bacterial component of

gut microbiota.

The gastrointestinal (GI) microbiota is composed of more

than 160 species of bacteria organized in a few phyla, as reviewed

by Rinninella etal. (19). Firmicutes and Bacteroidetes phyla

represent more than 90% of microbiota, and Actinobacteria,

Proteobacteria, Fusobacteria, and Verrucomicrobia phyla

account for the major part of the remaining 10%. Firmicutes

are mainly composed of Lactobacillus, Bacillus, Clostridium,

Enterococcus, and Ruminococcus genera, and Bacteroidetes are

composed of the Bacteroides and Prevotella genera. GI
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microbiota is organized from the small intestine to the colon

(Figure 1), and, based on mouse studies, the small intestine is

dominated by Lactobacillaceae, while in the colon, the following

prevail: Prevotellaceae, Lachnospiraceae, and Rikenellaceae

(20–22).

Different microenvironmental conditions control

microbiota representativeness and density, namely, acidity,

oxygen availability, the presence of antimicrobial compounds,

and the time of transit through the GI tract (20, 22). These

variations allow the establishment of facultative anaerobes in the

small intestine and of anaerobes, able to digest carbohydrate

fibers, in the colon (20, 22).

Along the gut, there are two different microenvironmental

niches, the lumen and the mucinous barrier close to the mucosa

(mucosal layer), in which the representativity of bacteria is

different (23, 24). The formation of a mucous biofilm near

mucosa assembles features favoring certain bacteria

proliferation and controlling the preferential consumption of

particular organic compounds. The impact of these two different

niches (mucosal and luminal) on the dynamics of the same

bacterial species is clearly described (25). However, microbiota

composition works in an individual-specific manner, although a

group of designated core bacteria seems to be represented in

most individuals. More studies are needed to explore microbiota

dynamics in health and disease, and currently, efforts are being

made to define the major features required for microbiota to

optimize the host systemic metabolism. Most studies trying to

map the microbiota distribution and prevalence in the gut are

guided by genomics and transcriptomics (26, 27); they revealed

that a group of specific bacterial genes seem to be constantly

present in the microbiota pool, suggesting that they are crucial

for microbiota physiology and they may consequently benefit

human physiology. Nevertheless, genomics and transcriptomics

are not fully informative to disclose the bacterial physiology and

indicate which main pathways support metabolic functioning;

thus, biochemical studies are also needed. In addition, research

directed to human microbiota is mandatory, since the majority

of studies were developed in animal models, and they may not

fully represent the human microbiota or the physiology.

The main contributors to microbiota selection and dynamics

are energy and biomass sources from diet and host components.

Different studies proved the impact of diet on microbiota,

mainly relating to dietary patterns in childhood and the

typical diet in different spots of the globe with the relevance

for a variety of bacterial genera (21, 27, 28). Nonetheless, these

studies predominantly consider the enrichment of the intestinal

lumen with simple free sugars and carbohydrate fibers, including

also the short-chain fatty acids (SCFAs) resulting from the

fermentation of the latter ones (27, 29–32). The prevalence of

specific energy sources selects bacterial species and contributes

to their distribution since they tend to localize in niches enriched

with substrates they can degrade. Therefore, species capable of
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degrading mucins are placed in the mucus layer where they can

digest carbohydrates and release the simplest sugars to be used

by bacteria without the mucolytic ability (33).

Even the gene expression profile of the host, which

determines the composition of the mucus layer, contributes to

the selection of bacteria. Intestinal mucus is mainly composed of

mucin 2 (MUC2), produced by goblet cells, which is an O-

glycosylated protein (34). The diversity of O-glycans

ornamenting MUC2 is conditioned by the genotype and the

expression profile of genes encoding glycosyltransferases.

Interestingly, the host glycosyltransferase expression profile

can be modulated by the action of some species, such as

Ruminococcus gnavus, Lactobacillus casei, and Bacteroides

thetaiotaomicron, which are somehow able to control the

colonization of other bacterial species (35–37). Thus, MUC2

represents an important substrate to which bacteria can adhere

and proliferate, but it also harbors important energy and

biomass sources for microbiota. The gut biochemical fraction

of the microenvironment for sure exerts a crucial selective

pressure on microbiota, regulating the balance between

bacterial species. Furthermore, the symbiosis established

between the microbiota members is also pivotal to control

bacteria representativeness and density. Some species produce

organic compounds to be shared and used by other species; for

instance, Eubacterium hallii and Anaerostipes caccae can

produce butyrate from acetate and lactate, respectively,

produced and released by Ruminococcus bromii and

Lactobacillus sp. or Bifidobacterium sp. (38–40). Afterward,

butyrate is used by human cells as a valuable carbon source

and also as a modulator of gut homeostasis and mucosa

turnover, due to its role as an epigenetics regulator (41–44).

The impact of aging on evolution and changing of gut

microbiota representativeness and diversity is controversial.

However, it seems that aging-related alterations in molecular

composition and architecture of the intestinal mucosa correlate

with a decrease in microbiota diversity (reviewed by (45).

Multivariate analysis shows a continuous aging advancement

of human GI microbiota along with host aging course (46).

Together with this, the metabolic capacity and putative

contribution to human physiology will also be remodeled.

Hence, the capacity of the microbiota to produce SCFA and

degrade starch is reduced with aging, while proteolytic capacity

is increased (47, 48). This fact can explain the increased

inflammatory process in the intestine of elderly people, due to

the lack of the protective effect of SCFA (49), mainly butyrate,

whereas the increased capacity to degrade proteins can account

for the emergence of cancer beneficial conditions, as it will be

discussed later. Furthermore, age-related disequilibrium of the

microbiota can favor the installation of novel potentially

pathogenic microorganisms.

In gut microbiota equilibrium, cysteine is a major nutrient,

not only as a metabolic player but also as a controller of certain

pathogenic species, which can overtake microbiota, which is the
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case of Clostridium difficile. C. difficile is a nosocomial bacterial

responsible for antibiotic-related diarrhea, upon the destruction

of the normal gut microbiota (50, 51). In normal conditions,

other bacteria control C. difficile density by the production of

an t i b io t i c compounds and by the r egu l a t i on o f

microenvironmental levels of controller nutrients (51–53).

Cysteine is one of these nutrients since it functions as a

growth and metabolism controller (51–53) and as an inhibitor

of the synthesis of C. difficile toxin (54). Escherichia coli also

presents a growth pattern sensitive to cyst(e)ine availability;

upon the expression of highly efficient cystine importers, E. coli

becomes sensitive to oxidative stress because bacteria import

excessive cystine, but it is not able to properly metabolize

cysteine; thus, this metabolic profile endangers E. coli survival

(55). This behavior can be triggered by other bacteria as an

antibiotic mechanism, and when out of control, it can be a threat

to the balance of the microbiota. Nevertheless, E. coli strains that

are able to metabolize cysteine and produce H2S present

oxidative stress and antibiotic resistance (56). Hence, cysteine

metabolic ability is an important feature to control bacteria

density in gut microbiota.
The main substrates are
metabolized by the gut microbiota
and contribute to gut enrichment
with cysteine and cysteine-
related compounds

The focus of this paper is the role of cysteine in microbiota

and human cells crosstalk, favoring cancer; therefore, the way

cysteine is generated and enriches the gut lumen is an important

point to address. Dietary proteins are a source of cysteine, and

their digestion occurs along the GI tract, being a considerable

proportion (about 10 g) digested in the colon (57). In there,

bacteria degrade proteins and use the amino acids for the

synthesis of new proteins, peptides, or other organic and

inorganic compounds (58). The degradation of the host

proteins is also a relevant contribution to cysteine and other

amino acid release; for instance, MUC2 presents cysteine-rich

domains that are very important for the MUC2-3D structure

and the formation of the mucous biofilm (59); thus, MUC2

degradation contributes to cysteine enrichment of gut

microenvironment. Moreover, Daniels etal. (60) described that

Firmicutes bacteria are able to exclude cysteine from the

sequence of cytoplasmic and exported proteins, indicating that

this way bacteria are capable of maintaining their resistance to

reductant environments since they seem to have acquired an

evolutionary skill and they do not rely on disulfide bounds to

survive. However, cysteine is used in detoxifying systems,

releasing bacteria from damaging compounds, as already

described in some Firmicutes genera such as Staphylococcus
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that used bacillithiol (BSH)-related detoxifying systems (61).

Therefore, this detoxification process recycles cysteine and may

be one more mechanism accounting for cysteine enrichment of

luminal gut fraction.

From carbohydrates, the SCFA is the most relevant end

product to be absorbed in the human gut and also to be used by

other bacteria. The most abundant SCFA are acetate, propionate,

and butyrate, and among them, butyrate plays an important role

in human physiology, as it is a valuable energy and biomass
Frontiers in Gastroenterology 04
source, but it is also an epigenetic regulator, controlling gene

expression (62). Importantly, butyrate can also be synthesized

from amino acid fermentation (Figure 1); there is a pivotal

metabolic link between butyrate and cysteine since cysteine

fermentation is a way of butyrate production (63). In health,

butyrate is important in cell renewal, but in cancer, butyrate

impacts cell proliferation control and activation of cell death.

Thereby, butyrate protects the organism from cancer due to its

action as a histone deacetylase inhibitor (HDACi) (64).
FIGURE 1

Impact of gastrointestinal (GI) microbiota physiology in cysteine bioavailability, favoring cancer. In small intestine, the prevalent bacterial family is
Lactobacillaceae, which can degrade some carbohydrates to generate short-chain fatty acids (SCFAs), namely, butyrate (But), and degrade
dietary and host proteins to release amino acids (aa), such as serine (Ser), methionine (Met), and cysteine (Cys). In colon, the dominant bacteria
families are Prevotellaceae, Lachnospiraceae, and Rikenellaceae, which represent the most SCFA-producing bacteria, here represented by But.
Most parts of dietary proteins are degraded in the colon with the release of peptides and free amino acids (aa). These aa, including Cys, will be
mainly absorbed in small intestine since the colon mucosa does not present an efficient absorption of free aa. The peptides can be absorbed by
the small intestine and colonic mucosae, and after absorption and distribution through the bloodstream, they can constitute a source of aa,
including Cys. Cysteine can result from the degradation of proteins or be synthesized from But or Ser reacting with hydrogen sulfide (H2S) or
directly from Met. The bulk of H2S is Cys-derived, and Cys can also be used to synthesize But. Colorectal cancer (CRC) cells can benefit directly
from But, the ones that retain the capacity of metabolizing it and Cys to sustain the metabolic remodeling. Systemically, cancer placed in any
organ can benefit from Cys bioavailability, while it enters the blood, to be used as an energy and biomass source, as well as an oxidative
stress controller.
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However, it is described that cancer cells are sensitive to

butyrate, as it will function as a HDACi and induce cancer cell

death. Nonetheless, some alterations in the microbiota or the

metabolic fitness of cancer cells may affect the butyrate-

protective outcome. Of note, colorectal cancer patients present

a microbiota with diminished representativeness of butyrate-

producing bacteria (65); in addition to this, cancer cells that

retain the ability to fully metabolize butyrate or are able to adjust

their metabolism due to butyrate exposure can escape from cell

death control and benefit from butyrate as a carbon and energy

(66, 67). Autophagy has also been demonstrated to underlie

butyrate resistance in cancer cells (68). Importantly, the

synthesis of cysteine from butyrate and hydrogen sulfide (H2S)

by gut microbiota is not proven, but a study exploring the in

silico relation of gout arthritis and microbiota physiology

indicates that butyrate-producing bacteria are mainly

responsible for cysteine production (69). Since other SCFAs,

such as acetate, are implicated in cysteine production (69, 70),

maybe butyrate can be an undisclosed cysteine source (Figure 1).

Additionally, H2S, which mainly results from cysteine

degradation (71), is a very important player in gut microbiota

physiology, and its metabolism can be helpful to understand

cysteine microbiota:host interdependency (62) since H2S is also

a substrate for the synthesis of cysteine by microbiota (72). As

reviewed by me (9), in humans, cysteine metabolism is deeply

connected with one-carbon metabolism having cobalamin

(vitamin B12) as a central compound in the intercross spot

between folate and methionine cycles. Importantly, 31% and

37% of daily reference intake of, respectively, cobalamin and

folate are estimated to come from gut microbiota (73). In this

context, serine and methionine, two important players in one-

carbon metabolism, are also connected with cysteine synthesis in

gut microbiota. It was described that some strains of L. casei are

able to synthesize cysteine from serine and H2S (72) and

methionine (74). As mentioned before, Lactobacillaceae is a

prevalent group of bacteria resident in the small intestine

where enterocytes are fully capable of absorbing amino

acids (Figure 1).
Impact of gut microbiota physiology
on cysteine bioavailability

The bioavailability of a nutrient is the pool of this nutrient that

is systemically available to be used by the whole-body cells. In the

scope of this review, it is important to summarize the contribution

of microbiota not only for the enrichment of cysteine in the

intestinal microenvironment but also for whether this enrichment

can contribute to cysteine bioavailability.

Dietary and host proteins are, upon degradation, important

sources of cysteine (Figure 1). Hence, cysteine resulting from

dietary and host proteins degradation could be conceptually
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absorbed by colonocytes, contributing to cysteine bioavailability.

Nonetheless, it seems that mammalian colon mucosa is not

proficient in absorbing amino acids (75), despite epithelial

colonic cells expressing a representative panel of amino acid

transporters (75). Unfortunately, as reviewed by van der Wielen

and co-authors (75), most studies analyzing the expression of

amino acid transporters were performed at the transcriptional

level, not ensuring the expression of the functional protein and

not allowing the evaluation of the cellular localization of these

receptors. Nevertheless, if amino acids are efficiently absorbed in

the colonic mucosa, meaning if they in fact enter the colonocytes

and are directed to the blood, they follow a subcellular route

different from that of the small intestine epithelial cells. In the

small intestine, amino acid absorption occurs in the apical

membrane of the cell, and their release into the bloodstream is

performed through the basolateral cell membrane, while studies

in pigs and horses showed that in colonocytes, the transport of

lysine is only detected in the apical cell membrane without

detecting how these amino acids can reach the blood (76). As

indicated, in the small intestine, oligopeptides resulting from

proteins that were degraded by gastric and pancreatic enzymes

(pepsins and proteases) are subsequently digested by peptidases

in the brush border of the intestinal wall, and free amino acids

are further transported into intestinal cells, follow an

intracellular circuit, exported though the basolateral

membrane, and canalized into the blood circulation (77, 78).

As mentioned above, butyrate can be synthesized from cysteine

fermentation (63). Butyrate is mainly produced by Firmicutes

species (63, 79), and interestingly, upon aging, these bacteria

become less representative in gut microbiota (e.g. ,

Faecalibacterium prausnitzii) (48), suggesting that aging by

modulating microbiota density and representativeness can

decrease the protection of colonic microenvironment against

cancer since butyrate concentration decreases together with its

anti-cancer effect. Furthermore, the decreased rate of butyrate

production can contribute to the accumulation of cysteine in the

gut lumen and consequently increase the absorption of cysteine

by epithelial cells. Once again, the absorption capacity of

colonocytes needs to be explored, since the majority of studies

analyzed the absorption of amino acids by indirect methods,

measuring preferentially the amount of absorbed nitrogen and

not specifically the amino acid-derived nitrogen (80–84). This

makes it difficult to determine the contribution of microbiota-

released or microbiota-synthesized amino acids for systemic

bioavailability, including cysteine. Furthermore, the studies

dedicated to the physiological control of amino acids in the

gut are antique; it is in fact a requirement to perform new studies

with more sensitive and accurate methods.

Bacteria in microbiota also use free amino acids to synthesize

peptides (85), which makes part of amino acid turnover

pathways, but it also favors alternative ways for colonocytes to

take up amino acids without depending on specific amino acid

transporters. Cystine is the dipeptide of cysteine, and it seems
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that most parts of cysteine may be transported across the cell

membrane as cystine, mainly mediated by xCT, a glutamate/

cystine antiporter. The xCT is expressed in a normal colon and

may be a quite specific way of absorbing cysteine from the

colonic lumen (86). Likewise, the peptide transporters (PepT)

can be an alternative route to compensate for the inefficiency of

colonocytes to uptake free amino acids. For instance, PepT1 is

one of the most studied and is responsible for the transport of

various peptides resulting from diet and putatively from

microbiota metabolism (87, 88). In fact, the carrier-mediated

absorption of peptides accounts for the major fraction of amino

acids absorbed in the gut (89, 90). The inclusion of free amino

acids in di- and tri-peptides by microbiota facilitates their

import by colonocytes that are unable to transport free amino

acids; this is also true for cysteine. Glutathione, a tripeptide of

glutamate, cysteine, and glycine, from diet seems to be directly

absorbed in the intestine (91), and it is a valued source of

cysteine. Additionally, gut microbiota produces glutathione that

is absorbed and exerts a great impact on the human body’s

antioxidant control (92). Again, as demonstrated in ovarian

cancer, glutathione turnover and cysteine metabolic reliance are

crucial to sustaining the adaptive capacity of cancer cells as well

as chemoresistance (93–95).
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Regarding human cysteine bioavailability, it is thought that

the bulk of absorbed amino acids come through enterocyte

absorption, in the small intestine, and amino acids in the

colonic lumen will be mainly used for bacteria metabolism or

may be absorbed as di- or tri-peptides but very few as free

amino acids.
Cysteine metabolic circuitries
favoring cancer

Cysteine occupies a core position in cancer cell metabolism

(Figure 2). As described, cysteine is an important player in

oxidative stress control, as a free amino acid or included in the

glutathione molecule. The control of the redox cellular state is a

key ability allowing the maintenance of the metabolic flow (96–

99). On the one hand, the cysteine metabolic reliance provides

increased glutathione levels and an efficient turnover, which

permits cancer cells to cope with stressful conditions, such as

hypoxia and drugs (93, 94). Hence, cysteine fitness constitutes a

relevant mechanism of chemoresistance for cancer cells

accounting for their capacity of escaping from the action of
FIGURE 2

Cysteine is a core player in cellular functioning, supporting its pivotal role in cancer cell metabolism. Cysteine is imported as cystine or as
cysteine. Cysteine plays a pivotal role in cancer: it is incorporated in glutathione, a reactive oxygen species (ROS) scavenger; upon degradation
in cytosol or mitochondria, cysteine supplies carbon and energy metabolism through fatty acids and amino acid syntheses, tricarboxylic acid
(TCA) cycle, one-carbon metabolism, and the production of ATP through the electron transport chain (ETC), and it contributes to sulfur and
energy production as a generator of hydrogen sulfide (H2S) and a donor of electrons (e−) to the ETC.
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oxidative and alkylating anti-cancer drugs (93, 94, 100–106). On

the other hand, cysteine is posited as valuable bioenergetics and

biosynthetic source, able to replace core metabolic elements,

such as glucose and glutamine. The cysteine metabolic network

depends on its versatility as sulfur and as a carbon source. This

network presents three main steps: 1) cysteine transport across

the cell membrane, 2) cysteine catabolism, and 2)

cysteine anabolism.
Cysteine import

Cysteine uptake is mediated by specific transporters, and

cysteine can enter the cell as a free amino acid or as a dimer,

cystine (107–111). The increased expression of xCT is described

in cancer as being associated with more aggressive and

chemoresistant phenotypes (100, 107, 112–116), and despite

that most of these studies concern glutamate export, the role

of cysteine uptake in the maintenance of those tumors can be

assumed since for glutamate to leave the cell, cyst(e)ine entrance

is mandatory. Although cystine is the main form taken up by

cancer cells, cancer cells can also import cysteine directly (117)

by overexpressing specific cysteine transporters, namely, the

amino acid transporter 3 (EAAT3; SLC1A1 gene) (Nikolaos

Pissimissis, Efstathia Papageorgiou, Peter Lembessis, Athanasios

Armakolas, 2009; 108, 118) and the alanine-serine-cysteine-

transporter 2 (ASCT2; SLC1A5 gene) (119–121). Since these

transporters also mediate the transfer of other amino acids, their

expression in the cancer context is not always associated with

cysteine dependence. Furthermore, considering ferroptosis, a

newly described cell death process, the intracellular levels of

cysteine are crucial for the maintenance of glutathione to ensure

the lipid peroxide scavenging. This process is catalyzed by

glutathione peroxidase 4 (GPX4), which uses glutathione as a

substrate. This way, xCT is associated with resistance to

ferroptosis (122).
Cysteine catabolism

Cysteine degradation depends on four enzymes:

cystathionine b-synthase (CBS), cystathionine g-lyase (CSE),

and 3-mercapto-pyruvate sulfurtransferase (MpST), which acts

after cysteine aminotransferase (CAT) (123). Cysteine

catabolism generates H2S and different organic compounds,

such as pyruvate, serine, and a-ketoglutarate (124–129). H2S

functions as an electron donor to the electron transport chain

(ETC) (124, 130, 131), and it also acts as a signaling molecule,

regulating cellular processes relevant to cancer, namely, cell

survival, proliferation, and angiogenesis (93, 94, 132, 133). The

organic compounds generated from cysteine degradation can be

canalized into different metabolic pathways, such as the
Frontiers in Gastroenterology 07
tricarboxylic acid (TCA) cycle, one-carbon metabolism, amino

acids, and fatty acid syntheses.

Cysteine can also be a source for pathways that are typically

related to glucose, such as gluconeogenesis and the pentose

phosphate pathway (PPP). Cysteine may be used to synthesize

glucose through gluconeogenesis, as it originates from pyruvate

and the gluconeogenic amino acid, alanine. This way, cysteine

contributes to the transient pool of glucose within the cell. A

very recent study showed that in fact cysteine is used to generate

alanine and lactate (95), mainly synthesized from pyruvate that

presents a transient permanence in the cell. Gluconeogenesis is

currently receiving some attention in cancer, as a way of

increasing glucose yield in the cell without depending on

glucose bioavailability and transport (reviewed by 9, 10).

Another glucose-dependent pathway is PPP, which can benefit

from the link between glucose and cysteine metabolism by using

cysteine-derived glucose. Moreover, the inhibition of the final

step of gluconeogenesis prompts glucose-6-phosphate into PPP.

Furthermore, cysteine contributes to glucose metabolic flow by

controlling the redox state of the cell, since the pivotal enzymes

o f g luconeogenes i s and PPP, re spec t ive ly , PCK1

(phosphoenolpyruvate carboxykinase 1) and G6PD (glucose-

6P-dehydrogenase), are directly regulated by Nrf2, a master

regulator of redox control, which is sensitive to oxidative stress

that is consequently dependent on cysteine circuitries (134, 135).

In addition, PPP is also a player in redox control having

cysteine-derived glutathione as an intermediate (136).

Therefore, cysteine is a valuable carbon source used by cancer

cells to support their energy and biomass demands.
Cysteine anabolism

Cysteine synthesis occurs through the transsulfuration

pathway (TSP), and it depends on the sequential action of

CBS and CSE, which are also involved in cysteine catabolism,

as mentioned. The TSP is a metabolic branch that sprouted from

the deviation of homo-cysteine from the methionine cycle in

one-carbon metabolism (137). Homo-cysteine is condensed with

serine by CBS, and the resulting cystathionine is hydrolyzed by

CSE, giving rise to cysteine, ammonia, and a-ketoglutarate
(138). Here, a link between cysteine metabolism and the TCA

cycle can be found through a-ketoglutarate. The degradation of

oxidized glutathione (GSSG), through the g-glutamyl cycle, will

allow the recycling of its three components: glutamate, cysteine,

and glycine. GSSG exits the cell, and its degradation is catalyzed

by g-glutamyl transpeptidase (GGT) located at the external face

of the cell membrane (139). After glutamate is released, the

cysteinylglycine dipeptide can re-enter the cell through PEPT2

and be converted to cysteine and glycine upon the action of

dipeptidases (140), or it can be degraded by aminopeptidase N

(APN), and cysteine and glycine are again available to re-enter
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the cell (141). Cysteine synthesis is linked to different amino acid

metabolism; for instance, glycine and serine are glutamine-

derived and are important suppliers of the folate cycle from

one-carbon metabolism (as reviewed by 9).

The enzymes involved in both cysteine catabolism and

anabolism, CBS and CSE, are frequently associated with

malignancy and more aggressive cancer phenotypes (124, 127,

142–147), suggesting that at least one of the two pathways are

relevant in cancer, and they might be working simultaneously as

a way to keep on moving the metabolic cellular network.

Concerning MpST, little is known about its association with

cancer; however, there are some indications provided by in vitro

assays with pharmacological inhibitors and silencing

approaches, suggesting that this enzyme can be critical for

cancer cell proliferation, bioenergetics, and cell signaling (125).

The metabolism of cysteine associated with its transport is

composed of an endless circle moving a huge number of

intermediaries that can be made available for the most varied

metabolic pathways (Figure 2). In this way, cysteine provides the

malignant cell with plasticity and adaptive capacity, which will

benefit the progression of the disease. The enrichment of the

tumor microenvironment and biological fluids in cysteine is a

strong indication that this is true. Thus, the systemic

bioavailability of cysteine is strictly necessary for the success of

the oncological disease, and all contributions to increase these

indices will contribute to the poor prognosis of the disease.
Gut microbiota affects cancer
progression by controlling cysteine
bioavailability, also upon aging

In the human gut, bacteria work together, and the metabolic

symbioses are important components of gut biological

dynamics. The metabolic expertise of different bacterial species

and strains (79) keeps on the metabolic flow based on organic

compounds sharing, in which some compounds are produced by

certain bacteria to be used by other bacteria, contributing to the

maintenance of a healthy variability and density of microbiota,

ideally preserving corresponding metabolic profiles. The

metabolic dynamics of gut microbiota influence human health

and disease.

Metabolomics is used to assess the metabolic interplay

between microbiota and host by metabolically mapping

different human body fluids. Most studies on the gut

microbiota metabolome are designed to investigate dysbiosis,

which means disease-related metabolic profiles (148). Actually,

the gut microbiota metabolome helps to define metabolic

profiles that may be useful to distinguish between unhealthy

and healthy individuals (reviewed by 149). Different studies have

found metabolic signatures associated with inflammatory,

metabolic, and neurological/neurodegenerative disorders and
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cancer (150–154). The studies dedicated to cancer presented

promising results associating gut microbiota and metabolome

with disease specificities. In colorectal cancer, associations were

found with microbiome and metabolome in different disease

stages (155). Genomics and metabolomics data reported that the

gut microbiota regulates the immune response in hepatocellular

carcinoma (156). Trials were proposed to explore the diagnostic

and prognostic values of the definition of gut microbiota

metabolome in breast cancer (157). Recently, Hermida etal.

(158) presented a predictive study of therapy response using

The Cancer Genome Atlas (TCGA) datasets from different

cancer types; the authors concluded that it is possible to

predict in naive biopsies, which will be the therapy outcome of

tumors based on tumor microbiome RNA-seq and whole-

genome sequencing analyses.

The microbiota and cancer interplay is an important

connection to explore, since it encloses a possible contribution

of microbiota functional network to cancer metabolic reliance,

favoring systemic disease progression. We and others described

that cancer patients’ body fluids are enriched in cysteine, which

can come from endogenous synthesis, transsulfuration pathway,

and protein degradation or by increased intestinal absorption of

cysteine intestinal content that originated from diet and

microbiota metabolism.

Cysteine is a very important compound in cancer

metabolism from different perspectives, and studies have

demonstrated that cysteine is the main thiol in the biological

fluids of cancer patients. In ovarian and pancreatic cancers,

cysteine was shown to be a relevant carbon source, sustaining

bioenergetics and biosynthesis, as well as a pivotal H2S source

needed for ATP production (93, 94, 159). Furthermore, and

considering all the cancer progression journey, chemoresistant

cancer cells exhibit cysteine metabolic reliance accounting for

increased glutathione levels and consequently augmenting the

scavenging capacity of reactive oxygen species (ROS) needed to

cope with oxidative stress, which simultaneously will abrogate

the cytotoxic action of most drugs conventionally used to treat

cancer (8). The tumor and the systemic microenvironment are

rather important in carcinogenesis and disease progression, and

assuming the relevance of microbiota, we must define different

scenarios since gut-located tumors will directly access organic

compounds generated by microbiota, whereas tumors developed

in other organs need those organic compounds to reach the

bloodstream. Different contributions are needed to increase

cysteine intestinal absorption mediated by membrane

transporters. Since they have a regulated expression, the

substrate availability, in this case cysteine-enriched gut

microenvironment, is a stimulus for the expression of

transporters by epithelial and cancer cells. As mentioned, little

is known about the expression dynamics of cysteine transporters

at the protein functional levels. This would be a prevailing step in

setting up the contribution of microbiota for cysteine

bioavailability in health and disease.
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Considering colorectal cancer, cancer cells placed in a

cysteine-rich microenvironment might benefit from cysteine

without being dependent on the absorptive capacity of colonic

mucosa (Figure 1). Cancer cells express different cyst(e)ine

transporters that mediate its uptake directly from the colonic

lumen. In colorectal cancer cells, a pivotal cyst(e)ine transporter

is xCT and a mechanistic loop sustaining xCT expression

involve cysteine-derived H2S-dependent persulfidation of

OTUB1, the deubiquitinase that regulates xCT stabilization,

suggesting cyst(e)ine through the metabolic circuitries control

the expression of its own transporter (160). Moreover, xCT is

also expressed in the normal colon, but it was demonstrated that

its overexpression in colorectal tumors is associated with the

activation of MELK oncogene and Pi3K and RAS pathways,

being xCT pharmacological blockade a way of affecting cancer

cells tumorigenesis (5, 111). Actually, xCT was proposed as a

biomarker for colorectal cancer recurrence (161), reinforcing the

role of xCT and the need for cysteine as an important metabolic

hallmark in cancer. However, other types of cancer developed in

different organs present specificities that encompass the need for

cysteine absorption. For sure, the pool of cysteine absorbed in

the small intestine (162, 163) will benefit cancer cells with

metabolic reliance on cysteine, being a cysteine pool that

originated from diet and microbiota metabolism (Figure 1).

Outside of the gut, the cysteine pool in the tumor

microenvironment comes from the bloodstream, and the

metabolic activity of cancer and non-cancer cells shares the

same niche. The cysteine reliance of cancer cells implies a

frequent uptake of cyst(e)ine, even when the endogenous

cysteine synthesis is occurring, thereby expressing different

cyst(e)ine transporters, a cancer cell can manage the import of

cysteine according to its own metabolic state and needs (9).

The impact of cysteine on cancer advance is also seen in

cancer patients’ survival and cachexia. Cachexia is a life-

threatening condition associated with different diseases and

causes extreme weight loss and muscle wasting (164).

Cachexia is a marker for poor cancer prognosis, occurring in

about 80% of patients and accounting for at least 20% of cancer-

related deaths (164–166). A study dedicated to the cachexia

effects in a GI cancer cohort revealed that patients who received

cysteine supplementation in parenteral nutrition had shorter

overall survival as compared to those who did not receive

cysteine (167). In the same study, the authors demonstrated

that cyst(e)ine deprivation suppresses the growth of colorectal

xenograft tumors and potentiates the oxaliplatin effect, and the

mice did not lose weight (167).

In brief, cysteine interdependence of microbiota and cancer

cells can be seen at least in two ways: 1) cysteine made available

by microbiota can be used by cancer cells as a metabolic source,

and 2) cysteine-derived compounds, such as glutathione and

H2S produced by microbiota, can be used by cancer cells as

antioxidants and as important players in metabolic flow and
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energy production. As depicted in the review by Bonifácio etal.

(10), cysteine follows different circuitries in the metabolic

network, serving as a metabolic coin but also as a regulator of

metabolism, accounting for cellular and body homeostasis.

Cysteine versatility in cancer received recently more attention

since new studies disclosed the panoply of pathways that are

dependent on cysteine bioavailability, emphasizing that the

cysteine metabolic map is a pivotal component of cancer cells’

metabolic remodeling in order to cope with stressful conditions

imposed by the tumor microenvironment and by severe

disturbance of body equilibrium in advanced diseases.
Conclusions

In this review, several aspects of the intestinal microbiota

and cancer duality were addressed, which together demonstrate

that there is an opportunity for intervention. The impact of the

GI microbiota is decisive in the bioavailability of cysteine in the

human body, and this evolves with aging. Once cancer is a group

of diseases mostly potentiated by aging, it is natural that cysteine

and its various valences play a leading role in cancer promotion

and progression.

This compilation also serves to reflect on the latest dietary

practices, highly enriched in protein and low in carbohydrates.

The prevailing idea that glucose is the cancer nutrient misleads

the total elimination of carbohydrates in some diets

recommended for cancer patients since amino acids are the

main substitutes for glucose. Glutamine has long been known to

be the main glucose substitute for sustaining cellular respiration,

with glucose and glycolysis primarily serving biosynthesis.

Currently, cysteine has also assumed a leading role in

bioenergetics and biosynthesis in the metabolism of malignant

cells. In addition, the reduction of carbohydrates also

significantly reduces the bioavailability of butyrate and its anti-

cancer protection factor.

More studies are needed to reinforce the role of the gut

microbiota in the metabolic drift that accompanies aging, in

which cysteine is one of the most important coins. Thus, it will

be possible to establish protocols to monitor and adjust the

microbiota to the aging process. A pharmacological alternative

that could be tested is blocking cysteine absorption (transport of

cysteine in the intestinal mucosa); considering cysteine is not an

essential amino acid, the impact in normal cells would be

reduced. However, this inhibition must be performed with

formulations that act only at the intestinal level without being

absorbed, as this could have a deleterious impact on the

metabolic dynamics of the body. Therefore, different strategies

can be followed in an attempt to avoid the establishment of

conditions that may be more favorable to the progression

of cancer.
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