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The treatment paradigm of neoplastic diseases has dramatically shifted with the

introduction of immune checkpoint inhibitors (ICI). They induce a durable

response in a wide variety of solid tumors, but this response depends on the

infiltration of lymphocytes capable of recognizing and killing tumor cells. The

primary predictor of intrinsic immune resistance to ICIs is the absence of

lymphocytes in the tumor, the so-called “cold tumors”. Colorectal cancer

(CRC) remains one of the most common and challenging cancer, but it is

not traditionally considered a highly immunogenic tumor. In fact,

immunotherapy showed a remarkable antitumoral activity only on a small

subset of CRC patients – the ones with microsatellite instability-high/deficient

DNA mismatch repair (MSI-H/dMMR). Most CRCs display a molecular

microsatellite stability/proficient DNA mismatch repair (MSS/pMMR) profile,

so strategies to improve tumor immunogenicity are crucial. Therefore, ongoing

studies investigate new approaches to convert “cold” to “hot” tumors in MSS/

pMMR CRCs. In addition, it has been described that gut microbiota influences

tumor development and the host immune response. Hence, the microbiota

may modulate the immune response, becoming a promising biomarker to

identify patients who will benefit from ICIs. Future data will help to better

understand microbiota mechanisms and their role in ICI efficacy. Precision

medicine in cancer treatment could involve modulation of the microbiota

through different strategies to improve tumor immunogenicity. In this review,

we aim to present the potential relationship between gut microbiota and the

modulation of the immune system and the hypothetical implications in CRC

treatment, namely ICIs.
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Introduction

Colorectal cancer remains one of the most common

malignancies. Although overall mortality continues to decline,

it remains on the podium of cancer-related death worldwide,

with 0.9 million estimated deaths worldwide in 2020 (1, 2).

Moreover, notwithstanding the risk of developing CRC increases

after the age of 50, it has been increasing dramatically in younger

generations, and it is expected to increase by 140% by the year

2030 (3, 4).

The oncogenesis of CRC is multifaceted and encompasses

both environmental and genetic factors (5).

The therapeutic approach includes localized therapies, such

as endoscopic and surgical excision, radiotherapy, and systemic

therapy – chemotherapy, targeted therapy, and immunotherapy,

namely immune checkpoint inhibitors (ICI) (6).

ICI has changed the paradigm of cancer therapy by directing

the focus to the host instead of the tumor (7). Despite promising

results in both hematological and solid tumors, it has failed in

most patients with advanced CRC – it only showed significant

antitumoral activity in MSI-H/dMMR tumors (8). The current

challenge is to overcome this poorly immunogenic profile or, as

it has been described, to transform “cold” tumors into “hot” ones

(9). One of the most promising areas of immune modulation

toward better responses to ICI concerns the inhabitants of our

own gut: the gastrointestinal tract is home to trillions of bacteria,

most of them commensal. These interact with the host and the

immune system, thus constituting a delicate ecosystem called the

human gut microbiota (10).

In this review, we will summarize the role of human

microbiota in the modulation of the immune system and

immunotherapy in CRC.
Colorectal cancer

The CRC incidence and survival rates have significant

disparities between developed and developing countries,

making this disease a marker of socioeconomic development.

Diagnosis at advanced stages is one of the determinants of these

differences (1, 11). In the last ten years, the adoption of screening

strategies has contributed to early detection and improved

outcome (12, 13). However, statistics globally predict an

increase in CRC incidence and exposure to environmental risk

factors resulting from a shifting lifestyle (low physical activity,

overweight and obesity, excessive consumption of red, processed

meats and alcohol, and low dietary fibers) are the main reasons

for this evolution (2, 14).

Several critical genes and pathways were identified as crucial

factors in the initiation and progression of CRC, such as Wnt,

Ras/MAPK, PI3K, TGF-b, P53, and DNA MMR pathways.

Classical ly , invest igators biological ly divided CRC

carcinogenesis mechanisms into two groups: those with MSI
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and those microsatellite stable but with chromosomal instability

(CIN) (11, 15, 16). Two pathological classification systems have

been proposed: The Cancer Genome Atlas project and the

Consensus Molecular Subtypes. Still, more research is needed

to validate their clinical application (17, 18).

The two anatomical locations of the colon have distinct

embryonic origins (19, 20). We also found fundamental

differences in molecular and clinical characteristics: right colon

CRC is usually associated with MSI and the BRAF mutation and

is more immunogenic. Left colon CRC is associated with CIN

and with mutations in the APC, P53, and SMAD4 pathways (19).

It remains to be fully understood the biological mechanisms

behind such differences.

The MSI tumors are identified in 2–4% of metastatic CRC

(mCRC) (20). The subjacent carcinogenesis mechanism depends

on the DNA MMR function that ensures the integrity and

stability of genetic material by correcting mismatched bases

during DNA replication. If any defect occurs in the main

MMR proteins MLH1, MSH2, MSH6, and PMS2 or

microsatellites, several mutations accumulate, leading to the

development of tumors (21). The consequent production of

multiple neoantigens induced by genomic mutations is

probably one of the mechanisms by which dMMR tumors are

sensitive to immunotherapy, even though a complete

understanding of the mechanisms leading to improved

performance of ICI in dMMR is yet to be attained (22).

Furthermore, the inflammatory microenvironment in CRC is

an additional feature that makes these tumors more likely to

respond to ICI. Hence, evidence has reported the presence of

immune cells as CD8+ and CD4+ tumor-infiltrating

lymphocytes (TILS), macrophages, and natural killer (NK)

cells, as well as an increase in programmed cell death 1(PD-1)

and its ligand (PD-L1) in lymphocytes/tumor cells surface

(23–25).

Over the last decade, the median overall survival for patients

diagnosed with mCRC has doubled (26). Regarding treatment

options, fluoropyrimidines alone or combined with oxaliplatin

or irinotecan became a standard regimen choice. In resected

stage III CRC, fluoropyrimidine alone reduces the risk of death

by 10% to 15%, with an additional benefit with an oxaliplatin-

based combination (27, 28). Bevacizumab, a humanized

monoclonal antibody that inhibits vascular endothelial growth

factor (VEGF), and cetuximab and panitumumab, both

antibodies targeting the epidermal growth factor receptor

(EGFR), are also approved in mCRC according to the right-

sided or left-sided colon and RAS gene mutational status. In later

lines, TAS-102 improved overall survival (29) and ramucirumab,

ziv-aflibercept, and regorafenib are VEGF/VEGF receptor

(VEGFR) inhibitors also available in refractory CRC (30, 31).

Regarding the immunotherapy advent, there was an attempt

to show the efficacy of ICI in CRC. The results of three phase II

studies led to FDA and EMA approval of pembrolizumab and

nivolumab (± ipilimumab) for dMMR/MSI CRC previously
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treated by conventional chemotherapy (31–33). Corroborating

this trend, KEYNOTE-177, a phase III trial that compared

pembrolizumab with chemotherapy in untreated dMMR

mCRC, was responsible for decisive changes in clinical

practice, with significant improvement in progression-free

survival (PFS) (16.5 months vs. 8.2 months, HR 0.60; 95% CI,

0.45-0.80; P=0.0002). Nevertheless, about 30% of patients

receiving immunotherapy had disease progression as the best

response (34). The phase 2 Atezo-TRIBE trial found that the

addition of atezolizumab to chemotherapy and bevacizumab

improved PFS in first-line mCRC (35). Later, a significant

interaction between MSI status and immunotherapy was

observed, with a higher benefit in patients with MSI/dMMR.

Little is known about the resistance mechanism to ICIs and

tumor heterogeneity in MSI/dMMR tumors. More biomarker-

based strategies are needed and a better understanding of the

potential synergistic effect of immunotherapy and selective

inhibitors of the Ras/BRAF/MEK/ERK pathway to improve

patient selection (36).
Immunotherapy, tumor
microenvironment, and
patterns of immune response

The ICIs have been used in multiple solid tumors, with good

outcomes and prolonged survival confirming their efficacy.
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Despite the proven clinical benefit, some tumors do not

respond to ICI, and this is probably related to specific

characteristics of the tumor and the host.

The expression of PD-L1, the constitution of the immune

system around the tumor, and the tumor mutational burden

(TMB) are fundamental to the success of ICI and are currently

considered biomarkers predictive of response (37). The

evaluation of the immune profile of patients treated with ICI

showed infiltration of immune cells, mainly cytotoxic T cells, in

the responders’ group. On the other hand, the lack of immune

cells and cytokines led to a resistance to immunotherapy, seen in

non-responders’ patients (38).

The tumor bed, designated by the tumor microenvironment

(TME), is a complex entity constituted by a heterogeneous

collection of cells, secreted factors, and an extracellular matrix.

The immune infiltration of the TME can be composed of all

types of immune cells (39). Interactions between immune cells

and tumor cells influence the environment and produce a pro-

or antitumor effect. The TILs are critical cells in the TME, with

the majority being T cells (40). Some T cells are related to

tumorigeneses, like regulatory T cells (Treg) or helper T cells. In

contrast, others are related to the elimination of the tumor, like

NK cells and cytotoxic T cells (41).

Based on the T cells infiltration, Chen and Mellman defined

three types of tumors that can be correlated with response to ICI:

the immune inflamed phenotype, or “hot tumor”, associated

with a better response, and the cold tumors, the immune-

excluded and the immune-desert phenotypes (42) (Figure 1).
FIGURE 1

Tumor Immune Phenotypes. Three immunophenotypes are observed according to the spatial distribution of CD8 + T lymphocytes in the tumor
microenvironment (TME): the immune-desert, immune-excluded and immune-inflamed phenotypes. In the immune-desert phenotype,
immune cells are absent from the tumor and its periphery. In the immune-excluded phenotype, immune cells accumulate but do not efficiently
infiltrate. The immune-inflamed is characterized by the infiltration of pro-inflammatory immune cells.
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The immune-inflamed phenotype is characterized by the

presence of immune cells, such as CD4+, CD8+ T cells, and

pro-inflammatory cytokines like interferon (IFN), interleukins

12 and 23, and tumor necrosis factor (TNF)-a. In this

phenotype, an antitumor immune response prevails,

activating and expanding T cells (39). The immune-excluded

and immune-desert phenotypes, considered “cold tumors”, are

characterized by a lower response to ICI and a worse prognosis.

Despite the presence of immune cells in the immune-excluded

phenotype, T cells are located in the stroma surrounding the

tumor cells. The tumor, in this case, can promote signaling that

blocks dendritic cells and other mechanisms capable of

recruiting T cells to the center of the tumor. In the immune-

desert phenotype, there is a lack of cytotoxic cells and a

prevalence of inhibitory immune cells, like Treg (37). Beyond

the paucity of immune effector cells, these last two phenotypes

are characterized by a low TMB and a lack of antigen release,

reinforcing their poor tumor immunogenicity. The greater the

number of mutations in a tumor, the more immunogenic the

tumor will be, as these mutations can provide targets for

cytotoxic cells. However, some mutations can have the

opposite function, acting to attenuate the immune response.

Mutations that can decrease the transcription of Major

Histocompatibility Complex (MHC) class I molecules will

also interfere with peptide loading and presentation process,

leading to a weak response (42).

Many steps can inhibit T cells priming and activation in

driving immune cells into tumors, leading to a non-inflamed

tumor bed. Given these different profiles of tumor behavior,

more recent studies try to promote a switch in the tumor

environment, turning “cold” into “hot” tumors. Several

mechanisms can be used, like the stimulation of recruitment

of dendritic cells, stimulation and activation of effector cells, or

modification of chemokines and cytokines that can modify the

cell traffic and activation (43). Epigenetic modifications,

including DNA methylation and chromatin remodeling, can

increase tumor immunogenicity and immune recognition,

and the subsequent release of pro-inflammatory cytokines.

Studies in vitro showed that pharmacological or genetic

disruption of Treg cells might lead to the acquisition of

pro-inflammatory gene signature, with increased CD4+ and

CD8+ T cells recruitment to promote antitumor immunity

(44). Chemotherapy, radiotherapy, oncolytic viruses, cancer

vaccines, or antiangiogenic therapies are currently being

studied to improve T cell infiltration. However, it is not

enough to increase the number and activity of cytotoxic cells

since some components of TME can inhibit their function. One

proposed mechanism to convert TME into a “hotter” TME is

target therapy against angiogenesis (45). Unfortunately, the

clinical benefits are limited since the prolonged use of

antiangiogenic therapy increase hypoxia and consequently

increase the release of proangiogenic factors (45).
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Human microbiota, immune
system, and dysbiosis

The human gut microbiota comprises approximately 3 ×

1013 bacteria and other highly diverse microorganisms, which

are confined to the intestinal lumen. The microbiota is essential

in regulating fundamental biological events, and this

relationship has evolved into a symbiosis (10, 46, 47). The

disruption of this balance, called dysbiosis, is closely related to

several diseases, namely infections, autoimmune diseases,

cardiovascular diseases, and cancer (48–50). The mutual

interaction regulates local and systemic immune homeostasis,

maintaining tolerance for commensal bacteria and allows the

recognition of potentially pathogenic microorganisms.

The lamina propria beneath the epithelial cells (IECs)

harbors immune cells, which encompasses the gut-associated

lymphoid tissue (GALT), including antigen-presenting cells

such as dendritic cells, T cells, and B cells. The mechanisms

through which the microbiota regulates the immune system

have been scrutinized over the last few years. Essentially, the

various pattern-recognition receptors (PRRs) expressed in IECs

and immune cells are thought to recognize microbe-associated

molecular patterns (MAMPs) of commensal bacteria (51, 52).

The dendritic cells occupy a prominent role: they are activated

by the microbes or by microbe-derived elements (e.g., metabolites,

products) via interactions with PRRS. When activated, they travel

to the mesenteric lymph nodes and orchestrate the differentiation

of naïve T cells into effector T cells, mainly Tregs and helper 17

(Th17). A subset of these cells may migrate back to the intestine or

enter the systemic circulation, thus locally and systemically

modulating the host’s immune system. The Th17 cells mediate

the conversion to a pro-inflammatory and antitumor state by

secreting immunostimulatory cytokines or directly activating

neutrophils, versus Tregs, which release anti-inflammatory

cytokines and mediate the conversion to an anti-inflammatory

state (51–53). MAMPs or microbe metabolites can also stimulate

the immune system through other mechanisms: stimulation of

enteric neurons with the release of neurotransmitters that regulate

the immune cell function; secretion of immunoglobulin (namely

IgA) and their crucial role in the blockade of bacterial adherence,

and activation of the innate immune response (53–55).
Gut microbiota and colorectal cancer

Many of the recognized environmental and lifestyle factors

related to CRC are also linked to microbiota dysbiosis (56–58).

The gut microbiota is probably at the intersection of these risk

factors. As Fearon et al. proposed, the microbiota may be

considered an independent driver before the transformation

from adenoma to carcinoma (59). The impact of diet on

microbiota was thoroughly described by O’Keefe et al., in
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which a diet exchange between different populations resulted in

remarkable changes in microbiota (60). It is also essential to

mention the impact of consuming processed foods, as nitrate

consumption, rich in processed food, can lead to the formation

of N-nitroso compounds by the gut microbiota, some of which

are carcinogenic (61, 62).

Dysbiosis with the unbalanced growth of certain species,

including Fusobacterium nucleatum, Bacteroides fragilis, and

Escherichia coli, along with a reduction in Roseburia,

Clostridia, Clostridium, and Clifridia, can increase the

expression of pro-inflammatory cytokines, reduce butyrate-

producing bacteria along with enriching pro-inflammatory

pathogens and increase the risk of oncogenesis (56, 63–65).

(Figure 2) Butyrate can induce antitumor responses and help in

microbiota homeostasis (66). The overgrowth of F. nucleatum

has been associated with tumorigenesis through different

mechanisms: an increase in M2 macrophages, a decrease in

FOXP3+ T cells in the TME, and the presence of bacterial

proteins FadA e Fap2, which activate the WNT/b catenin

signaling pathway and inhibit NK cells and T cells signaling

(67, 68). Other microorganisms are also linked to CRC

development: fungal dysbiosis may also induce tumor cell

progression (69). Oppositely, Saccharomyces cerevisiae could

suppress the growth of tumor cells (70). The impact of the

microbiota on the biological mechanisms that culminate in the
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differences between the right and left colon has been questioned.

It has been hypothesized that there is an increased amount of

pathogenic bacteria in the left colon which could explain the

higher incidence of left CRC (71–73).

The microbiota is not only associated with local oncogenesis

but has also been proposed as a facilitator of metastasis. Hepatic

metastases are preceded by the previous formation of

premetastatic niches. This is harbingered by the migration of

bacteria to the liver through the portal venous system, and

certain bacterial strains, such as Escherichia coli C17 or

Proteus mirabilis, have been strongly associated with this

mechanism (74, 75).

Gut microbiota can also improve the effectiveness of the

antitumor effect of chemotherapy drugs (76). Other gut

microbes might also aggravate chemotherapy-related adverse

reactions via drugs’microbial metabolism (77).
Connection between microbiota
and immunotherapy

Apart from the relationship with classic CRC chemotherapy,

there is also a potential link with targeted agents and ICI. Gut

microbiota is a critical modulator of TME, and it might be linked

to ICI response in solid tumors. Initial findings by Vetizou et al.
FIGURE 2

Gut Microbiota and Immune Modulation. Gut Microbiota is closely linked with the modulation of local and systemic immune responses. The
unbalanced growth of unfavorable microorganisms, which seems to be more pronounced in the left colon, can mediate less efficient responses
regarding antitumor activity, with Tregs releasing anti-inflammatory cytokines and promoting an anti-inflammatory state.
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showed that the CTLA-4-targeting antibody ipilimumab could

treat specific-pathogen-free mice but not germ-free mice (78–

81). Multiple gut bacteria were found to be associated with better

outcomes in patients treated with anti-PD-1 and anti-CTLA4

immunothe r apy ( e . g . , Akke rmans ia muc in iph i l a ,

Bifidobacterium longem, Faecalibacterium prausnitzii) (82, 83).

It has also been described as a potential influence on

immunotherapy-related adverse events (84).

Even though the mechanisms by which the gut microbiota

influences immunotherapy remain under study, research appears to

focus on three themes: bacteria or bacterial components that

stimulate antitumor T-cell responses, molecular mimicry between

bacteria and tumor epitopes, and bacterial metabolites that shape

antitumor immunity (85–87). The interpretation of data linking ICI

and the microbiota can be hampered by several factors: small

cohorts, variable definitions of response, and the confounding

factors linked to gut microbiota composition (diet, treatment,

geography, ethnicity, etc.).
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Given the apparent benefits in the presence of certain

bacteria species, one may ask whether it will be possible to

modulate the microbiota with the final aim of attuning the

immune system. Microbiota modulation has been receiving

widespread attention (Table 1). It can occur directly through

actions of dietary components on the microbiota’s composition

or metabolic processes or indirectly through altering the gut

physiology to change the intestinal lumen environment, thereby

producing changes in the microbiota. So far, the main ways of

modulating the microbiota are through diet, administration of

prebiotics and probiotics, and fecal microbiota transplantation.

Concerning dietary habits, data have shown a profound and

beneficial metamorphosis in the microbiota composition with a

high-fiber, low-fat diet (60). The administration of growth

substrate (prebiotics) to induce the growth of specific strains

has also shown potential in modulating the microbiota (99).

The direct introduction of bacteria, either in the form of a

fecal transplant or of just a few microorganisms (specific strain
TABLE 1 Clinical studies regarding modulation of gut microbiota and cancer treatment.

Concluded Clinical Studies

Reference Study
Population

Intervention Results

Analysis of Fusobacterium persistence and antibiotic
response in colorectal cancer (88)

Bullman et al.
Science 2017

CRC Treatment with
metronidazole

Significant decrease in Fusobacterium load in the tumor tissue
(P = 0.002) as well as a significant reduction in tumor cell
proliferation (P = 0.002).

Phage-guided modulation of the gut microbiota of
mouse models of colorectal cancer augments their
responses to chemotherapy (89)

Zheng et al.
Nat Biomed
Eng. 2019

CRC Irinotecan-
loaded
nanoparticles
linked to
phages

Decrease in the numbers of Fusobacterium nucleatum (P =
0.01); median survival in mice increased from 20d to 42d.

Aspirin Modulation of the Colorectal Cancer-
Associated Microbe Fusobacterium nucleatum (90)

Brennan et al.
mBio. 2021

CRC Administration
of aspirin

Decrease in fusobacterial abundance in colon adenoma tissue.

A randomized double-blind trial on perioperative
administration of probiotics in colorectal cancer
patients (91)

Gianotti et al.
World J
Gastroenterol.
2010

CRC Administration
of probiotics
perioperatively

Lactobacillus johnsonii reduces the concentration of pathogens
and modulates local immunity.

Intestinal microbiota is altered in patients with colon
cancer and modified by probiotic intervention (92)

Hibberd et al.
BMJ Open
Gastroenterol.
2017

CRC Administration
of probiotics

Increased abundance of butyrate-producing bacteria, especially
Faecalibacterium and Clostridiales spp. CRC-associated genera
such as Fusobacterium and Peptostreptococcus tended to be
reduced in the fecal microbiota of patients that received
probiotics.

Effects of prebiotics on immunologic indicators and
intestinal microbiota structure in perioperative
colorectal cancer patients (93)

Xie et al.
Nutrition
2019

CRC Administration
of probiotics

Preoperative period: increased serum levels of IgG; P = 0.02),
IgM (P = 0.00), and transferrin (P = 0.027; all P < 0.05).
Postoperative period: enhanced levels of IgG (P = 0.003), IgA (P
= 0.007), suppressor/cytotoxic T cells (CD3+CD8+; P = 0.043),
and total B lymphocytes (CD19+; P = 0.012)
Prebiotics increased the abundance of Bifidobacterium (P =
0.017) and Enterococcus (P = 0.02; both P < 0.05) but decreased
the abundance of Bacteroides (P = 0.04)

Impact of the preoperative use of synbiotics in
colorectal cancer patients: A prospective, randomized,
double-blind, placebo-controlled study (94)

Polakowski
et al.
Nutrition
2018

CRC Administration
of synbiotics

Significant reductions in IL-6 levels (163.2 ± 19.5 versus 138.8 ±
12.5, P < 0.001) and CRP (10 ± 5.2 versus 7.17 ± 3.2, P < 0.001).

(Continued)
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or consortium) with probiotics has an undeniable role in the

microbiota regulation to improve the host immunity (100, 101).

Fecal microbiota transplantation is being experimentally used to

treat metabolic diseases, inflammatory bowel disease, and cancer

(102–106). Conversely, eradicating specific microorganisms with

certain antibiotics, such as metronidazole, is also an active field

of investigation (88).

Interestingly, vitamins appear to modulate microbiota as

well: vitamin D is linked with anti-inflammatory and immune-

modulating properties in the gut (107). Promising new research

on colon-delivered vitamin B3 is associated with improving

biomarkers for inflammation (108).
Conclusion

A complex tie lies between the host and gut microbiota.

In human diseases, gut microbiota mediates the immune

response, modulating disease development and progression,

and potentially interfering with treatment efficacy. It may

play a key role also in human cancer, including the ability to

modulate host immune response (109, 110). The gut

microbiota may influence the anti-tumor activities by

producing specific metabolites or inducing T-cell responses.

On the contrary, some bacterial species improve tumor

proliferation and metastasis, and understanding those

interactions in the context of cancer is crucial in the quest

for potential therapeutic targets. In this context, there is a

shred of increasing evidence for the correlation of gut
Frontiers in Gastroenterology 07
microbiota with cancer immunotherapy activity and

toxicity (111).

The modulatory effect of the gut microbiota on ICI response

may create new therapeutic opportunities. In MSI-H patients

with intrinsic/de novo and acquired resistance settings, it may

become essential to examining the microbiota.

Despite the advances, the underlying mechanisms, the

therapeutic impact, and which specific microbes and immune

cells interact with each other remain obscure. Moving forward,

clinical trials will undoubtedly spur efforts to examine the

influence of the immune-gut interaction on immunotherapy

treatment in clinical settings.

Hopefully, this will quickly become much more than just a

gut feeling.
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TABLE 1 Continued

Ongoing Interventional Trials
NCT Trial
No.

Phase Study
population

Intervention

Feasibility Study of Microbial Ecosystem Therapeutics
(MET-4) to Evaluate Effects of Fecal Microbiome in
Patients on ImmunOtherapy (MET4-IO) (95)

NCT03686202 Phase I Solid Tumors Microbial Ecosystem Therapeutics (MET-4) in patients on
immunotherapy

A Phase I/II Open Label, Safety And Preliminary
Efficacy Study of MRx0518 In Combination With
Pembrolizumab In Patients With Advanced
Malignancies Who Have Progressed On PD-1/PD-L1
Inhibitors (96)

NCT03637803 Phase I/II Solid Tumors MRx0518 in combination with pembrolizumab

Phase II, Single-arm Study of FMT Combined With
Immune Checkpoint Inhibitor and TKI in the
Treatment of Colorectal Cancer Patients With
Advanced Stage (97)

NCT05279677 Phase II CRC Fecal microbiota transplantation in combination with Sintilimab
and Fruquintinib

Preoperative Endoscopic Treatment With Fosfomycin
and Metronidazole in Patients With Right-sided
Colon Cancer and Colon Adenoma: a Clinical Proof-
of-concept Intervention Study MEFO Trial (98)

NCT04312360 Phase II CRC and
Colon
Adenoma

Therapeutic endoscopy with metronidazole and fosfomycin
disodium
CRC, colorectal cancer; CRP, C-reactive protein; FMT, fecal microbiota transplant; IL, interleukin; Ig, immunoglobulin; PD-1, programmed cell death protein 1; PD-L1, programmed death-
ligand 1; TKI, tyrosine kinase inhibitor.
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85. Lauté-Caly DL, Raftis EJ, Cowie P, Hennessy E, Holt A, Panzica DA, et al. The
flagellin of candidate live biotherapeutic enterococcus gallinarum MRx0518 is a potent
immunostimulant. Sci Rep (2019) 9(1):801. doi: 10.1038/s41598-018-36926-8

86. Zheng JH, Nguyen VH, Jiang SN, Park SH, Tan W, Hong SH, et al. Two-
step enhanced cancer immunotherapy with engineered salmonella typhimurium
secreting heterologous flagellin. Sci Transl Med (2017) 9(376):eaak9537. doi:
10.1126/scitranslmed.aak9537

87. Fluckiger A, Daillère R, Sassi M, Sixt B, Liu P, Loos F, et al. Cross-reactivity
between tumor MHC class I-restricted antigens and an enterococcal bacteriophage.
Science (2020) 369:936–42. doi: 10.1126/science.aax0701

88. Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al.
Analysis of fusobacterium persistence and antibiotic response in colorectal cancer.
Science (2017) 358(6369):1443–8. doi: 10.1126/science.aal5240

89. Zheng DW, Dong X, Pan P, Chen KW, Fan JX, Cheng SX, et al. Phage-
guided modulation of the gut microbiota of mouse models of colorectal cancer
augments their responses to chemotherapy. Nat BioMed Eng (2019) 3(9):717–28.
doi: 10.1038/s41551-019-0423-2

90. Brennan CA, Nakatsu G, Gallini Comeau CA, Drew DA, Glickman JN,
Schoen RE, et al. Aspirin modulation of the colorectal cancer-associated microbe
fusobacterium nucleatum. mBio (2021) 12(2):e00547–21. doi: 10.1128/
mBio.00547-21

91. Gianotti L, Morelli L, Galbiati F, Rocchetti S, Coppola S, Beneduce A, et al. A
randomized double-blind trial on perioperative administration of probiotics in
colorectal cancer patients.World J Gastroenterol (2010) 16(2):167–75. doi: 10.3748/
wjg.v16.i2.167

92. Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgård L,
et al. Intestinal microbiota is altered in patients with colon cancer and modified by
probiotic intervention. BMJ Open Gastroenterol (2017) 4(1):e000145. doi: 10.1136/
bmjgast-2017-000145

93. Xie X, He Y, Li H, Yu D, Na L, Sun T, et al. Effects of prebiotics on immunologic
indicators and intestinal microbiota structure in perioperative colorectal cancer patients.
Nutrition (2019) 61:132–42. doi: 10.1016/j.nut.2018.10.038

94. Polakowski CB, Kato M, Preti VB, Schieferdecker MEM, Ligocki Campos
AC. Impact of the preoperative use of synbiotics in colorectal cancer patients: A
prospective, randomized, double-blind, placebo-controlled study. Nutrition (2019)
58:40–6. doi: 10.1016/j.nut.2018.06.004

95. University Health Network, Toronto. Feasibility study of microbial ecosystem
therapeutics (MET-4) to evaluate effects of fecal microbiome in patients on
ImmunOtherapy (MET4-IO). clinicaltrials.gov (2022).

96. 4D pharma plc. A phase I/II open label, safety and preliminary efficacy study
of MRx0518 in combination with pembrolizumab in patients with advanced
malignancies who have progressed on PD-1/PD-L1 inhibitors. clinicaltrials.gov
(2022).
Frontiers in Gastroenterology 10
97. Zhou A, Phase II. Single-arm study of FMT combined with immune
checkpoint inhibitor and TKI in the treatment of colorectal cancer patients with
advanced stage. clinicaltrials.gov (2022).

98. Zealand University Hospital. Preoperative endoscopic treatment with
fosfomycin and metronidazole in patients with right-sided colon cancer and
colon adenoma: a clinical proof-of-concept intervention study MEFO trial.
clinicaltrials.gov (2021).

99. Wang S, Xiao Y, Tian F, Zhao J, Zhang H, Zhai Q, et al. Rational use of
prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related
mechanisms. J Funct Foods (2020) 66:103838. doi: 10.1016/j.jff.2020.103838

100. Slattery C, Cotter PD, O’Toole PW. Analysis of health benefits conferred
by lactobacillus species from kefir. Nutrients (2019) 11(6):E1252. doi: 10.3390/
nu11061252

101. Olle B. Medicines from microbiota. Nat Biotechnol (2013) 31(4):309–15.
doi: 10.1038/nbt.2548

102. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos
WM, et al. Duodenal infusion of donor feces for recurrent clostridium difficile. New
Engl J Med (2013) 368(5):407–15. doi: 10.1056/NEJMoa1205037

103. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC,
et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome.
Nature (2020) 582(7813):566–70. doi: 10.1038/s41586-020-2396-4

104. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman
JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin
sensitivity in individuals with metabolic syndrome. Gastroenterology (2012) 143
(4):913–6. doi: 10.1053/j.gastro.2012.06.031

105. Wang X, Zhang P, Zhang X. Probiotics regulate gut microbiota: An
effective method to improve immunity. Molecules (2021) 26(19):6076. doi:
10.3390/molecules26196076

106. Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L,
et al. Fecal microbiota transplant promotes response in immunotherapy-refractory
melanoma patients. Science (2021) 371(6529):602–9. doi: 10.1126/science.abb5920

107. Akimbekov NS, Digel I, Sherelkhan DK, Lutfor AB, Razzaque MS. Vitamin
d and the host-gut microbiome: A brief overview. Acta Histochem Cytochem (2020)
53(3):33–42. doi: 10.1267/ahc.20011

108. Fangmann D, Theismann EM, Türk K, Schulte DM, Relling I, Hartmann
K, et al. Targeted microbiome intervention by microencapsulated delayed-release
niacin beneficially affects insulin sensitivity in humans. Diabetes Care (2018) 41
(3):398–405. doi: 10.2337/dc17-1967

109. Blumberg R, Powrie F. Microbiota, disease, and back to health: A
metastable journey. Sci Transl Med (2012) 4(137):137rv7. doi: 10.1126/
scitranslmed.3004184

110. Belkaid Y, Hand T. Role of the microbiota in immunity and inflammation.
Cell (2014) 157(1):121–41. doi: 10.1016/j.cell.2014.03.011

111. Kroemer G, Zitvogel L. Cancer immunotherapy in 2017: The breakthrough
of the microbiota. Nat Rev Immunol (2018) 18(2):87–8. doi: 10.1038/nri.2018.4
frontiersin.org

https://doi.org/10.1038/ncomms10391
https://doi.org/10.1038/s41598-018-36926-8
https://doi.org/10.1126/scitranslmed.aak9537
https://doi.org/10.1126/science.aax0701
https://doi.org/10.1126/science.aal5240
https://doi.org/10.1038/s41551-019-0423-2
https://doi.org/10.1128/mBio.00547-21
https://doi.org/10.1128/mBio.00547-21
https://doi.org/10.3748/wjg.v16.i2.167
https://doi.org/10.3748/wjg.v16.i2.167
https://doi.org/10.1136/bmjgast-2017-000145
https://doi.org/10.1136/bmjgast-2017-000145
https://doi.org/10.1016/j.nut.2018.10.038
https://doi.org/10.1016/j.nut.2018.06.004
https://doi.org/10.1016/j.jff.2020.103838
https://doi.org/10.3390/nu11061252
https://doi.org/10.3390/nu11061252
https://doi.org/10.1038/nbt.2548
https://doi.org/10.1056/NEJMoa1205037
https://doi.org/10.1038/s41586-020-2396-4
https://doi.org/10.1053/j.gastro.2012.06.031
https://doi.org/10.3390/molecules26196076
https://doi.org/10.1126/science.abb5920
https://doi.org/10.1267/ahc.20011
https://doi.org/10.2337/dc17-1967
https://doi.org/10.1126/scitranslmed.3004184
https://doi.org/10.1126/scitranslmed.3004184
https://doi.org/10.1016/j.cell.2014.03.011
https://doi.org/10.1038/nri.2018.4
https://doi.org/10.3389/fgstr.2022.1021050
https://www.frontiersin.org/journals/gastroenterology
https://www.frontiersin.org

	Modulation of tumor environment in colorectal cancer – could gut microbiota be a key player?
	Introduction
	Colorectal cancer
	Immunotherapy, tumor microenvironment, and patterns of immune response
	Human microbiota, immune system, and dysbiosis
	Gut microbiota and colorectal cancer
	Connection between microbiota and immunotherapy

	Conclusion
	Author contributions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


