
State-of-the-art virtualisation
technologies for the centralised
automotive E/E architecture

Zixuan Guo1, Konstantinos Koufos1*, Mehrdad Dianati1,2 and
Roger Woodman1

1WMG, University of Warwick, Coventry, United Kingdom, 2School of Electronics, Electrical Engineering
and Computer Science (EEECS), Queen’s University of Belfast, Belfast, United Kingdom

The automotive industry is undergoing profound changes, driven by the need for
safer, more environmentally friendly, and more accessible future mobility and
transport systems for goods and people. Enabling technologies include
electrification, digitalisation, and automation of future vehicles. These
technologies are powered by a multitude of onboard Electronic Control Units
(ECUs). A typical modern vehicle has about 100 physical ECUs to enable various
aspects of its function. These legacy many-ECU electronic/electrical (E/E)
architecture models, known as distributed E/E architecture, are deemed
inefficient as the number of ECUs and their processing power requirements
keep increasing. In contrast, emerging centralised E/E architectures propose
using fewer physical high-performance onboard processors on which an almost
unlimited number of virtual ECUs can be created to handle various legacy and
modern applications. As a result, virtualisation techniques, which enable multiple
virtual ECUs with different operating systems to run concurrently on a single
hardware platform, are promising models for modern centralised E/E
architectures. Motivated by this trend, this paper provides a structured and
comprehensive state-of-the-art review of virtualisation techniques for
automotive applications, covering areas such as resource allocation,
AUTOSAR, peripheral I/O interfaces, and in-vehicle communication networks.
We comprehensively review the literature and identify research gaps in
virtualisation techniques for cache management, paravirtualsation, software-
defined networking for in-vehicle networks, and virtualisation for enhanced
prototyping and testing in the context of modern E/E architectures for
modern vehicles.

KEYWORDS

automotive E/E architectures, AUTOSAR, software-defined vehicle, virtualisation,
paravirtualisation

1 Introduction

With the growing demand for innovative automotive functions like Advanced Driving
Assistance Systems (ADAS) and the progression to higher levels of autonomy (Rödel et al.,
2014), the number of required ECUs continues to rise due to the one-to-one mapping of
vehicle functions and ECUs. Furthermore, as vehicles become more sophisticated,
peripheral devices such as perception sensors and communication transceivers are
integrated to support these functions. This increases the number of ECUs required and
adds to the size and complexity of the communication network, among many other

OPEN ACCESS

EDITED BY

Dongyao Jia,
Xi’an Jiaotong-Liverpool University, China

REVIEWED BY

Ilaria Matteucci,
National Research Council (CNR), Italy
A-Long Jin,
Xi’an Jiaotong-Liverpool University, China

*CORRESPONDENCE

Konstantinos Koufos,
konstantinos.koufos@warwick.ac.uk

RECEIVED 29 October 2024
ACCEPTED 22 January 2025
PUBLISHED 17 February 2025

CITATION

Guo Z, Koufos K, Dianati M and Woodman R
(2025) State-of-the-art virtualisation
technologies for the centralised automotive E/
E architecture.
Front. Future Transp. 6:1519390.
doi: 10.3389/ffutr.2025.1519390

COPYRIGHT

© 2025 Guo, Koufos, Dianati and Woodman.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Future Transportation frontiersin.org01

TYPE Review
PUBLISHED 17 February 2025
DOI 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/articles/10.3389/ffutr.2025.1519390/full
https://www.frontiersin.org/articles/10.3389/ffutr.2025.1519390/full
https://www.frontiersin.org/articles/10.3389/ffutr.2025.1519390/full
https://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2025.1519390&domain=pdf&date_stamp=2025-02-17
mailto:konstantinos.koufos@warwick.ac.uk
mailto:konstantinos.koufos@warwick.ac.uk
https://doi.org/10.3389/ffutr.2025.1519390
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2025.1519390


problems (Kampert et al., 2020). To address these challenges, a
centralised E/E architecture has been proposed to reduce the
complexity of future vehicles.

Compared to the distributed architecture, the centralised
approach integrates multiple functions onto a single multi-core
ECU, thereby reducing the overall number of ECUs, simplifying
system design and lowering power consumption. However, due to
the current performance limitations of ECUs, an immediate shift to
centralised architecture is not yet feasible, leading to the adoption of
domain-based architecture as a viable alternative. In this approach,
vehicle functions are first grouped according to their specific
functional domain, such as engine or body control (Navale et al.,
2015). Several ECUs (called “Domain ECUs”) are then assigned to
handle tasks under a specific domain.

High-performance ECUs, specialised GPU processors, and
high-bandwidth in-vehicle communication networks are expected
to drive the industry’s transition towards centralised (or zone-based)
architectures. These advancements will enable vehicles to tackle
challenges associated with automated driving, such as managing
large volumes of data and meeting high computational demands (Di
Natale and Sangiovanni-Vincentelli, 2010; Bandur et al., 2021). A
centralised E/E architecture facilitates more sophisticated vehicle
design (Maul et al., 2018), reduces the wiring harness (ASA, 2023),
and scales down by 20% the total number of ECUs, as reported by
BOSCH (Solutions B. M., 2023a). Several OEMs have already built
prototypes, including Tesla’s Autopilot and Nvidia DRIVE Thor.
However, the automotive industry remains in the early stages of
adopting the centralised E/E architecture.

In a centralised architecture, multiple vehicle functions share the
same ECU and may need to access concurrently shared computing
resources, the memory, the cache, or the communication network.
Consequently, an efficient embedded system becomes crucial for
adequately managing, scheduling, and isolating these functions.
Virtualisation techniques, commonly used in computing to allow
multiple operating systems to run efficiently in parallel on the same
hardware (Wulf et al., 2021), offer a promising solution in this
context. By implementing virtualisation, resources such as ECUs,
memory, communication networks, and peripheral I/O interfaces
can be abstracted as Virtual Machines (VMs) and efficiently
managed by a Virtual Machine Monitor (VMM), also known as
a hypervisor (Smith and Nair, 2005). However, adopting
virtualisation techniques in the centralised architecture introduces
several technical challenges. These challenges are further
complicated because Automated Vehicles (AVs) are safety-critical
systems and must adhere to safety standards such as ISO 26262.

An automotive architecture utilising VMs allows multiple tasks
with varying dependencies to run simultaneously on the same ECU.
In a centralised architecture, computing resources and peripheral
devices become shared elements, allowing various tasks to request
access to these elements simultaneously. This can lead to message
collisions over the communication network when multiple VMs try
to communicate with peripheral components concurrently. To
optimise performance and mitigate safety concerns in these
environments, specific virtualisation technologies like I/O
virtualisation, and virtualisation partition approaches have been
proposed. The potential of virtualisation techniques in the
context of modern automotive E/E architectures has motivated a
growing number of studies on the topic in recent years. However, to

our knowledge, a comprehensive literature review is lacking to help
researchers gain deep insight into the state-of-the-art. To this end,
the contributions of this review article are multifaceted. First, by
examining the evolution of the E/E architecture from distributed to
centralised systems, we highlight the benefits virtualisation can offer
in the automotive field and outline the requirements for
incorporating virtualisation technologies into vehicle software
architectures. Next, we review the state-of-the-art (SOTA)
virtualisation applications in key areas such as resource
allocation, peripheral I/O interfaces, communication networks,
and AUTOSAR. These areas are crucial for effective task
processing, connectivity, data transfer, and operation of
embedded systems. In particular, we discuss how AUTOSAR, the
primary framework the automotive industry uses for managing
hardware resources, can be deployed alongside other operating
systems on the same ECU (Becker et al., 2015a). Lastly, building
on the SOTA virtualisation techniques from fields such as computer
science and considering the evolving features of AVs, this review
provides a forward-looking perspective on the potential use of
virtualisation technologies in the automotive sector. Specifically,
we discuss how virtualisation techniques can be applied to cache
management, software-defined networking, paravirtualisation, and
prototyping during the early development stages of AVs.
Paravirtualisation, an emerging technology that reduces the
overhead associated with virtualised architectures, will be
examined in detail.

To ensure this survey article is comprehensive, we began by
reviewing surveys on both vehicle E/E architectures and
virtualisation technologies used in other fields of research such as
CPU virtualisation in data centres or servers. These reviews helped
us identify well-known keywords, enabling us to uncover as many
relevant papers as possible on the use of virtualisation in the
automotive domain. Additionally, we examined the references list
of the identified papers to ensure the available literature is
adequately covered.

The remainder of this article is organised as follows. Section 2
introduces the E/E automotive architecture and explores the
challenges in implementing a centralised solution. Section 3
presents the concept of virtualisation and reviews the SOTA in
the automotive field. Section 4 examines virtualisation technologies
well-established in other scientific fields and outlines their potential
application in the automotive sector. Finally, Section 5 concludes
this survey.

2 Background of the E/E architecture

Major components like ECUs, the Bus communication network,
memory, and sensors compose the vehicle’s hardware system,
supporting rapidly growing innovative features like ADAS
(Brunner et al., 2017). In the traditional distributed architecture,
each automotive function, like adapting cruise control and
autonomous emergency braking, has its own ECU. Bus
communication networks like CAN, FlexRay, and Ethernet are
responsible for transferring data between the ECUs and actuators
(Askaripoor et al., 2022). The Bus communication technology
connects several ECUs through the Central Gateway cable. A
central processor, the Central Gateway Controller, is also

Frontiers in Future Transportation frontiersin.org02

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


responsible for message and data scheduling. The central gateway
plays a fundamental role in the distributed system, managing data
exchange between internal interfaces like ECUs and perception
sensors through the Data Bus.

In the distributed architecture, electrical components can be
easily maintained. However, the growing demand for more
intelligent and automated functions has significantly increased
the number of ECUs. To ensure design redundancy, in
compliance with the vehicle safety standard ISO 26262 (Salay
et al., 2017), modern vehicles typically use over 100 ECUs
(Bandur et al., 2021). That raises serious concerns about the
complexity of the wiring harness, the increased vehicle weight,
higher power consumption, and the large volume of data flowing
through the CAN Bus, potentially increasing communication delays
and blocking information exchange between ECUs and actuators.

To address the drawbacks associated with distributed
architectures, the E/E architecture should be inevitably modified.
Key technical enablers of these modifications include recent
breakthroughs in the performance of contemporary processors
and the growing maturity of software technologies. Modern
ECUs are becoming capable of processing and controlling several
functions simultaneously. Additionally, innovative communication
technologies like Ethernet, FlexRay, and CAN FD offer higher
bandwidth, lower latency, and more flexibility and security.
These developments have led researchers to gradually propose
centralised architectures in the automotive industry, such as
domain-based and zone-based architectures (Ondrej Burkacky
and Apostu, 2019). Figure 1 presents an exemplary illustration of
the ongoing trend towards centralising the E/E automotive
architecture.

In the domain-based architecture, the central gateway and its
controller are maintained, while the vehicle system is divided into
four primary domains: Body and Cabin, Infotainment, Vehicle
Motion and Safety, and Powertrain (Stolz et al., 2010). Each
domain contains one or two high-performance multicore
controllers called Domain Control Units (DCUs), as well as
several sub-domain ECUs responsible for handling light tasks
within each domain (Bandur et al., 2021). Furthermore, GPUs
are becoming increasingly crucial for executive computationally
intensive tasks such as deep learning algorithms for perception
and prediction. Domain-based architecture is gradually replacing
distributed architecture in the mainstream industry. Major OEMs
like Audi (Times, 2016) and BMW (Tuohy et al., 2014), along with
suppliers like Nvidia, TI and NXP (Research andMarkets, 2022), are

developing and commercialising their solutions based on the
domain-based architecture.

In a zone-based architecture, the vehicle is divided into four
zones determined by the physical layout of the chassis rather than
by the functional domain. This architectural shift allows for the
decoupling of hardware from software, meaning that ECUs are no
longer dedicated to specific functions or domains. Instead,
functions are treated as services, facilitating the implementation
of a Service-Oriented Architecture (SOA), where functions can be
dynamically called as needed (Vetter et al., 2020). An ECU known
as the Zone Control Unit (ZCU) is responsible for managing the
data flow and processing the functions within its respective zone.
Additionally, a GPU combined with a high-performance central
ECU creates a powerful central platform to meet the requirements
of ADAS. The automotive industry has recently been keenly
interested in the shift towards zone-based solutions. JLR has
announced a partnership with Nvidia (ROVER, 2022) to utilize
DRIVE Orin’s centralised AV processor to build its zone-based
architecture. Similarly, BMW has started creating an E/E
architecture based on a central computing platform for its next-
generation of vehicles (Traub et al., 2017). A zone-based
architecture offers several significant advantages, including
centralised control, reduced wiring complexity, fewer ECUs,
and enhanced compatibility with functions of different
dependencies. However, there are still two main limitations to
overcome before its widespread commercialisation, which are
detailed below:

• Resource Allocation: In distributed E/E architectures,
computational resources such as ECU and memory are
allocated to specific functions. With the shift towards
centralised architectures, more functions can be executed
onto a single high-performance multicore ECU.
Consequently, methods for managing and allocating
computational resources and scheduling tasks on the same
ECU become critically important.

• Consolidation: In a centralised architecture, multiple
functions are processed simultaneously on the same ECU,
a design that enhances system efficiency. However, issues
with one function may negatively impact other functions
running on the same ECU, leading to system failures. To
mitigate this risk, segregating functions running on the
same ECU becomes paramount in improving the
vehicle’s safety.

FIGURE 1
Serial evolution of the automotive E/E Architecture (from left to right). Distributed E/E architecture (left), Domain-based E/E architecture (middle),
and Zone-based or Centralised E/E architecture (right).

Frontiers in Future Transportation frontiersin.org03

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


As the following section explains, virtualisation appears to be a
promising technological solution for effectively addressing the above
limitations.

3 Virtualisation techniques for
automotive

Several innovative technologies like the SOA (Kugele et al.,
2017) and the AUTOSAR Adaptive (AUTOSAR, 2024a) have
been recently introduced by the automotive industry to improve
further the system flexibility and the ability to accept new features
(Navale et al., 2015). These functions and features may use different
operating systems, have various hardware dependencies, or be
supplied by different vendors. Therefore, it becomes important to
design an environment compatible with multiple operating systems
running on a shared hardware platform while being flexible enough
to incorporate new functionalities and features. Virtualisation
technology has been proposed as a promising solution to develop
such an environment (Kabir et al., 2021).

Virtualisation technology was developed as an abstraction layer
to allow functions with various system dependencies to
simultaneously access computing resources like processors,
peripheral I/O, and memory. Traditionally, the virtualisation
layer contains three major components: Virtual Machines (VMs),
the Virtual Machine Manager/Monitor (VMM), also known as the
hypervisor, and the hardware resources they manage, as illustrated
in Figure 2 (Kleidermacher, 2013). Within this architecture, a VM
operates as a sandbox, providing an isolated operating environment
independent of other VMs. A VM can process tasks or emulate a
hardware’s behaviour, such as handling sensor data or managing
communication networks, depending on the hardware to which
virtualisation is applied. The VMM oversees allocating and
separating resources, such as memory, to ensure that each VM
receives sufficient resources. Finally, a Memory Management Unit
(MMU) is required to support the translation between the virtual

memory and the physical memory so that a VM can access the
hardware through the VMM without directly interacting with the
hardware itself, enhancing both isolation and security
(Sriramakrishnan et al., 2022).

While the concept of virtualisation remains consistent across
various application scenarios, such as personal computing, servers
and automotive, the application of virtualisation in automotive must
be optimised to meet stringent safety and real-time performance
requirements. The rest of this section discusses the application of
virtualisation in four key areas of vehicle architecture design:
Resource allocation, AUTOSAR, communication networks and
input/output (I/O) interfaces.

3.1 Virtualisation for resource allocation

Computational resources in vehicles include hardware
components such as memory, cache, processor cores, and the
ECU, all essential for processing various vehicle functions. With
the rapid advancement and increasing complexity of vehicular
functions, managing these computational resources has become a
significant challenge. This section reviews the SOTA research on
how virtualisation can be utilised for effective resource allocation
within multicore ECUs, including support for real-time automotive
services and the AUTOSAR standard.

3.1.1 Background
At a time when ECUs are predominantly single-core, a

requirement to accommodate an increasing number of vehicle
functions is to increase the number of ECUs. While this approach
addresses the immediate need for additional computing capacity, it
also adds complexity to the E/E architecture and makes it
challenging to coordinate the allocation of computing resources
among different functions. Failure to do so may result in inefficient
utilisation of computing resources or even lead to system failures.
To tackle this issue, the authors in (Macher et al., 2015) review the
operating systems used in the automotive domain and discuss the
migration from single-core to multicore ECU processors as a way
to reduce the number of ECUs by allowing different functions to
run over multicore ECU. They also highlight the potential of using
cloud computing as a viable solution to offload part of the
computations and reduce the computational load within
the vehicle.

While multicore ECUs offer the advantage of integrating more
functions into a single unit and executing more than one function
simultaneously, they also introduce new challenges. Due to the
restrictions posed by safety standards, the coordination policy of
computing resources must ensure that the vehicle functions can
always access sufficient resources to meet their latency and safety
requirements. Researchers have investigated the optimisation of task
scheduling under multicore ECUs to reduce the hardware cost,
improve the runtime performance and decrease the latency between
different tasks (Kampmann et al., 2022; Vasu and Ramaprasad,
2020; Maticu et al., 2016; Monot et al., 2012). However, their
scheduling algorithms run within a single operating environment,
which poses a limitation since vehicle functions can be provided
by different suppliers or belong to different domains, such as driving
or entertainment, and potentially use different operational

FIGURE 2
Overview of virtualisation architecture.

Frontiers in Future Transportation frontiersin.org04

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


environments. Virtualisation can help address this challenge as
explained next.

3.1.2 Virtualisation with multicore ECU
As illustrated in Figure 3 the VMM can create several VMs, up to

the number of ECU cores available. Each VM becomes an
independent, isolated system, enabling developers to deploy
functions, possibly using different operating systems, on the same
multicore ECU. Moreover, each VM can have a dedicated task
scheduler for its use case, for example, real-time or non-real-time.
This architecture enables parallel computing, where multiple VMs
can run concurrently on the same multicore ECU, enhancing the
efficiency of hardware utilisation. For example, the authors in
(Savithry et al., 2019) have built a partitioning model based on
virtualisation to determine and isolate the tasks with different
critical levels inside the ADAS. They proposed a real-time
algorithm called Criticality-Aware Scheduling, which allows high-
priority tasks to receive sufficient resources without interference
from low-priority tasks. As a result, the runtime performance of
tasks with different priority levels on the same multicore ECUs can
be improved.

The study (Savithry et al., 2019) focuses primarily on task
requirements and execution. However, the optimisation of task
scheduling remains limited by the capabilities of the ECU and its
peripheral computing resources, such as the cache. Therefore, it is
essential not only to provide an optimised scheduling algorithm but
also to design a comprehensive system that accounts for the available
computing resources. This becomes especially important when the
computing resources are accessed simultaneously by multiple VMs.
As a result, developing an effective interface for managing, isolating,
and allocating these resources becomes vital. In this direction, the
study in Xu et al. (2019) introduces an innovative method known as
vC2M, designed to enhance both task scheduling and memory
allocation management. This method focuses on shared memory
allocation and isolation by integrating memory bandwidth control
and cache partitioning. By dividing each task into a virtual CPU
synchronized by vC2M, this approach facilitates better isolation of
concurrent computing tasks, addressing the challenges of memory
allocation and task scheduling in the context of centralized
automotive architectures.

However, a highly integrated multicore ECU often contains
functions at different levels of criticality and in various operating
environments, such as AUTOSAR and entertainment systems. Due
to the vehicle safety standard ISO 26262, it is necessary to guarantee
the isolation between functions with distinct ASIL (Automotive

Safety Integrity Level) and ensure that the safety functions get
priority in using computing resources.

3.1.3 Real-time virtualisation
There are two primary types of virtualisation based on how they

handle time sensitivity: real-time and non-real-time. Real-time
virtualisation is designed to exhibit deterministic behaviour with
predictable response times to meet stringent timing requirements.
Virtualisation platforms, such as Xen, usually contain several
“domains” with different levels of authority over computing
resources. Domain0 is the privileged domain responsible for
managing VM creation, destruction, and hardware access. It is
the first VM to be started when building the virtualisation
environment and usually runs the management tools and VMM.
In contrast, DomainU refers to the unprivileged domains that host
normal VM instances. These domains are managed by Domain0 and
do not have direct access to the hardware. Based on the Earliest
Deadline First (EDF) principle, the authors in Masrur et al. (2010)
proposed a specialised domain known as domRT that focuses on
real-time tasks to improve their response time and prevent them
from exceeding their worst-case execution time (WCET). A new
scheduler called PSEDF (Priority-Based Scheduling plus EDF) is
introduced to determine whether a task should be handled by
domRT, depending on its priority.

Finally, the authors in Rajan et al. (2018) tested and compared
various commercial virtualisation systems compatible with
automotive environments and described their pros and cons in
different applications, such as core allocation and I/O interfaces. The
authors pointed out that the VMM, as an intermediate layer, will
increase the overhead of the overall operating system and slow down
processes such as runtime and access to shared resources.
Paravirtualisation has been proposed recently to mitigate this
issue and will be discussed in Section 4.

3.1.4 AUTOSAR
AUTOSAR (AUTomotive Open System ARchitecture) is an

embedded system standard developed to manage and abstract
hardware platforms by providing application programming
interfaces (APIs) that enable access to hardware resources and
system services. Founded in 2003 through a partnership among
automotive industry manufacturers, AUTOSAR currently includes

FIGURE 3
An illustration of virtualisation within a multicore ECU.

FIGURE 4
An illustration of the high-level architecture of AUTOSAR.

Frontiers in Future Transportation frontiersin.org05

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


362 member companies (AUTOSAR, 2024b). It is now the
mainstream development standard for in-vehicle architecture,
providing a framework to develop modular, scalable, and
interoperable automotive software (AUTOSAR, 2024b).

AUTOSAR consists of three main layers: The application layer,
the Runtime Environment (RTE), and the Base Software (BSW)
layers, as shown in Figure 4. The application layer contains the
applications that rely on the AUTOSAR framework and are
usually customised by the vehicle manufacturer. RTE acts as the
communication layer between the application and the BSW layers,
providing a uniform and standardised interface to communicate with
hardware components such as sensors and ECUs through the
abstraction layer. Thus, the RTE layer facilitates modular design,
making migrating applications to different hardware platforms easier.
Finally, the BSW layer is the functional combination of several layers,
as illustrated in Figure 5, which include:

• Service layer: It defines the abstraction interfaces of the service,
including the embedded system functions and the interface of
the peripheral I/O devices.

• ECU abstraction layer: It provides a uniform standard to the
service and application layers to access the ECU and its
peripherals. It also communicates application requests,
memory access, and separation to the suitable ECU.

• Microcontroller abstraction layer: It contains device drivers to
ensure compatibility of several hardware components,
providing a solid embedded layer for the architecture.

With AUTOSAR, OEMs can easily migrate their functional
designs across multiple hardware platforms without requiring
significant redesign efforts or considering compatibility aspects,
as long as the hardware is on the AUTOSAR support list.
However, multiple hardware suppliers in the market may lead to
potential compatibility issues. For instance, when an ECU is not
AUTOSAR-compatible, migrating and running functions already
designed for AUTOSAR can be problematic (Becker et al., 2015b). In
such cases, virtualisation can offer a viable solution by enabling the
operation of heterogeneous operating environments on the same
hardware platform. Recall that in a full virtualisation environment,
the commands from guest operating systems do not directly
communicate with hardware. It is the role of the VMM to
translate and direct them to the hardware.

In the multicore ECU architecture shown in Figure 6, multiple
operating environments, including AUTOSAR and Linux, run on
the same ECU using virtualisation. However, as pointed out by the
authors in Evripidou (2016), AUTOSAR has shortcomings in
separating applications of different criticality levels, which could
potentially lead to the violation of the Freedom From Interference
(FFI) requirement, as defined by the ISO26262 standard. To address
this issue, the authors leverage the isolation functionality provided
by the VMM and propose a novel design method that can efficiently
account for applications of different safety levels. According to that,
a separate VM within the ECU helps improve the ability to identify
and manage mixed-critical applications. By isolating tasks based on
their criticality levels, the model ensures that the critical tasks do not
exceed their WCET, preventing them from negatively impacting the
execution of the subsequent tasks.

The authors in Mounir et al. (2019) demonstrate the
implementation of AUTOSAR and Linux on the same multicore
ECU and assess the ECU performance to ensure that the latency of
safety-critical applications meets the vehicle safety standards. They
propose using VirIO to guarantee further temporal and spatial
separation between VMs. Similarly, the authors in Reinhardt and
Morgan (2014) evaluate the performance of multicore ECU running
multiple operating systems, including AUTOSAR, based on the full
virtualisation and paravirtualisation technologies. They point out
that while paravirtualised systems reduce communication overheads
between the hardware and the operating system by bypassing certain
management layers, such as the VMM, they suffer from key
drawbacks compared to virtualised systems. Specifically,
paravirtualisation lacks isolation between the modified operating
systems and requires better hardware compatibility.

3.2 Virtualisation for I/O interfaces

In a centralised E/E architecture, a great deal of computing
resources and functions are integrated into the hardware platform,
including connections to peripheral devices and I/O interfaces.
Vehicle functions often need to request data from peripheral
devices like onboard sensors. However, a peripheral device can
typically serve only one function at a time, which is inefficient
and can raise safety concerns. For instance, if a function crushes and
holds control of the device indefinitely, it could prevent other critical

FIGURE 5
An illustration of AUTOSAR modules with a detailed Base
Software (BSW) layer description.

FIGURE 6
An illustration of AUTOSAR with virtualisation.

Frontiers in Future Transportation frontiersin.org06

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


functions from accessing the device, compromising the overall
system’s operation and safety. Virtualisation can address this
issue by creating multiple virtual devices that simulate the
behaviour of the physical peripheral device, allowing multiple
vehicle functions to share an I/O interface simultaneously.
Furthermore, virtualisation can enhance the system’s robustness
through isolation mechanisms that maintain independent
communication channels between VMs and virtual devices.
These isolated channels prevent data collisions and ensure that a
malfunction of one function does not affect others. This approach
not only improves the utilisation of peripheral devices but also
boosts the safety and reliability of the AV.

There are three approaches for I/O virtualisation (Sundar Rajan
and Nirmala Devi, 2021): 1) Direct access to the peripheral device
through a Peripheral Component Interconnect Express (PCIe)
tunnel (Architecture Specification, 2023). Instead of utilising the
VMM as an intermediate layer, direct connection with the
peripheral device increases the data transfer rate and reduces the
system’s overhead. However, only one VM can access the physical
device at a time. As a result, this mode of operation could be the root
cause of severe latencies and data collisions when multiple VMs
request the same device simultaneously. 2) Trap-emulation is
another access mode from a VM to the physical peripheral
device (Sugerman et al., 2001). Once a privilege instruction
(i.e., an instruction that can only be processed by the kernel)
arrives in the VMM, a trap will be raised and a handler will
interpose the procedure. Based on the instruction, the VMM will
emulate the behaviour of the peripheral devices (Varanasi and
Heiser, 2011). The trap-emulation mode ensures isolation and
prevents collisions when multiple functions request the same
peripheral device simultaneously, but it also increases the
execution time. A schematic comparison between Direct and
Trap-Emulation approaches is shown in Figure 7. 3) Single-Root
I/O Virtualisation (SR-IOV). The direct connection and the trap-
emulation approaches are not fully virtualised solutions. The trap-
emulation approach introduces significant overheads, while the
direct-access mode is limited by the number of connected
components that can connect simultaneously to the device. To
overcome these limitations, hardware-based I/O virtualisation
(also known as hardware-assisted virtualisation) has been
proposed (Challa, 2012). According to it, the peripheral device is
divided into several virtual devices that emulate the device
behaviour, allowing heterogeneous functions to access the same
I/O device simultaneously without involving the VMM. Building on
the direct access mode and the PCIe, the SR-IOV shown in Figure 8

has been proposed to improve system management and achieve
higher data transfer rates between VMs and virtual devices (or
virtual functions). The SR-IOV contains Physical Functions (PF)
and Virtual Functions (VF) as two modes of system management
(Muench et al., 2013). The PF is a physical device found as a PCIe
device, which the system can directly manage or modify. The VF is a
virtualised partition that is managed by a PF. The number of VFs
that can be created depends on the configuration of the I/O interface.

To compare I/O virtualisation approaches, the trap-emulate
approach for I/O virtualisation will add 26.77% computational
overhead compared to the non-virtualised I/O interface and SR-
IOV can reduce this overhead to 1.76% (Dong et al., 2012).
Moreover, compared to the trap-simulation approach, SR-IOV
reduces the communication latency by 40% for small messages
(1 KB) and by 12%–16% for large messages (4 MB) according to
Lockwood et al. (2014). However, SR-IOV requires support from
I/O devices, which is a major issue in the current development of the
vehicle. Nevertheless, the core motivation for implementing SR-IOV
is to leverage a single or a small number of ECUs to consolidate
different domains to achieve functional isolation, security
compliance, efficient resource reuse, and rapid evolutionary
development. Even though there exist several limitations, SR-IOV
is an important tool for in-vehicle systems to move towards a
software-defined vehicle.

Isolation is the key feature of I/O interface virtualisation to
prevent data collisions when multiple functions attempt to access
the same peripheral device simultaneously. Traditionally, the MMU
is responsible for translating virtual addresses accessed by the user
into physical addresses for the CPU to access. Furthermore, the
MMUmanages the memory partition and control of access rights to
the virtual addresses to facilitate the management of access rights

FIGURE 7
Schematic comparison between the Direct and Trap-emulation
approaches for I/O interface virtualisation. (A) Direct Access and (B)
Trap-emulation.

FIGURE 8
Schematic diagram of the Single-Root I/O Virtualisation
(SR-IOV).

FIGURE 9
The role of I/OMemoryManagement Unit (IOMMU) in translating
the virtual address requested by the peripheral device to the
physical address.

Frontiers in Future Transportation frontiersin.org07

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


and the scope of user programs. Similarly, the I/O Memory
Management Unit (IOMMU), shown in Figure 9, provides and
enhances the support for the direct memory access (DMA) of the
peripheral device. Specifically, the IOMMU remaps the device’s
DMA requests so that the VM accesses the virtual device’s allocated
memory instead of the physical device memory. This enables device-
level memory isolation, ensuring that each VM can only access its
allocated memory space, enhancing isolation between VMs and
between the VMs and the physical device. The authors in Jiang et al.
(2019) present a system solution for on-board real-time I/O
virtualization. They utilize a virtualized I/O management
interface called Blue I/O. It allows new peripheral devices to
easily connect to this virtualized I/O interface, thus enhancing
scalability. A built-in memory management module called
BlueTree enables DMA-based functionality. Moreover, the
IOMMU translates the virtual address requested by the
peripheral device to the physical address using the translation
table and directs the request to the dedicated physical address.
The translation table contains several levels, and each level
includes the partial virtual address corresponding to the next
dedicated index in the page table; normally, the page table
includes three to five levels. Therefore, it requires the IOMMU to
access the table in the memory multiple times to obtain the final
physical address. To address this issue, a Translation Lookaside
Buffer (TLB) has been proposed. The TLB is a cache to store the
translation tables, which are frequently accessed by VMs to translate
from virtual addresses to physical addresses. The IOMMU will
receive the request from the TLB and find whether it hits the
map in the cache without entering the page table. The authors in
Sriramakrishnan et al. (2022) point out that this method cannot
handle large volumes of real-time data from devices like cameras.
Therefore, they propose a combined architecture that provides two
parallel paths for real-time and non-real-time peripherals, based on
a Peripheral virtualisation Unit that flexibly maps and segregates
different types of data paths. Physical Address Translation Tables
contain one table for large data paths and an alternative table
specifically designed to deal with small data to avoid wasting
computational resources.

3.3 Virtualisation of communication
networks

In-vehicle data networks serve as the communication highway
of modern vehicles and play an essential role in achieving vital
functions such as electro-mechanical passenger/driving assistance,
body functions, and other features such as infotainment etc. They
are used to transmit digital data between two or more
communication nodes, such as ECUs and sensors. There are
various in-vehicle communication technologies available in the
market, such as CAN, FlexRay, LIN, and Ethernet, as well as
emerging technologies, such as CANFD and new variants of
Ethernet-based systems (Zeng et al., 2016).

In a distributed E/E architecture, multiple communication
controllers are employed to coordinate the transmission of data
streams of potentially different safety levels. These controllers may
use different policies to support secure and reliable data exchange
across multiple communication channels. However, as explained in

Section 2, this results in a complicated and power-hungry
communication network with wiring lengths often exceeding
4 km (Auzanneau, 2013). In contrast, a centralised E/E
architecture typically features a single multicore ECU and one
communication controller to support data exchange between the
ECU and other devices via a single communication bus. As a result,
while centralisation reduces wiring complexity, it may lead to data
collisions and increased latency of critical functions, thereby
jeopardising compliance with safety standards such as ISO 26262.

To mitigate the safety risks in a centralised architecture, it is
crucial to minimise the inter-dependencies and interactions between
functions of mixed-criticality. For example, within a multicore ECU,
the communication controller should prioritise data transmissions
related to safety-critical functions, as these are vital for the stable
operation of the vehicle. In this context, virtualisation emerges as a
powerful technical solution. By isolating different functions,
virtualization enables them to operate independently while they
can simultaneously access shared resources, such as the
communication controller. This isolation ensures that safety-
critical tasks can maintain their priority and are not delayed or
interrupted by less critical functions, thus enhancing both safety
and efficiency.

3.3.1 CAN virtualisation
The Controller Area Network (CAN) is a multi-master bus

communication system developed by BOSCH in 1986, which
remains the mainstream bus communication technology in the
automotive industry. Unlike a master-slave communication
system, the CAN bus operates as a protocol controller that allows
each node to communicate or broadcast its messages. In the idle
state, any node on the CAN bus can initiate a message transmission
and enter the writing queue. To determine message priorities and
resolve conflicts, there is an arbitration segment in the first bit of the
message of each function, with smaller values indicating
higher priority.

In a centralized architecture, multiple VMs running mixed-
criticality functions on the same multicore ECU, accessing the CAN
bus and a single CAN bus controller in parallel, can pose challenges
in a virtualized environment. A schedulingmechanism is required to
avoid the collisions of messages generated by VMs that share the
same physical CAN bus controller. To address this issue, the authors
in Herber et al. (2013) proposed the virtualised CAN controller
shown in Figure 10 based on the SR-IOV mechanism discussed in
Section 3.2. They implemented various VMs as virtual CAN
controllers to process requests from dedicated VMs running on
multicore ECUs. Each virtual CAN controller is guaranteed access to
independent resources, such as memory, to send and receive
messages. Messages need to be buffered in case the CAN bus is
occupied by another VM, preventing immediate access.
Consequently, a dedicated buffer is required for each virtual
controller to prevent system failure in the event of a VM
malfunction. The virtualised CAN controller also includes the
following virtual modules to ensure further isolation and safety
while transferring data from the VMs to the CAN bus:

• Host Controller Interface: It coordinates data flow, ensuring
that data from each VM can be correctly transferred to the
corresponding Virtual Controller. It also receives and

Frontiers in Future Transportation frontiersin.org08

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


processes commands from Virtual Controllers to ensure that
these commands are correctly executed.

• Buffer control: This module manages the storage and
scheduling of packets to ensure they do not interfere with
each other while forwarding them to the CAN bus.

• Read protection: This module prevents unauthorized VMs
from accessing other VMs’ data, ensuring data security.

• Arbitration: It is a control mechanism that selects the
messages with the highest priority when receiving the
sending request from the VMs.

Virtualisation allows multiple VMs to emulate the behaviour of
the CAN controller and share the same physical CAN controller.
This resource sharing reduces the need for multiple physical CAN
controllers, cutting down hardware costs. Each VM with various
operating systems or environments can independently access CAN
bus resources through a virtual CAN controller. This flexibility
makes it easier to expand and upgrade the system, simplifying the
addition of new functionalities. Moreover, virtualisation provides
isolation mechanisms that make the operations and data generated
by a VM independent of others. This isolation improves system
security and stability by preventing errors or malicious behaviour in
one VM from interfering with the operation of other VMs. In
Herber et al. (2014a), exploring potential safety issues related to
virtualised CAN controllers, explicitly focusing on Denial-of-Service
(DoS) attacks. For example, such an attack can manipulate a VM to
send message requests to the physical CAN controller at an
unexpectedly high rate, preventing other VMs from maintaining
real-time communication. To address this issue, the authors
proposed a scheduling approach based on temporal isolation,

which minimises the time between when a VM preempts the
CAN bus and when it releases control. This approach aims to
mitigate the risk of one VM overwhelming the CAN controller,
even in the event of a potential attack.

The authors further developed their work in Herber et al. (2015)
compare the paravirtualisation approach with hardware-assisted
virtualisation applied to CAN controller virtualisation schemes.
They point out that hardware-assisted virtualisation can achieve
lower latency than paravirtualisation. However, since CAN
controllers do not support hardware-assisted virtualisation, there
is still a long way to go before they are commercially available on
automotive platforms.

Instead of virtualising the CAN controller, the study in Herber
et al. (2014b) introduces a novel approach called Virtual CAN
(VCAN) that focuses on time-based isolation of multiple
simultaneous communications on the same physical bus. Their
method virtualises the physical CAN bus into multiple
independent VCAN instances, with each instance allocated its
own resources, time slices and bandwidth. The authors suggest
dividing the time of the physical CAN bus into multiple time
slices using Time Division Multiplexing, a multiplexing
technology commonly applied in wireless communication
systems. Each VCAN is granted exclusive access to the physical
bus during its designated time window, ensuring that mission-
critical tasks can transfer data on time in time-sensitive
situations. Additionally, the VCAN system utilises a token bucket
mechanism to prevent any single VCAN instance from continuously
dominating the bus, as well as a traffic shaping mechanism to ensure
that the transmission rate for each VCAN instance does not exceed
its assigned bandwidth limit. The proposed approach not only

FIGURE 10
The architecture of the CAN Controller leveraging self-virtualisation according to (Herber et al., 2013).

Frontiers in Future Transportation frontiersin.org09

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


ensures that network bandwidth can be dynamically allocated to
mixed-criticality functions but also enhances isolation between
functions with different security levels. This is particularly crucial
in a centralized E/E architecture, where mixed-criticality functions
share the same ECU and communication data bus. However, as the
number of virtual CAN channels (vCANs) increases—especially
beyond five—additional latency arises, potentially causing missed
runtime deadlines. Moreover, this approach requires adding an extra
module to the existing CAN controller, which in turn necessitates
additional procedures to demonstrate compliance with the ISO
26262 safety standard.

Ethernet has higher bandwidth than traditional in-vehicle buses,
such as CAN, to meet modern vehicles’ data transfer rate demands,
especially when dealing with applications like high-definition
cameras and ADAS. Moreover, Ethernet supports a wide range
of communication protocols like Time-Sensitive Networking (TSN)
based on IEEE 802.1, allowing it to flexibly adapt to different types of
data transmission requirements while being easily expandable to
accommodate future technological developments. Therefore, the
industry is gradually adopting Ethernet to vehicle communication
networks. In Reinhardt et al. (2015), the authors discussed the
migration approach of mapping the CAN network to the
Ethernet and allowing the virtual ECUs with the Ethernet
protocol to connect with the current CAN interface. They utilize
the CANnelloni software bridging tool, and CAN signals are
aggregated into a single Ethernet frame and transmitted between
VMs via the User Datagram Protocol (UDP). A buffer has been set
to store the incoming CAN frame and will be transferred once the
buffer size meets the Maximum Transmission Unit (MTU) of the
Ethernet. Furthermore, the authors define the scheduling policy and
CAN frame order for transmission from VMs to the Ethernet
interface. However, the evaluation process does not account for
real-time performance, particularly concerning mixed-criticality
functions—a crucial consideration for time-sensitive systems like
those found in automotive applications. Furthermore, although
industry standards like Time-Sensitive Networking (TSN) have
been established to ensure Ethernet performance and security in
real-time contexts, automotive systems often combine multiple
communication network types and varying switch protocol
configurations, posing significant challenges in centralised
architectures. Therefore, Software-Defined Network has been
proposed as a solution which we will discuss in Section 3.3.

Before requirement concluding this section, it shall 4.3 be noted
that besides in-vehicle communication networks, vehicles can also
connect over the air to external systems such as the cloud, other road
users, and roadside infrastructures using a Vehicle-to-everything
(V2X) communication technology such as ITS-G5 or C-V2X. A
review of virtualisation techniques of the radio air interface of V2X
communication technologies does not fall in the scope of this
review article.

4 Identification of research gaps

Following the literature review of SOTA research in automotive
virtualisation technologies, we identify promising areas for future
work. Our investigation is informed by exploring virtualisation
technologies successfully applied in other relevant domains, such

as servers and desktop applications, and assessing their potential
adaptation in automotive. Specifically, key areas for research and
development in automotive virtualisation include cache
partitioning, paravirtualisation technologies, software-defined
networking for in-vehicle communication networks, and the use
of digital twins for prototyping.

4.1 Resource allocation

We have discussed in Section 3.1 how virtualisation can be used
to increase the flexibility and efficiency of allocating computing
resources to various automotive functions within multicore ECU
environments. However, shared resources may also include ECU
caches, which can be contested by multiple VMs simultaneously.
Specifically, when multiple concurrent running tasks request the
memory from the same cache set, they may interfere with each other
and cause the cache miss, as we mentioned in Section 3.2, which will
lead to a significant performance overhead and a possibility to miss
the task’s running deadline. Cache partitioning techniques
leveraging isolated virtualised partitions have been investigated
for desktop applications in Sheikh and Pasha (2021), Gifford
et al. (2021), Sohal et al. (2022), but their methods are not
optimised for the real-time system like software inside
automotive. Furthermore, the existing research for automotive
applications is limited, including, to the best of our knowledge,
only the following two references. Firstly, the study in Xu et al.
(2017) introduces dynamic cache allocation under the strict timing-
sensitive real-time system. This approach separates the
correspondence between the ECU cores and the cache and is
reassigned to the dedicated VMs dynamically by the VMM based
on the timing requirements. It provides a better isolation strategy
between mix-critical or real and non-real tasks, which is extremely
well suited to the operating environment required by vehicles
(i.e., vehicle entertainment system and driving system). Secondly,
the study in Vasu and Ramaprasad (2020) proposes a method for
mapping AUTOSAR tasks to multicore ECUs by building a model
that considers cache usage. We believe that shared cache access in
automotive virtualised environments is an important research area
to pursue. A well-managed sharing mechanism for the cache will
prevent the ECU from reading data frequently from memory, and
that can reduce up to seven times the task’s execution time (Xu
et al., 2017).

Furthermore, recall from Section 3.1 that the VMM can
compromise the real-time communication performance between
the operating system and the hardware. Therefore,
paravirtualisation has been introduced as a light-optimised
virtualisation layer based on the full-virtualisation technology, see
Figure 11. Paravirtualisation modifies the operating system by adding
a dedicated API to optimise the commands issued by the operating
system and sent to the VMM (Babu et al., 2014). Table 1 shows the
comparison between paravirtualsation and full-virtualisation.
Compared to a system without virtualisation, the performance
overhead of paravirtualisation is only up to 4% (Li et al., 2017).
Therefore, researchers and engineers have gradually applied this
innovative technology within the vehicle software architecture.

Recent research on this topic has focused on in-vehicle
infotainment, including (Karthik et al., 2018; Sinha et al., 2020).

Frontiers in Future Transportation frontiersin.org10

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


By modifying the system kernel to make it suitable for real-time
applications, the authors propose a paravirtualisation-based solution
that allows systems like Android, which are not specifically designed
for automotive, to be compatible with and communicate with
virtualised real-time systems. This approach reduces the overhead
caused by multi-layer virtualisation architectures and provides an
intuitive interface for users to monitor the status of the vehicle’s real-
time functions. Furthermore, it hides the hardware device driver
information from the operating system, thereby enhancing vehicle
security. However, customising the system kernel and API
functionality when updating the hardware platform—especially
when transitioning to a fully virtualised platform—sometimes
requires rewriting significant portions of the code, as each
paravirtualisation implementation has a dedicated driver for
compatibility with the VMM. Moreover, paravirtualisation requires
developers to modify the system before using the VMM, which leads
to increased development costs. These shortcomings indicate there’s
still a long way forward before the widespread commercial adoption of
paravirtualisation technologies, which is a promising area for
further research.

4.2 Software-defined networking

To achieve the vision of fully autonomous driving, various
hardware components need massive upgrades and growth.

Specialised hardware devices may come from different
manufacturers with private communication and network control
protocols (Kreutz et al., 2014). Therefore, automotive manufacturers
are required to statically define and connect multiple hardware
platforms with dedicated protocols during the development stage.
Moreover, multiple types of communication data buses, such as
CAN, LIN and Ethernet, exist in modern vehicles. This distributed
architecture increases the complexity of the communication
network system and prevents the introduction of new hardware
after the vehicle design phase is complete. Thus, Software Defined
Networking (SDN) has been proposed as an alternative software-
based solution to make communication networks more flexible and
centralised.

According to the Open Networking Foundation, SDN separates
the control from the data plane in the distributed architecture and
uses an SDN controller to manage the different types of
communication networks (Ope, 2024). The data plane broadcasts
and forwards data required by various functions or applications. It
consists of devices like network protocol routers or switches, which
are the connecting layers between the SDN controller and the
network. SDN abstracts the architecture of the communication
network into programmable APIs and centralises the network
control into one flexible and programmable interface that resides
within the SDN controller. This approach decouples the hardware
from software development and reduces costs in the early
design stages.

FIGURE 11
An illustration of multicore ECU with paravirtualisation applied in one of the cores.

TABLE 1 Comparison of Paravirtualisation vs. Full Virtualisation.

Paravirtualisation Full virtualisation

Setup Requires modification of the Guest OS to utilize paravirtualisation No modification is needed in the Guest OS. The VMM provides a fully
emulated hardware interface

Performance
overhead

Lower overhead compared to full virtualization because fewer instructions
need to be trapped/emulated

Higher overhead due to full hardware emulation

Hardware
emulation

Partial or minimal; the VMM exposes simplified or paravirtualized drivers/
devices

Extensive; the VMM emulates full hardware devices

Compatibility Guest OS must support paravirtualisation Broad compatibility; virtually any unmodified OS that runs on the
underlying ECU architecture can be installed

Examples Xen PV, VMware Paravirtual VMware

Frontiers in Future Transportation frontiersin.org11

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


In the automotive domain, the authors in Halba and Mahmoudi
(2018) have utilised SDN to enable interoperability between
different communication networks within the vehicle. In (Hackel
et al., 2019; Haeberle et al., 2020), the time-sensitive networking
(TSN) is integrated within the SDN architecture to improve the
performance of the vehicle’s real-time system. The authors define
the data flow and the data traffic control between the SDN controller
and the network under the requirements of the TSN standard.
Moreover, the study in Mariño et al. (2022) reviews the current
in-vehicle networks and points out that SDN can play a fundamental
role in developing software-defined vehicles.

Using virtualisation, several virtual SDN (vSDN) controllers can
be established. A virtual controller consists of communication
network virtualisation, a virtual data switch for forwarding data
to the destination network, and a VMM for isolation between
different vSDN controllers (Blenk et al., 2015). The vSDN
controller allows multiple clients to share the same SDN
controller. This sharing scheme improves network efficiency and
isolation between multiple dependencies. In the automotive domain,
current research on SDN and vSDN focuses on the wireless V2X and
5G communication aspects (Liu et al., 2019), while the existing
literature on the application of vSDN within the in-vehicle
communication network is limited.

4.3 Prototyping

Virtualisation not only improves the efficiency of in-vehicle
hardware and software architectures but can also benefit the
functions development phase of the vehicle. Traditionally, the
Software Development Life-Cycle (SDLC)-V model is used to
guide the vehicle functions development process (Goyal and
Mistry, 2020). This model details and expands the milestones for
each development stage, linking the prototyping and validation
phases, as shown in Figure 12. Sometimes, compatibility issues
between hardware and software, as well as errors not foreseen

during the simulation and software development phases, are only
discovered during testing, e.g., during the field trials every
automaker must conduct. Unfortunately, when these issues arise,
the redesign cost can be substantial, especially for vehicle functions
related to hardware coordination. Virtualisation can offer a potential
solution to this problem by abstracting hardware devices.
Developers can use virtualised hardware to simulate how the
application will behave on the hardware, thus helping to identify
and mitigate problems before the physical hardware is involved.

Automotive functions are traditionally divided into multiple
domains according to the SDLC-V procedure, and each domain
involves various testing and integration hardware platforms,
incurring a high cost in embedded system development and a
lack of flexibility. Assisted by virtualisation technology, a virtual
ECU (vECU) model has been proposed to develop, test, and validate
automotive control software without relying on the actual hardware.
A vECU is implemented by simulating the ECU functionality on the
developer’s PC, which improves development efficiency and reduces
costs and reliance on the physical hardware. In Goyal and Mistry
(2020), the authors propose an improved SDLC-V model that
integrates the various functional development domains into a
single vECU test platform, reducing the dependence on hardware
during testing and optimising the development procedure in the
early stage. Furthermore, the authors in Franco et al. (2016)
demonstrate how developers can prototype and test according to
the AUTOSAR standard without actual hardware. They combine
tools such as dSPACE and MathWorks and emulate the
communication mechanisms by utilising the Virtual Functional Bus.

The references above focus mainly on vehicle hardware
components’ functional level and partial modelling. However, the
fact that the vehicle contains a multi-level hardware architecture,
where all connected hardware will interact with each other, is critical
in the early development stages. A systematic virtual model is
required to explore the system-level design and further improve
the compatibility and scalability of the peripherals and
communication buses as well. For this purpose, a technology
called digital twins has been proposed as a virtual model that can
simulate the system-level behaviour. It refers to the creation of an
accurate digital replica of a physical object or system, which not only
can be synchronized with the actual physical object but can also be
monitored, simulated, and optimised in real-time. The authors in
Kabir et al. (2023) propose a system-level model called ViVE based
on digital twins. They utilise vECUs as an interface to connect with
other virtual hardware components, which contain various virtual
models to prototype and emulate the behaviour of the physical
hardware components. The model supports developers in
configuring the specific virtual components and testing the
function flow, which includes the interaction between hardware
systems. Their model expands the testing view from a single
component towards the full system and supports extensibility
for future incoming use cases. Therefore, in Kabir and Ray
(2023), depending on the previous ViVE model, they further
propose a framework that allows developers to explore the
impact of vehicle component failure and detect potential safety
issues with functional designs during the prototyping phase.
Similarly, authors in Cinque et al. (2022) propose a fault
injection framework based on a VMM called “Jailhouse” that
can be used to test the isolation and integrity between each VM

FIGURE 12
An illustration of the Software Development Life-Cycle (SDLC)-
V model.

Frontiers in Future Transportation frontiersin.org12

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


and further test the vehicle functions running on the VMs for
compliance with the ISO 26262 standard.

5 Discussion and conclusion

This review article reviewed SOTA research (approximately
30 key studies) in automotive virtualisation technologies. As
depicted in Figure 13, most of the referenced studies were
published in the last decade, which coincides with the rise of AI
models and automated driving systems such as Tesla Autopilot, which
have benefited from advancements in Neural Process Units and
GPUs. The volume of published research in this field has reached
a plateau. Centralised automotive architectures and virtualisation are
not yet mainstream research topics, likely because the commercially
available ECUs are not yet capable of running several virtual machines

simultaneously. More importantly, current ECUs are not optimised
for virtualisation and this will cause compatibility issues. According to
a report by BOSCHSolutions B.M., (2023b), nearly 70% ofOEMs still
use a distributed architecture, and even by 2029, only up to 30% are
estimated to adopt fully centralised architectures. Constrained by the
current state of microprocessor technology, most ECUs can only
marginally meet the minimum requirements needed to support
virtualisation. Moreover, the existing E/E architecture is already
mature enough for OEMs to deploy and upgrade their
L2 autonomy functions and features without requiring immediate,
large-scale changes in the architecture. Additionally, while applying
virtualisation within the vehicle software architecture, the following
aspects must be considered to ensure the security of the in-vehicle
virtual environment: Real-Time Constraints, Certification &
Compliance, and Safety Mechanisms & Diagnostics (Bagalini et al.,
2017). This will increase the timing cost in the early development

FIGURE 13
Timeline of published research in automotive virtualisation technologies.

Frontiers in Future Transportation frontiersin.org13

Guo et al. 10.3389/ffutr.2025.1519390

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


stage, especially for the Certification & Compliance process.
Developers need to perform functional safety analyses of the
VMM and its configuration based on ISO 26262-compliant
analysis and testing tools like Failure Mode and Effects Analysis
(FMEA). These procedures will result in short-term cost increases.
Nevertheless, centralised architectures and virtualisation hold
significant potential for future software-defined vehicles.

Therefore, this survey article offers automotive stakeholders an
up-to-date overview of SOTA virtualisation techniques and their
associated benefits, including effective isolation of services of mixed-
criticality, seamless integration of vehicle functions developed by
different vendors, easier migration to new hardware platforms, and
the flexibility to add or remove vehicle functions. Furthermore, we
outline the most promising application areas of automotive
virtualisation in the near term. Specifically, we believe that
integrating paravirtualisation with resource allocation and the I/O
interface in the vehicle is a promising direction, as it could help
reduce the overhead that virtualisation brings.

Author contributions

ZG: Writing–original draft, Conceptualization, Investigation,
Methodology. KK: Methodology, Supervision, Writing–review
and editing. MD: Writing–review and editing. RW:
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

The authors are with WMG, University of Warwick. Mehrdad
Dianati also holds a part-time professorial post at the School of
Electronics, Electrical Engineering and Computer Science (EEECS),
Queen’s University of Belfast. e-mail: {zixuan.guo, konstantinos.koufos,
m.dianati, r.woodman}@warwick.ac.uk, m.dianati@qub.ac.uk.

Conflict of interest

The authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict
of interest.

Generative AI statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. To improve the use of English
language in some sentences.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Architecture Specification (2023). IntelÂ® virtualization technology for directed i/o
architecture specification

ASAM Association (2023). Available at: https://www.asam.net/index.php?eID=
dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
(Accessed June 22, 2023).

Askaripoor, H., Hashemi Farzaneh, M., and Knoll, A. (2022). E/e architecture
synthesis: Challenges and technologies. Electronics 11, 518. doi:10.3390/
electronics11040518

AUTOSAR (2024a). Autosar.

AUTOSAR (2024b). Autosar partners.

Auzanneau, F. (2013). Wire troubleshooting and diagnosis: review and perspectives.
Prog. Electromagn. Res. B 49, 253–279. doi:10.2528/pierb13020115

Babu, S. A., Hareesh, M., Martin, J. P., Cherian, S., and Sastri, Y. (2014). “System
performance evaluation of para virtualization, container virtualization, and full
virtualization using xen, openvz, and xenserver,” in 2014 fourth international
conference on advances in computing and communications (IEEE), 247–250.

Bagalini, E., Sini, J., Reorda, M. S., Violante, M., Klimesch, H., and Sarson, P. (2017).
“An automatic approach to perform the verification of hardware designs according to
the iso26262 functional safety standard,” in 2017 18th IEEE Latin American test
symposium (LATS) (IEEE), 1–6.

Bandur, V., Selim, G., Pantelic, V., and Lawford, M. (2021). Making the case for
centralized automotive e/e architectures. IEEE Trans. Veh. Technol. 70, 1230–1245.
doi:10.1109/tvt.2021.3054934

Becker, M., Dasari, D., Nã©lis, V., Behnam, M., Pinho, L. M., and Nolte, T. (2015b).
“Investigation on autosar-compliant solutions for many-core architectures,” in
2015 euromicro conference on digital system design, 95–103. doi:10.1109/DSD.2015.63

Becker, M., Dasari, D., Nélis, V., Behnam, M., Pinho, L. M., and Nolte, T. (2015a).
“Investigation on autosar-compliant solutions for many-core architectures,” in
2015 euromicro conference on digital system design (IEEE), 95–103.

Blenk, A., Basta, A., Reisslein, M., and Kellerer, W. (2015). Survey on network
virtualization hypervisors for software defined networking. IEEE Commun. Surv. and
Tutorials 18, 655–685. doi:10.1109/comst.2015.2489183

Brunner, S., Roder, J., Kucera, M., and Waas, T. (2017). “Automotive e/e-architecture
enhancements by usage of ethernet tsn,” in 2017 13th workshop on intelligent solutions
in embedded systems (WISES) (IEEE), 9–13.

Challa, N. R. (2012). “Hardware based i/o virtualization technologies for hypervisors,
configurations and advantages-a study,” in 2012 IEEE international conference on cloud
computing in emerging markets (CCEM) (IEEE), 1–5.

Cinque, M., De Simone, L., andMarchetta, A. (2022). “Certify the uncertified: towards
assessment of virtualization for mixed-criticality in the automotive domain,” in 2022
52nd annual IEEE/IFIP international conference on dependable systems and networks
workshops (DSN-W) (IEEE), 8–11.

Di Natale, M., and Sangiovanni-Vincentelli, A. L. (2010). Moving from federated to
integrated architectures in automotive: the role of standards, methods and tools. Proc.
IEEE 98, 603–620. doi:10.1109/jproc.2009.2039550

Dong, Y., Yang, X., Li, J., Liao, G., Tian, K., and Guan, H. (2012). High performance
network virtualization with sr-iov. J. Parallel Distributed Comput. 72, 1471–1480.
Communication Architectures for Scalable Systems. doi:10.1016/j.jpdc.2012.01.020

Evripidou, C. (2016). Scheduling for mixed-criticality hypervisor systems in the
automotive domain. University of York. Ph.D. thesis.

Franco, F. R., Neme, J. H., Santos, M.M., da Rosa, J. N. H., and Fabbro, I. M. D. (2016).
Workflow and toolchain for developing the automotive software according autosar
standard at a virtual-ecu, 869–875. doi:10.1109/ISIE.2016.7745004

Frontiers in Future Transportation frontiersin.org14

Guo et al. 10.3389/ffutr.2025.1519390

https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://www.asam.net/index.php?eID=dumpFile&t=f&f=798&token=148b5052945a466cacfe8f31c44eb22509d5aad1
https://doi.org/10.3390/electronics11040518
https://doi.org/10.3390/electronics11040518
https://doi.org/10.2528/pierb13020115
https://doi.org/10.1109/tvt.2021.3054934
https://doi.org/10.1109/DSD.2015.63
https://doi.org/10.1109/comst.2015.2489183
https://doi.org/10.1109/jproc.2009.2039550
https://doi.org/10.1016/j.jpdc.2012.01.020
https://doi.org/10.1109/ISIE.2016.7745004
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


Gifford, R., Gandhi, N., Phan, L. T. X., and Haeberlen, A. (2021). “Dna: dynamic
resource allocation for soft real-time multicore systems,” in 2021 IEEE 27th real-time
and embedded technology and applications symposium (RTAS) (IEEE), 196–209.

Goyal, R., and Mistry, P. (2020). Standard process for establishment of ECU
virtualization as integral part of automotive software development life-cycle. Tech.
Rep. doi:10.4271/2020-01-5007

Hackel, T., Meyer, P., Korf, F., and Schmidt, T. C. (2019). “Software-defined networks
supporting time-sensitive in-vehicular communication,” in 2019 IEEE 89th vehicular
technology conference (VTC2019-Spring) (IEEE), 1–5.

Haeberle, M., Heimgaertner, F., Loehr, H., Nayak, N., Grewe, D., Schildt, S., et al.
(2020). “Softwarization of automotive e/e architectures: A software-defined networking
approach,” in 2020 IEEE vehicular networking conference (VNC) (IEEE), 1–8.

Halba, K., and Mahmoudi, C. (2018). “In-vehicle software defined networking: an
enabler for data interoperability,” in Proceedings of the 2nd international conference on
information system and data mining, 93–97.

Herber, C., Reinhardt, D., Richter, A., and Herkersdorf, A. (2015). “Hw/sw trade-offs
in i/o virtualization for controller area network,” in 2015 52nd ACM/EDAC/IEEE design
automation conference (DAC) (IEEE), 1–6.

Herber, C., Richter, A., Rauchfuss, H., and Herkersdorf, A. (2013). “Self-virtualized
can controller for multi-core processors in real-time applications,” in Architecture of
computing systems–ARCS 2013: 26th international conference, Prague, Czech republic,
february 19-22, 2013. Proceedings 26 (Springer), 244–255.

Herber, C., Richter, A., Rauchfuss, H., and Herkersdorf, A. (2014a). Spatial and
temporal isolation of virtual can controllers. ACM SIGBED Rev. 11, 19–26. doi:10.1145/
2668138.2668141

Herber, C., Richter, A., Wild, T., and Herkersdorf, A. (2014b). “A network
virtualization approach for performance isolation in controller area network (can),”
in 2014 IEEE 19th real-time and embedded technology and applications symposium
(RTAS) (IEEE), 215–224.

Jiang, Z., Audsley, N., Dong, P., Guan, N., Dai, X., and Wei, L. (2019). “Mcs-iov: real-
time i/o virtualization for mixed-criticality systems,” in 2019 IEEE real-time systems
symposium RTSS (IEEE), 326–338.

Kabir, M. R., Mishra, N., and Ray, S. (2021). “Vive: virtualization of vehicular
electronics for system-level exploration,” in 2021 IEEE international intelligent
transportation systems conference (ITSC) (IEEE), 3307–3312.

Kabir, M. R., Ravi, B. B. Y., and Ray, S. (2023). A virtual prototyping platform for
exploration of vehicular electronics. IEEE Internet Things J. 10, 16144–16155. doi:10.
1109/jiot.2023.3267339

Kabir, M. R., and Ray, S. (2023). “Virtualization for automotive safety and security
exploration,” in 2023 IEEE 16th Dallas circuits and systems conference (DCAS)
(IEEE), 1–4.

Kampert, E., Schettler, C., Woodman, R., Jennings, P. A., and Higgins, M. D. (2020).
Millimeter-wave communication for a last-mile autonomous transport vehicle. IEEE
Access 8, 8386–8392. doi:10.1109/access.2020.2965003

Kampmann, A., Lüer, M., Kowalewski, S., and Alrifaee, B. (2022). “Optimization-
based resource allocation for an automotive service-oriented software architecture,” in
2022 IEEE intelligent vehicles symposium (IV) (IEEE), 678–687.

Karthik, S., Ramanan, K., Devshatwar, N., Paul, S., Mahaveer, V., Zhao, S., et al.
(2018). “Hypervisor based approach for integrated cockpit solutions,” in 2018 IEEE 8th
international conference on consumer electronics-berlin (ICCE-Berlin) (IEEE), 1–6.

Kleidermacher, D. (2013). “System virtualization in multicore systems,” in Real world
multicore embedded systems (Elsevier), 227–267.

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and
Uhlig, S. (2014). Software-defined networking: a comprehensive survey. Proc. IEEE 103,
14–76. doi:10.1109/JPROC.2014.2371999

Kugele, S., Obergfell, P., Broy, M., Creighton, O., Traub, M., and Hopfensitz, W.
(2017). “On service-orientation for automotive software,” in 2017 IEEE international
Conference on software architecture (ICSA) (IEEE), 193–202.

Li, Z., Kihl, M., Lu, Q., and Andersson, J. A. (2017). “Performance overhead
comparison between hypervisor and container based virtualization,” in 2017 IEEE
31st International Conference on advanced information networking and applications
(AINA) (IEEE), 955–962.

Liu, K., Xu, X., Chen, M., Liu, B., Wu, L., and Lee, V. C. (2019). A hierarchical
architecture for the future internet of vehicles. IEEE Commun. Mag. 57, 41–47. doi:10.
1109/mcom.2019.1800772

Lockwood, G. K., Tatineni, M., and Wagner, R. (2014). “Sr-iov: performance benefits
for virtualized interconnects,” in Proceedings of the 2014 annual conference on extreme
science and engineering discovery environment, 1–7.

Macher, G., Höller, A., Armengaud, E., and Kreiner, C. (2015). “Automotive
embedded software: migration challenges to multi-core computing platforms,” in
2015 IEEE 13th international conference on industrial Informatics (INDIN) (IEEE),
1386–1393.

Mariño, A. G., Fons, F., and Arostegui, J. M. M. (2022). The future roadmap of in-
vehicle network processing: a hw-centric (r-) evolution. IEEE access 10, 69223–69249.
doi:10.1109/access.2022.3186708

Masrur, A., Drossler, S., Pfeuffer, T., and Chakraborty, S. (2010). “Vm-based real-time
services for automotive control applications,” in 2010 IEEE 16th international
conference on embedded and real-time computing systems and applications (IEEE),
218–223.

Maticu, F., Pop, P., Axbrink, C., and Islam, M. (2016). Automatic functionality
assignment to AUTOSAR multicore distributed architectures. Tech. Rep. doi:10.4271/
2016-01-0041

Maul, M., Becker, G., and Bernhard, U. (2018). Service-oriented ee zone architecture
key elements for new market segments. ATZelektronik Worldw. 13, 36–41. doi:10.1007/
s38314-017-0092-4

Monot, A., Navet, N., Bavoux, B., and Simonot-Lion, F. (2012). Multisource
software on multicore automotive ecus—combining runnable sequencing with
task scheduling. IEEE Trans. Industrial Electron. 59, 3934–3942. doi:10.1109/tie.
2012.2185913

Mounir, M., AbdelSalam, M., Safar, M., and Salem, A. (2019). “Hardware-assisted
virtualization for heterogeneous automotive applications,” in 2019 14th international
conference on computer engineering and systems (ICCES) (IEEE), 195–200.

Muench, D., Isfort, O., Mueller, K., Paulitsch, M., and Herkersdorf, A. (2013).
“Hardware-based i/o virtualization for mixed criticality real-time systems using pcie
sr-iov,” in 2013 IEEE 16th international Conference on computational Science and
engineering (IEEE), 706–713.

Navale, V. M., Williams, K., Lagospiris, A., Schaffert, M., and Schweiker, M.-A.
(2015). (r) evolution of e/e architectures. SAE Int. J. Passeng. Cars-Electronic Electr. Syst.
8, 282–288. doi:10.4271/2015-01-0196

Ondrej Burkacky, J. D., and Apostu, G. D. S. (2019). Automotive software and
electrical/electronic architecture: implications for oems

Open networking foundation (2024). Available at: https://opennetworking.org/
(Accessed May 23, 2024).

Rajan, A. K. S., Feucht, A., Gamer, L., Smaili, I., and M., N. D. (2018).
Hypervisor for consolidating real-time automotive control units: its procedure,
implications and hidden pitfalls. J. Syst. Archit. 82, 37–48. doi:10.1016/j.sysarc.
2018.01.001

Reinhardt, D., Güntner, M., Kucera, M., Waas, T., and Kühnhauser, W. (2015).
“Mapping can-to-ethernet communication channels within virtualized embedded
environments,” in 10th IEEE international symposium on industrial embedded
systems (SIES) (IEEE), 1–10.

Reinhardt, D., and Morgan, G. (2014). “An embedded hypervisor for safety-relevant
automotive e/e-systems,” in Proceedings of the 9th IEEE international symposium on
industrial embedded systems (SIES 2014) (IEEE), 189–198.

Research and Markets (2022). China autonomous driving and cockpit domain control
unit (dcu) industry report.

Rödel, C., Stadler, S., Meschtscherjakov, A., and Tscheligi, M. (2014). “Towards
autonomous cars: the effect of autonomy levels on acceptance and user experience,” in
Proceedings of the 6th international conference on automotive user interfaces and
interactive vehicular applications, 1–8.

Rover, J. L. (2022). Jaguar land rover announces partnership with nvidia.

Salay, R., Queiroz, R., and Czarnecki, K. (2017). An analysis of iso 26262: using
machine learning safely in automotive software. arXiv preprint arXiv:1709.02435

Savithry, J., Ortega, A. G., Pillai, A. S., Balbastre, P., and Crespo, A. (2019). “Design of
criticality-aware scheduling for advanced driver assistance systems,” in 2019 24th IEEE
international conference on emerging technologies and factory automation (ETFA)
(IEEE), 1407–1410.

Sheikh, S. Z., and Pasha, M. A. (2021). Energy-efficient cache-aware scheduling on
heterogeneous multicore systems. IEEE Trans. Parallel Distributed Syst. 33, 206–217.
doi:10.1109/tpds.2021.3090587

Sinha, S., Golchin, A., Einstein, C., andWest, R. (2020). “A paravirtualized android for
next generation interactive automotive systems,” in Proceedings of the 21st international
workshop on mobile computing systems and applications, 50–55.

Smith, J., and Nair, R. (2005). Virtual machines: versatile platforms for systems and
processes. Elsevier.

Sohal, P., Bechtel, M., Mancuso, R., Yun, H., and Krieger, O. (2022). “A closer look at
intel resource director technology (rdt),” in Proceedings of the 30th international
conference on real-time networks and systems, 127–139.

Solutions, B. M. (2023a). Ee architecture.

Solutions, B. M. (2023b). Whitepaper: E/e architecture.

Sriramakrishnan, G., Mody, M., Shurtz, G., Fuoco, C., Chitnis, K., Devshatwar, N.,
et al. (2022). “Io virtualization for real time automotive systems,” in 2022 IEEE
international conference on consumer electronics (ICCE) (IEEE), 1–4.

Stolz, W., Kornhaas, R., Krause, R., and Sommer, T. (2010). Domain
control units-the solution for future e/e architectures? SAE Int. doi:10.4271/2010-
01-0686

Sugerman, J., Venkitachalam, G., and Lim, B.-H. (2001). “Virtualizing i/o devices on
vmware workstation’s hosted virtual machine monitor,” in Proceedings of the General
Track: 2001 USENIX Annual Technical Conference (General Track), 1–14.

Frontiers in Future Transportation frontiersin.org15

Guo et al. 10.3389/ffutr.2025.1519390

https://doi.org/10.4271/2020-01-5007
https://doi.org/10.1145/2668138.2668141
https://doi.org/10.1145/2668138.2668141
https://doi.org/10.1109/jiot.2023.3267339
https://doi.org/10.1109/jiot.2023.3267339
https://doi.org/10.1109/access.2020.2965003
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/mcom.2019.1800772
https://doi.org/10.1109/mcom.2019.1800772
https://doi.org/10.1109/access.2022.3186708
https://doi.org/10.4271/2016-01-0041
https://doi.org/10.4271/2016-01-0041
https://doi.org/10.1007/s38314-017-0092-4
https://doi.org/10.1007/s38314-017-0092-4
https://doi.org/10.1109/tie.2012.2185913
https://doi.org/10.1109/tie.2012.2185913
https://doi.org/10.4271/2015-01-0196
https://opennetworking.org/
https://doi.org/10.1016/j.sysarc.2018.01.001
https://doi.org/10.1016/j.sysarc.2018.01.001
https://doi.org/10.1109/tpds.2021.3090587
https://doi.org/10.4271/2010-01-0686
https://doi.org/10.4271/2010-01-0686
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390


Sundar Rajan, A. K., and Nirmala Devi, M. (2021). “Virtualizing an automotive
state-of-the-art microcontroller: techniques and its evaluation,” in Automotive
embedded systems: key technologies, innovations, and applications (Springer),
19–36.

Times, E. (2016). Why audiâ€™s zfas is blueprint for next-gen domain
architectures

Traub, M., Maier, A., and Barbehön, K. L. (2017). Future automotive architecture and
the impact of it trends. IEEE Softw. 34, 27–32. doi:10.1109/ms.2017.69

Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., and Kilmartin, L. (2014).
Intra-vehicle networks: a review. IEEE Trans. intelligent Transp. Syst. 16, 534–545.
doi:10.1109/tits.2014.2320605

Varanasi, P., and Heiser, G. (2011). “Hardware-supported virtualization on arm,” in
Proceedings of the second asia-Pacific workshop on systems, 1–5.

Vasu, A., and Ramaprasad, H. (2020). “Application constraints and safety aware
mapping of autosar applications on multi-core platforms,” in 2020 IEEE international
conference on embedded software and systems (ICESS) (IEEE), 1–10.

Vetter, A., Obergfell, P., Guissouma, H., Grimm, D., Rumez, M., and Sax, E. (2020).
“Development processes in automotive service-oriented architectures,” in 2020 9th
Mediterranean conference on embedded computing (MECO), 1–7. doi:10.1109/
MECO49872.2020.9134175

Wulf, C., Willig, M., and Göhringer, D. (2021). “A survey on hypervisor-based
virtualization of embedded reconfigurable systems,” in 2021 31st
international conference on field-programmable logic and applications (FPL)
(IEEE), 249–256.

Xu, M., Gifford, R., and Phan, L. T. X. (2019). “Holistic multi-resource allocation for
multicore real-time virtualization,” in Proceedings of the 56th annual design automation
conference 2019, 1–6.

Xu, M., Thi, L., Phan, X., Choi, H.-Y., and Lee, I. (2017). “vcat: dynamic cache
management using cat virtualization,” in 2017 IEEE real-Time and embedded
Technology and applications symposium (RTAS) (IEEE), 211–222.

Zeng, W., Khalid, M. A., and Chowdhury, S. (2016). In-vehicle networks outlook:
achievements and challenges. IEEE Commun. Surv. and Tutorials 18, 1552–1571. doi:10.
1109/comst.2016.2521642

Frontiers in Future Transportation frontiersin.org16

Guo et al. 10.3389/ffutr.2025.1519390

https://doi.org/10.1109/ms.2017.69
https://doi.org/10.1109/tits.2014.2320605
https://doi.org/10.1109/MECO49872.2020.9134175
https://doi.org/10.1109/MECO49872.2020.9134175
https://doi.org/10.1109/comst.2016.2521642
https://doi.org/10.1109/comst.2016.2521642
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1519390

	State-of-the-art virtualisation technologies for the centralised automotive E/E architecture
	1 Introduction
	2 Background of the E/E architecture
	3 Virtualisation techniques for automotive
	3.1 Virtualisation for resource allocation
	3.1.1 Background
	3.1.2 Virtualisation with multicore ECU
	3.1.3 Real-time virtualisation
	3.1.4 AUTOSAR

	3.2 Virtualisation for I/O interfaces
	3.3 Virtualisation of communication networks
	3.3.1 CAN virtualisation


	4 Identification of research gaps
	4.1 Resource allocation
	4.2 Software-defined networking
	4.3 Prototyping

	5 Discussion and conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


