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Introduction: This study explores the optimization of Electric Bus (EB)
performance by integrating predictive maintenance strategies, utilizing real-
time data and advanced modeling techniques.

Methods: The study involves installing measurement sensors to capture dynamic
behavior and energy consumption during actual road trips, analyzing the
collected data to refine vehicle dynamics models and assess battery
degradation under various operational conditions, and employing a multi-
objective optimization framework to minimize battery degradation while
ensuring efficient energy use and maintaining operational requirements.

Results and Discussion: The study offers valuable insights into battery
management strategies, revealing that battery degradation can be reduced by
25% through optimum driving behavior, which can be achieved in real driving
conditions by avoiding aggressive driving. This research supports the broader
goal of promoting sustainable public transportation solutions through the
effective use of electric buses, enabling operators to extend battery longevity
and enhance overall vehicle performance by implementing the identified
strategies.
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1 Introduction

The transportation sector is a significant contributor to global Greenhouse Gas (GHG)
emissions, accounting for approximately 24% of global CO2 emissions from fuel
combustion (IEA, 2021a). Road transport is the main source of these emissions, driven
primarily by the widespread use of Internal Combustion Engine (ICE) vehicles. Electric
Vehicles (EVs) have emerged as a promising solution tomitigate the environmental impacts
of road transport by producing zero tailpipe emissions. This transition is essential for
reducing pollutants like CO2, Nitrogen Oxides (NOx), and Particulate Matter (PM), and for
achieving global climate goals (IEA, 2021a). The growing adoption of EVs is also supported
by advancements in renewable energy, which can further decrease the lifecycle emissions
associated with electric mobility (IEA, 2021b). Consequently, the electrification of public

OPEN ACCESS

EDITED BY

Cheng Siong Chin,
Newcastle University, United Kingdom

REVIEWED BY

Xuanyu Wu,
Hefei University of Technology, China
Loshaka Perera,
University of Moratuwa, Sri Lanka

*CORRESPONDENCE

Hisham Ibrahim,
hisham.kamel@mtc.edu.eg

RECEIVED 09 October 2024
ACCEPTED 16 December 2024
PUBLISHED 07 January 2025

CITATION

Ibrahim H, Ali AM and Attia T (2025) Optimizing
electric bus performance via predictive
maintenance: a combined experimental and
modeling approach.
Front. Future Transp. 5:1506866.
doi: 10.3389/ffutr.2024.1506866

COPYRIGHT

© 2025 Ibrahim, Ali and Attia. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Future Transportation frontiersin.org01

TYPE Original Research
PUBLISHED 07 January 2025
DOI 10.3389/ffutr.2024.1506866

https://www.frontiersin.org/articles/10.3389/ffutr.2024.1506866/full
https://www.frontiersin.org/articles/10.3389/ffutr.2024.1506866/full
https://www.frontiersin.org/articles/10.3389/ffutr.2024.1506866/full
https://www.frontiersin.org/articles/10.3389/ffutr.2024.1506866/full
https://www.frontiersin.org/articles/10.3389/ffutr.2024.1506866/full
https://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2024.1506866&domain=pdf&date_stamp=2025-01-07
mailto:hisham.kamel@mtc.edu.eg
mailto:hisham.kamel@mtc.edu.eg
https://doi.org/10.3389/ffutr.2024.1506866
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2024.1506866


transportation, particularly through Electric Buses (EBs), represents
a critical step towards a more sustainable future (Veza et al., 2023).

Public buses, especially electric ones, offer a highly efficient
mode of transportation due to their ability to carry many passengers,
thus distributing energy consumption more effectively. Studies show
that public transportation reduces GHG emissions compared to
private vehicles. For example, a diesel transit bus emits around 33%
lower GHGs per passenger mile than single-occupancy vehicles, and
this percentage rises to 82% when the buses are fully occupied
(Hodges, 2010). EBs can reduce emissions even further if their
source of electricity comes from a renewable source. In addition, EBs
are more efficient than gls*ice in converting energy to motion,
i.e., less tank-to-wheel fuel consumption (Dimitrova and
Maréchal, 2015), with energy consumption ranging from 1.0 to
3.5 kWh per kilometer based on factors such as bus technology and
traffic conditions (Pamuła and Pamuła, 2020). This makes EBs a
sustainable and energy-efficient alternative, contributing to a
reduction in urban air pollution and lower operational costs
(Borén, 2020).

The efficient deployment of EBs necessitates optimizing bus
routes and strategically placing charging stations. This optimization
minimizes the downtime for recharging, ensures smooth operations,
and maximizes the benefits of EB technology (Zhong et al., 2024).
Recent studies have proposed integrated optimization models that
consider both route design and charging station placement to
minimize infrastructure costs and travel time (Su et al., 2023).
For example, advanced techniques such as variable neighborhood
search effectively address the simultaneous planning of charging
stations and vehicle scheduling, improving both energy efficiency
and service reliability (Olsen et al., 2022).

However, despite the benefits of EBs, they come with some
trade-offs, mainly the high initial cost compared to the conventional
gls*ice ones (Johnson et al., 2020). The high voltage battery pack is
the most expensive component. The battery degrades gradually over
the time (years) and over distance (mileage) as well. The degradation
of Electric Vehicle (EV) battery packs significantly affects both the
performance and the economic viability of these vehicles. As EV
batteries undergo a natural capacity reduction process, their ability
to store and deliver energy decreases, leading to a decrease in driving
range and overall efficiency. This degradation results in reduced
power delivery and a reduction in State of Health (SOH) of the
battery pack. Consequently, EVs may experience a decrease in the
vehicle’s range, necessitating more frequent charging and potentially
altering driving habits to avoid range anxiety. Economically, this
degradation results in increased maintenance costs and potentially
shorter vehicle lifespans, which can offset the initial cost savings
associated with EV ownership. Furthermore, accelerated
degradation due to factors such as high temperatures, extreme
state of charge, and fast charging can lead to premature battery
replacement. This eventually increases the overall life cycle cost of
EVs (Noura et al., 2020; Laadjal and Cardoso, 2021; Ou, 2023; Zekry
et al., 2023; Etxandi-Santolaya et al., 2024). Understanding these
adverse effects is crucial for developing strategies to mitigate battery
degradation, ensuring long-term performance and economic
sustainability of EVs.

Since public transit buses by nature of operation cover
considerably long distances quickly over time, it is important to
optimize the operation of EBs to minimize battery degradation and

maximize its life. Moreover, other regular maintenance costs
increase over the lifetime of the bus as it ages (C.A.R.B., 2018).
Therefore, as more EBs are entering service, there is a need to
achieve two objectives: 1) optimize their performance and 2) reduce
their maintenance costs.

The first objective can be achieved by optimizing the bus routes
and strategically placing charging stations. This optimization
minimizes the downtime for recharging, ensures smooth
operations, and maximizes the benefits of EBs technology (Zhong
et al., 2024). Recent studies have proposed integrated optimization
models that consider both route design and charging station
placement to minimize infrastructure costs and travel time (Su
et al., 2023). For example, advanced techniques such as variable
neighborhood search effectively address the simultaneous planning
of charging stations and vehicle scheduling, improving both energy
efficiency and service reliability (Olsen et al., 2022).

However, accurate energy consumption estimation is critical for
optimizing EB operations, as it influences route planning, charging
infrastructure, and battery management. Traditional energy
consumption models fall into three main categories: analytical,
statistical, and computational (Qi et al., 2018). Analytical models
are based on physics-based equations to describe the forces acting on
the vehicle (Fiori et al., 2016). Statistical models use historical data to
identify patterns in energy use (De Cauwer et al., 2017; Zhang and
Yao, 2015). Finally, computational models, which often incorporate
machine learning and simulations, handle complex data to provide
detailed predictions (Montazeri-Gh and Fotouhi, 2011; Alvarez
et al., 2014). These models vary in complexity and computational
demand, but each offers valuable insights into energy consumption.

Recent researches have introduced hybrid models that combine
data-driven and physics-based approaches to improve the accuracy
of energy consumption predictions. For example (Pan et al., 2024),
employed a hybrid model to optimize energy consumption in urban
transit systems, demonstrating significant improvements in
efficiency. Similarly (Jiang et al., 2024), developed a trip-level
prediction model that integrates factors such as weather
conditions and driving patterns, achieving high accuracy in
predicting the energy consumption (Ali et al., 2023).

Incorporating vehicle dynamics into these models provides a
more detailed understanding of energy consumption (Fiori et al.,
2016). Developed a model that accounts for factors such as
aerodynamics and mass, validated with real-world driving cycles
(Vepsäläinen et al., 2018). Investigated the uncertainty in the
estimates of energy consumption due to varying driving
conditions. These studies highlight the need for accurate models
that reflect the real-world performance of EBs, considering both
environmental and operational conditions.

The second objective can be achieved by preventive
maintenance. Predictive maintenance is a technique in which
maintenance is conveniently scheduled according to the
condition of a machine in terms of its degree of degradation and
probability of failure (Levitt, 2011; K, 2002). This contrasts with
preventive maintenance, where maintenance is performed
periodically or by time intervals. This conventional maintenance
approach requires that some components can be needlessly replaced
despite Remaining Useful Life (RUL). On the other hand, preventive
maintenance estimates RUL based on predictive models using
accurate historical operational data. To ensure accurate
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prediction, it is important to measure and collect meaningful and
relevant data as much as possible. This has been made possible by
the advancement of data measurements, collection, and storing
technologies. Predictive maintenance has been shown to lead to a
reduction in maintenance costs (Ambriško and Teplická, 2021). A
recent study investigated the proper way to implement predictive
maintenance in a local public transport company (Grimaldi, 2022).
It showed that optimization can be used as a tool to optimize the
operation and reduce maintenance costs of the mixed fleet of both
diesel and electric buses (Ayman et al., 2021). Recent studies showed
that preventive maintenance can be used to effectively minimize
maintenance costs (Arena et al., 2021; Kamel, 2022; Arévalo et al.,
2024; Dui et al., 2023; Ekici et al., 2023; Martyushev et al., 2023;
Massaro et al., 2020; Wieczorek et al., 2024)

However, the challenge lies in creating an efficient tool that can
manage a fleet of buses under real-world operational conditions
while minimizing system complexity and resource requirements.
This paper presents a unified framework for predictive maintenance
and optimization. It seamlessly combines experimental
measurements, vehicle dynamics modeling, and optimization
algorithms in order to achieve the two objectives of optimizing
battery performance and reducing degradation to minimize
maintenance costs. A case study of an EB is presented to
demonstrate the practical applicability of this approach in real-
world conditions.

The remainder of the paper is structured as follows. In Section 2,
we describe our methodology and how it is applied to the EB case
study. Section 3 presents the experimental work and the
measurement system used to capture its dynamic behavior and
energy consumption. Section 4 presents the longitudinal dynamic
model and the battery degradation model, using a multi-objective
optimization technique to minimize battery degradation. Section 5
discusses the results of the simulation, experimental work, and
model validation. Finally, Section 6 concludes and discusses
future work.

2 Methodology

The methodology is centered on accurately estimating the
amount of electric energy consumed during a trip that accurately
resembles real operating conditions. This included selecting a route
that fits these conditions as closely as possible. The bus was fitted
with measurement sensors and data recording devices. The data
were then used to fine-tune the parameters of a vehicle dynamics
model using numerical optimization. The model was then used to
calculate the amount of energy consumption, which was used as
input to a model that calculated the amount of battery degradation.
Multi-objective optimization was applied to the battery degradation
model to find the optimum operating conditions to minimize
battery degradation. The methodology can be summarized in the
following step:

1. Set up EB with measurement and data recording devices.
2. Measure the Center of Gravity (C.G) of the EB.
3. Select a representative route of the real operating conditions.
4. Conduct a real-world driving experiment that measures the

energy consumption of the EB and dynamic parameters.

5. Develop a vehicle dynamics model.
6. Use the value of measured consumed energy to fine-tune the

dynamics model.
7. Develop a battery degradation model.
8. Integrate the battery degradation model with the vehicle

dynamics model.
9. Apply optimization to find the optimal conditions to

minimize battery degradation.
10. Use the results to recommend the operating policies for

preventive maintenance.

A battery electric bus was used as our case study. The bus is
designed for public city transit. It is fully electric with a battery pack
capacity of 345 kWh. It is equipped to accommodate 36 seated,
40 standees and a wheelchair. It is driven by a permanent magnet
synchronous electric motor rated at delivering 195 kW up to a
maximum of 350 kW. Its rated toque is 3,200 N.m and maximum is
3,500 N.m. Its payload is 5,800 kg.

3 Experimental work

The experimental setup employed a combination of advanced
measurement devices to capture the dynamic behavior and energy
consumption of the EB. As shown in Figure 1, the Xsense MTi-680G
RTK GNSS/INS was used to accurately measure linear accelerations,
linear and angular velocities, orientations, altitude, longitude and
latitude. This high-precision sensor system provided comprehensive
data on the vehicle’s motion and positioning during the
trip. Additionally, a Fluke 287 True-RMS Electronics Logging
Multimeter, equipped with a Fluke 325 True RMS Clamp Meter
(Fluke 289 IMSK Industrial Multimeter), was used to measure and
record the current drawn by the electric motor from the battery
pack. This setup enabled for precise monitoring of the electric power
consumption, allowing for detailed analysis of the energy usage
patterns and their impact on battery health. The meter was
calibrated and certified according to ISO 17025 standard. It
scored 99.9% accuracy.

Data from The MTi-680G and the Fluke system are collected by
a laptop which formed a robust data acquisition system, ensuring
accurate and reliable data collection for model development and
validation.

For estimating the position of C.G, the bus was loaded with
dummy weights to reach the value of Gross Vehicle Weight (GVW)
and proper load distribution on the front and rear axles according to
the manufacturer’s specifications. This was followed by an
experiment to determine the position of the C.G as shown in
Figure 2. The data is shown in Table 1.

3.1 Road selection

The objective is to select a route that can represent a real route as
accurately as possible. Based on the given and available data from
end-user requirements, a route was selected as shown in Figure 3.

It should be noted that the investigated vehicle in this study is
assumably considered for intra-city reciprocals without allocated
stops in-between (except for unforeseen traffic conditions).
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Therefore, the influence of repeating acceleration/deceleration on
battery degradation has been precluded from our scope at this stage.

This route constitutes a combination of asphalt, concrete, gravel,
and unpaved road surfaces which matches the real conditions where
the bus will be operated. In addition, the route included amoderately
steep mountainous segment to an elevation of approximately 500 m
from sea level as shown in Figure 3. The total travel distance was
67.8 km which lasted for 98.8 min.

The conducted driving experiment along the coastal side of the
Red Sea and uphill Northern Galala Plateau reflects the actual speed

and altitude profile of the actual trip under study as shown in
Figure 4. In this context, the acquired measurements of energy
consumption and deducted battery degradation are directly related
to the actual driving conditions.

The data collected during this typical road trip included a
comprehensive set of measurements that captured both the
dynamic behavior of the bus and the corresponding energy
consumption. Using the Xsense MTi-680G RTK GNSS/INS, data
on linear accelerations, angular velocities, linear velocities,
orientations, altitude, and geographical coordinates were recorded

FIGURE 1
Measurement setup: the MTi-680G RTK GNSS/INS is placed on the bus floor, GPS antenna is on the bus roof, Fluke 287 multimeter with Fluke
325 clamp are placed at bus back for measuring the current and voltage drawn by the electric motor.

FIGURE 2
Tilting the bus to measure the difference in weight on front axle to determine the position of C.G.
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throughout the trip. This information was crucial for developing the
longitudinal dynamics model of the bus, as it accurately represented
the vehicle’s motion under real-world driving conditions.
Simultaneously, the Fluke 287 True-RMS Electronics Logging
Multimeter, paired with the Fluke 325 True RMS Clamp Meter,
measured the current drawn by the electric motor. These
measurements provided insights into the power consumption and
its variations over the trip, forming the basis for the battery
degradation model.

Acquisition of experimental measurements has been conducted
usingMovella MT Software and Fluke Firmware, while all numerical
simulations of the vehicle model and relevant optimization
procedures in the sequel have been carried out in MATLAB-
Simulink environment. Together, the collected data facilitated the

development of accurate models that reflect the impact of driving
conditions on the bus’s energy usage and battery health.

4 Vehicle model

This section introduces the dynamic model of the EB and the
battery degradation model. Optimization was applied to both
models. Firstly, we estimate the values of some of the parameters
of the dynamic model. Secondly, multi-objective optimization was
applied to the battery degradation model to identify the optimal
settings that minimize battery degradation.

4.1 Longitudinal vehicle dynamics

An analytical model was chosen to calculate the amount of
energy consumption due to its simplicity and its ability to account
for the physical factors that contribute to energy consumption. The
model is based on the longitudinal vehicle dynamics (Wong, 2022).
The analysis of forces exerting on the vehicle in longitudinal
direction is illustrated in Figure 5 and formulated as

∑R � Froll + Fgrade + Faero + Finertia, (1)

where the rolling resistance force from tire road interaction is
denoted as Froll, gradient resistance force due to the road
inclination as Fgrade, aerodynamic drag force caused by air air
resistance as Faero, and the inertial resistance force which
opposes the bus’s motion during acceleration and deceleration
as Finertia.

Therefore, Equation 1 can be expressed as follows:

TABLE 1 Measured technical data.

Parameter Value

Length [m] 12

Width [m] 2.6

Height [m] 3.4

Wheelbase [m] 5.9

Wheel track [m] front:2.1 rear:1.86

Gross Vehicle Weight [kg] 19,000

Front axle maximum load [kg] 7,500

Rear axle maximum load [kg] 11,500

C.G location from front axle [m] 3.82

C.G height [m] 1.287

FIGURE 3
Location on the map during the typical road trip.

Frontiers in Future Transportation frontiersin.org05

Ibrahim et al. 10.3389/ffutr.2024.1506866

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2024.1506866


∑R � f ·m · g · cos θ +m · g · sin θ + 1
2
ρ · A · Cd · v2 +m · ∂

∂t
v,

(2)
where ∑R is the total resistance to motion, f is the coefficient of
rolling resistance between tires and road surface, θ is the road
inclination, m is the mass of the bus, i.e., GVW, g is the
gravitational acceleration (9.81 m/s2), ρ is the density of air
(1.225 kg/m3), Cd is the coefficient of aerodynamic drag, A is
the frontal cross sectional area of the bus (8.84 m2), v is the
longitudinal velocity of the bus.

The energy is calculated by adding these forces in Equation 2
and multiplying the sum by the average velocity to obtain the power
consumption as shown in Equation 3. Hence, the energy is obtained

by multiplying the power by the total time of the bus trip as shown in
Equation 4.

P � ∑R( ).v, (3)
Ec � P.t, (4)

where P is the power consumed (W), Ec is the calculated energy
consumed, t is the total travel time. The following values of the
model parameters are obtained from measurements: t � 98.8 mins,
v � 11.44 m/s, A � 8.84 m2, m � 19000 kg.

However, the remaining model variables (Cd, θ, and f), are
more difficult to obtain. The coefficient of aerodynamic drag Cd

requires testing in a wind tunnel and θ requires special testing
equipment. In particular, the coefficient of rolling resistance f,

FIGURE 4
Altitude vs. bus speed during the typical road trip. (A) Altitude during the trip. (B) Bus speed during the trip.
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requires numerous experimental tests. Moreover, its value is affected
by various factors such as tire materials, surface conditions, the
construction of tires, inflation pressure, driving speed, temperature,
size, and the tractive force on the tires which is in turn dependent on
the configuration and the normal loads. This is even further
complicated by the fact that there are interaction effects between
these factors (LaClair, 2005; Wong, 2022). Thus, finding the values
of the model variables (Cd, θ, and f) is a difficult task, which can be
solved by applying numerical optimization.

4.1.1 Optimization of dynamic model parameters
Optimization was applied to find the optimum values of the

model variables (Cd, θ, and f) that can accurately represent the bus

during the trip over the selected combination of roads. The
condition for the values to be optimum is that they would result
in a total calculated energy consumption Ec that is as close as
possible to the value of the measured energy consumption Em.

This can be formulated in a mathematical form as an
optimization problem as follows in Equation 5:

min
f,Cd,θ

|Ec − Em|
s.t. 0.006≤f≤ 0.35

0.5≤Cd ≤ 0.35
0.001≤ θ ≤ 5

(5)

The upper and lower limits on f and Cd were set based on
numerous references (Wong, 2022; Schuetz, 2015; Komnos et al.,

FIGURE 5
Illustration of the resistance forces acting on the bus during motion.

FIGURE 6
Path of the verification test.
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2021), while the upper limit on road inclination θ was set at a higher
value than the highest value of inclination over the mountainous
segment of the road and the lower limit was set to a value above zero
which represents a perfectly horizontal road. The total value of the
measured consumed energy was 122.2071 kW.h. The optimization
problem was solved as a nonlinear problem with side constraints on
the design variables. It was solved using MATLAB which reached a
solution after only 13 iterations, and the value of |Ec − Em| was
1.6 × 10−6. The values of Cd, θ, and f were (0.6486, 0.6811o and
0.0198). To verify that our simple model with these values is
satisfactory, we conducted another road test and used the
measured values for verification.

4.2 Battery degradation model

Modeling the degradation of EV batteries is crucial for
predicting their lifespan and optimizing their performance. The
different approaches to modeling battery degradation can be
categorized as follows:

1. Empirical Models: These models rely on historical data to
establish relationships between operating conditions and
battery degradation. They are relatively simple and
computationally efficient, but may lack accuracy under
varying conditions (Das and Kumar, 2023).

2. Semi-Empirical Models: These models combine empirical
data with theoretical insights, offering a balance between
simplicity and accuracy. They incorporate specific
degradation mechanisms, such as Solid Electrolyte
Interphase (SEI) layer growth and lithium plating, to
improve predictive capabilities (Ji et al., 2024).

3. Physics-Based Models: Also known as mechanistic models,
these delve into the electrochemical processes within the
battery. Models like the Doyle-Fuller-Newman (DFN)
model simulate the internal states of the battery, providing
detailed insights into the degradation mechanisms. However,
they are computationally intensive and require extensive
parameterization (O’Kane et al., 2022).

4. Data-Driven Models: With the advent of machine learning
techniques, these models analyze large datasets to identify
complex patterns in battery behavior, enhancing the
accuracy of degradation predictions. Machine learning
algorithms, such as neural networks and support vector
machines, can model nonlinear relationships and adapt to
new data, making them highly effective for real-time battery
management (Preis and Biedenbach, 2023).

5. Hybrid Models: These models integrate physics-based and
data-driven approaches, leveraging the strengths of both
methodologies. They use physical insights to guide the
learning process and improve the robustness of the model
(Kong et al., 2022).

In this work, the Semi-Empirical model was selected for its
simplicity and accuracy to model the degradation of the battery. The
battery degradation model received input values from the vehicle
dynamics model in terms of required torque (Tem) and output
power (Pem) as follows in Equation 6:

Pem � Tem · ωem · ηe, e � 1 electric drive acts asmotor
−1 otherwise

{ ,

(6)
where ωem and η represent the electric motor’s speed and efficiency
respectively.

The amount of electric current (Ib) drawn from the battery was
calculated using the battery model shown in Equation 7:

Pb � VocIb − RiI
2
b, (7)

where Pb is the power of the battery, Voc is the open-circuit voltage
of the battery, and Ri is the battery’s internal resistance. The State of
Charge (SoC) of the battery is calculated using Equation 8 as:

SoC t( ) � SoC0 − 1
Qb

∫tt

t0

Ib τ( ) dτ, (8)

where Qb is the battery capacity. Finally, this value was used to
calculate the amount of normalized battery loss (Qloss) using
Equations 9–11 as follows:

Qloss � f Ic, T, SoC( ) · Q2, (9)
Ic � |Ibatt|

Qbatt
, (10)

Qloss,% � α · SoC + β( ) · exp −Ea + η · Ic
Rg · 273.15 + T( )( ) · Q2. (11)

The battery and electric drive model employ a second-order
Thevenin representation to accurately capture the relationship
between voltage, resistance, and SoC. The battery’s SoC is
monitored using the Coulomb counting method, which calculates
the current that flows into and out of the battery over time. The
output variables of the battery model are directly linked to the
electric motor model, ensuring that the voltage and current
parameters are synchronized.

The battery degradation model quantifies the capacity loss of the
battery over time due to various operational factors. This model
utilizes a semi-empirical approach based on damage accumulation,
linking the end-of-life (EoL) of the battery to the accumulated
charge throughput (Q). The normalized capacity loss, denoted as
Qloss is calculated as illustrated in Equation 9, where (f)
encapsulates the effects of C-rate (Ic), temperature (T), and SoC
on degradation. This model highlights the significance of current
flow dynamics and operating temperature in influencing battery
longevity. To optimize battery performance and mitigate
degradation, a multi-objective optimization framework is
employed, which seeks to minimize degradation while
maintaining the required power for vehicle propulsion. This
comprehensive approach provides valuable insights into battery
management strategies, ultimately enabling the prolongation of
battery life while ensuring efficient vehicle operation.

4.2.1 Minimization of battery degradation and
charge depletion

The amount of battery degradation can now be calculated for
any given bus route. This helps the EB operator in predictive
maintenance as: 1) planning well ahead the schedule for battery
replacement based on the level of accepted degradation, 2)
reassigning buses that lost enough battery storage capacity to less
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energy demanding, for example, shorter routes. 3) In addition, we
can find the best (optimal) settings in terms of the amount and rate
of change of the drawn current to minimize the degradation of the
battery (J1) while fulfilling the operations requirements (J3) in
terms of providing the sufficient amount of power to drive the
vehicle safely during the trip, while simultaneously consuming the
least amount of energy (J2). This is achieved by formulating a multi-
objective optimization problem using Equations 12–14 as follows:

Find x(I, dIdt) that minimize (J1), (J2) and (J3)
where.

J1 x, t( ) � Qloss x, t( ), (12)
J2 x, t( ) � ΔSoC x, t( ), (13)

J3 x, t( ) �

������������������
1
N

∑N
i�1

Pi
trac − Pi

batt( )2√√
, (14)

where N denotes the number of measured points, and Pi
trac and

Pi
batt represent the tractive power and battery power at point i,

respectively.
The Non-dominated Sorting Genetic Algorithm II (NSGA-II)

was used to solve the multi-objective optimization problem. The
NSGA-II algorithm is a widely recognized evolutionary algorithm
designed to address multi-objective optimization problems.
Developed by Deb et al. (2002). NSGA-II enhances the
traditional genetic algorithm framework by incorporating
mechanisms for non-dominated sorting and a crowding distance
assignment, which together ensure a diverse and well-distributed set
of Pareto-optimal solutions. The algorithm’s ability to
simultaneously optimize multiple conflicting objectives makes it
particularly suitable for complex engineering and scientific
applications where trade-offs between objectives must be carefully
balanced. NSGA-II’s elitist approach, which retains the best
solutions across generations, and its computational efficiency
further contribute to its popularity and effectiveness in solving
multi-objective optimization problems (Ma et al., 2023). These
features make NSGA-II a suitable tool for solving multi-objective
optimization problems.

5 Results and discussion

In this section, we present the findings from the case study. We
explore the bus’s energy consumption patterns and provide an
estimation of battery health over time. Furthermore, the results
are used to predict battery maintenance intervals based on its
degradation rate. This analysis offers valuable information for
optimizing electric bus performance and extending its battery life
through data-driven predictive maintenance strategies.

5.1 Comparison with WLTP-LOW
driving cycle

Standard driving cycles testing is essential in order to evaluate
the energy consumption measures in a widely-comprehensive way.
To this aim, the scalable WLTP driving has been implemented for

the comparative evaluation of power consumption, SoC drop, and
battery degradation.

A road test was conducted according to the standard for
measuring energy consumption, WLTP-LOW driving cycle
(Schmidt, 2015). The test was conducted two times by a
professional driver to drive the bus on a road as shown in Figure
6. To familiarize the driver with the test, the test speed profile was
plotted and presented on a tablet so the driver can follow the desired
profile as shown in Figure 7. The driver was trained several times
before conducting themain test. The test lasted for 600 s and covered
a total distance of 3.095 km. Table 2 presents a comparison between
standard and actual tests. It shows that the actual test adhered as
closely as possible to the standard requirements. The measured
energy consumption was then estimated and the data was then used
to compare with the value calculated from the vehicle dynamics
model in Section 4.

In this step, we expect the calculated value of the energy
consumption Ec to be relatively higher than the measured value
Em since the standard WLTP-LOW test requires a level dry asphalt
road that does not include neither steep climbs nor any variations of
the type of road surface. The values for Ec and Em were 5.09 and
4.04 kW respectively. This is important information, as planning bus
routes on data from typical standard alone can lead to
underestimating the required battery capacity in actual operating
conditions on real road surfaces. In our local case, the value of the
required energy was underestimated by approximately 20%.

5.2 Simulation and experimental results

Figure 8 shows the simulated instantaneous power consumption
and the accumulated energy depleted from the battery. The total
depleted energy was 126 kWh. This value is in good agreement with
the measured 122 kWh during the road trip illustrated in Section 3.

The Negative values of power consumption indicate the
activation of regenerative braking during the deceleration and
stopping phases. Recuperation of propulsion energy through
regenerative braking flattens the increasing rate of accumulated
energy at the corresponding time intervals as shown in Figure 8.

FIGURE 7
Driver following speed profile of the test.
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Figure 9 shows the simulated battery SoC and the associated
capacity loss over time during the road trip. It shows a drop of the
battery SoC by approximately 38% at the end of the trip. This loss of
initial capacity of the battery is highly influenced by the depth of
discharge, the dynamics of power withdrawal, and the number of
power peaks. It is noticeable that power peaks have a dominant
influence on capacity loss.

The multi-objective optimization problem in Section 4.2 is solved
using the NSGA-II and it converged to a solution after 2500 iterations.
The final result is the Pareto set of non-dominated solutions, which for
three normalized objectives obj1, obj2, and obj3 represent a surface in
three dimensions. As a sample, Figure 10 shows the values of two
normalized objectives obj1 and obj2. The selected optimal solution
marked red achieved a reduction of 47.5% of the normalized total cost
function. In terms of capacity loss, this means that there is a decrease in
its value by 13.8% from 0.0138% to 0.0119%. In terms of service life,
when considering typical usage, this translates into 6.69 years of service
instead of 5.35 years, which is 25% increase in the life span of the
battery. This means less costs over the life cycle of the EB.

By considering both real and synthetic driving conditions, this
study aims to give a clear insight into the factors affecting the energy
consumption and battery degradation.

The findings of this study offer several practical implications for
public transit authorities, EV operators, and manufacturers,
emphasizing the potential of predictive maintenance and data-
driven energy consumption models to enhance the operational
efficiency of EB fleets. These can be summarized as follows:

1. Optimized Route Planning and Charging Infrastructure:
Accurate energy consumption forecasts, based on real-world
driving data and vehicle dynamics, enable public transit
authorities to optimize route planning. This ensures that
EBs operate within their energy limits, reducing the
likelihood of unexpected downtime due to depleted
batteries. Strategic placement of charging stations, guided by
these energy consumption models, minimizes infrastructure
costs and improves route efficiency, allowing buses to remain
in service longer while reducing charging interruptions.

2. Reduced Operational Costs: Predictive maintenance
strategies allow operators to identify potential mechanical or
electrical problems before they escalate, reducing breakdowns
and expensive repairs. Accurate estimation of battery
degradation further improves the maintenance planning and
extends the battery life, a significant cost driver for EBs. In

TABLE 2 Comparison between standard and actual test requirements.

Metric Unit Standard test Actual test Error

Time Sec 600 600 0%

Max. speed km/h 56.5 53.3 6%

Average speed km/h 18.57 17.4 6%

Standard deviation of speed km/h 15.8 14.96 5%

Distance covered km 3.095 3.01 3%

FIGURE 8
Consumed power and energy during the typical trip.
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addition, optimized energy use reduces operational costs, as
buses are deployed under conditions that minimize energy
waste and battery wear.

3. Improved Fleet Reliability: Ensuring reliable bus operation is
critical for transit operators to maintain public trust. The
proposed framework improves fleet reliability by optimizing
energy consumption based on variables such as passenger load,
traffic, and environmental conditions. The integration of real-
time data allows operators to dynamically adjust schedules and

routes in response to unexpected challenges, such as traffic
congestion or weather changes, while maintaining
energy efficiency.

4. Extended Battery Life: The battery degradation modeling
provided in this study has important implications for EB
manufacturers. Understanding how driving patterns,
charging habits, and environmental factors affect battery life
enables manufacturers to design more robust vehicles. This
leads to longer battery life, fewer replacements, and a reduced

FIGURE 9
Battery SoC and capacity loss.

FIGURE 10
Normalized objectives of the cost function.
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total cost of ownership for bus operators. In addition, smart
battery management systems that use predictive analytics can
be incorporated to optimize charging cycles and monitor
battery health in real-time.

5. Sustainability Goals: Public transit authorities are increasingly
focused on reducing their carbon footprint. Predicting and
optimizing energy consumption ensures that EBs operate
sustainably, minimizing energy waste and maximizing
battery efficiency. This contributes to meeting
environmental goals, such as reducing GHG emissions and
urban air pollution. Improved route optimization and vehicle
scheduling further support these sustainability efforts by
ensuring that buses follow energy-efficient routes.

6. Scalability and Real-Time Application: The presented
framework is scalable and adaptable to various regions,
climates, and fleet sizes. As EB fleets expand, this model
allows transit authorities to continuously optimize
operations in real-time, adjusting to changes in passenger
demand, traffic and energy costs. This scalability is essential
for cities aiming to increase their electric public transportation
systems while maintaining high levels of efficiency.

The afore-discussed results give clear insights into the significant
influence of the operational variables of electrified fleets on
achievable energy efficiency and lifetime prolongation of the
battery. These key-variables can be pointed out, namely, as:
allowable power throughput, SoC, and DoD of the battery, trip
duration, road grade, and ambient temperature. Conscious tuning of
these variables using different optimization methods can be
beneficial to minimize operational cost of electric buses. Besides,
the outcomes of this study can be used as guidelines for industry
experts and policymakers during planning and sizing of case-
oriented electric transportation. Furthermore, it should
mentioned that the proposed study and methodology are
applicable for intra-city public transportation, which might
produce different results when considered for other case-sensitive
types of transportation.

6 Conclusion

This study successfully developed and implemented a
framework to optimize the energy consumption and overall
performance of electric buses (EBs) through predictive
maintenance. The approach effectively integrates experimental
testing, modeling, and numerical optimization. By selecting a
real-world road scenario for testing, the research achieved a more
accurate estimation of energy consumption, emphasizing the
importance of using realistic conditions over standard driving
tests, which can underestimate energy use and battery life.

Battery degradation accelerates with higher discharge currents.
Therefore, it is advisable to avoid aggressive driving whenever
possible. The results indicate that optimal driving can extend
battery life by up to 25%.

The case study demonstrated that the proposed methodology
significantly reduced battery degradation and extended the service
life of EBs. These results are particularly beneficial for fleet
operators, as they provide strategies to minimize both operational

and maintenance costs. Overall, this research underscores the
potential of predictive maintenance and optimization techniques
to improve the efficiency and sustainability of electric bus
operations.

For future work, implementing the optimization results in an
experimental road test will provide valuable real-world data. In
addition, investigating the sensitivity of the optimal solution to
factors such as gross vehicle weight, temperature, driving behavior,
and road conditions will help to understand the robustness and
applicability of the proposed methodology under varying
conditions.
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