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Introduction: In recent years, the total mileage and line density of China’s
highways have increased year by year. It is estimated that by 2026, the total
mileage of national highways will exceed 5.74 million kilometers. An efficient
highway network is crucial for a country’s move towards traffic modernization,
economic development, and improvement of people’s livelihoods. The highway
route is the basic structure of the highway network, determining whether the
highway can maximize its economic and traffic effects. Therefore, research on
highway route design holds significant engineering value. Highway planning is a
complex issue involving a wide range of factors. Especially with the increasing
awareness of environmental protection, it is necessary to consider natural
problems in addition to technical and economic costs.

Methods: This paper first points out the important position of highway route
research in highway rules, summarizes the research status at home and abroad,
and lists conventional highway planning measures. It then discusses the
optimization design based on vehicle running speed and driver comfort, and
introduces related theories of deep learning and their applicability to multi-
objective optimization problems. Finally, aiming at the problem of highway route
planning influenced by many factors, a deep learning strategy based on a multi-
objective genetic algorithm is adopted, and its multi-objective optimization
model and optimization objective function are presented.

Results: The proposed deep learning strategy based on a multi-objective genetic
algorithm is a new attempt to combine genetic algorithms with deep learning in
highway route planning to solve its multi-objective comprehensive optimization
problem. The results indicate that this strategy can determine the best route
scheme by optimizing technology while satisfying external constraints, thereby
achieving the optimal solution in terms of technology and economy, and
improving the overall efficiency and sustainability of the highway.

Discussion: This study provides a reference for the application of deep learning
and other nonlinearmulti-objective optimization research, aiding the research on
highway route optimization design. By combining multi-objective genetic
algorithms with deep learning, it effectively solves various multi-objective
nonlinear problems, providing new methods and tools for highway route
planning.
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1 Introduction

“To get rich, build roads first” is an important guiding ideology of
China’s long-standing economic development. Since the founding of the
People’s Republic of China, China has been vigorously developing
transportation infrastructure, among which highway construction is
the most important mode of transportation. Since the beginning of the
21st century, with the progress and development of science and
technology, China has made great breakthroughs in the technology
and equipment of highway infrastructure, but these are all progress in
the process of construction and implementation. In the decision-making
stage of highway foundation project, the key factor to determine the
investment volume, construction quality and economic benefit of later
operation of highway construction project is the quality of route scheme
(Li et al., 2018; Fangqu and June 2019). At present, China’s highway
network has taken shape, but there are still some outstanding problems,
such as insufficient total amount and structural contradictions. By the
end of 2020, there are still more than 900 counties in China that are not
covered by national highways, and 18 newly-added cities with urban
population of more than 200,000 and 29 prefecture-level administrative
centers are not connected with national highways (Liu, 1997). According
to the National Highway Network Plan, by 2030, there will be 26,000 km
of national highways to be built, and 100,000 kmof ordinary national and
provincial trunk highways to be upgraded. China’s highway development
is at the critical stage of accelerating the network formation (Zhu et al.,
2020). Thus obtained roading. It can only be strengthened, not weakened.
It is particularly important to choose an excellent route scheme in the
decision-making stage of highway construction (Lin, 2011; Šetinc et al.,
2015). Themain basis of highway route selection is alignment design, and
the quality of route selection determines the quality of alignment design.
We usually regard them as a whole as the decisive factor of route
selection, and strive to achieve smooth alignment, broad vision, safe and
comfortable driving (Kang et al., 2012).

Throughout the development process of route optimization all over
the world, the concept of route optimization design was first put forward
in the middle of 20th century, and the developed countries such as the
United States, the former Soviet Union and Germany put forward the
program system of profile optimization. In 1973, the Organization for
Economic Cooperation and Development (OECD) integrated the route
optimization procedures of Britain, Germany, Denmark and France, and
conducted an application test in the construction of a new 14 km
expressway in Italy (Solanki et al., 1998; Jha and Schonfeld, 2000;
Sabatino et al., 2015). The final test results show that the optimization
design of the longitudinal section line can save about 10% of the main
materials of highway construction, such as cement and aggregate, which
has great economic value for highway construction, and also reflects that
the optimization design of the line has very high research value. After the
1970s, with the development of computer technology, the design of basic
engineering construction began to enter digital transformation, and the
optimization design of lines began to transform from graphic design to
three-dimensional design (Jha and Schonfeld, 2004; Jha and Kim, 2006).
More countries have made breakthroughs in the optimization design of
lines. Since 1979, our country has also carried out a lot of research on the
optimization technology of longitudinal section, plane and three-
dimensional line shape of line optimization design, and developed
many excellent optimization programs.

Route optimization encompasses a broader set of objectives
including construction costs, environmental impact, and long-term

sustainability. When considering route optimization from the user’s
perspective, the primary goal is to find the most efficient path that
minimizes travel time, fuel consumption, or other user-related costs.
Key elements include: Often the simplest form of optimization, focusing
on the minimal distance between two points. Incorporates factors such
as speed limits, traffic conditions, and road types to minimize the time
spent traveling. Optimizes for the least fuel consumption or toll costs,
balancing distance with fuel economy and toll expenses. Considers the
smoothness of the route, avoiding rough terrains, frequent stops, and
other inconveniences. These optimizations are typically achieved using
algorithms that leverage real-time data, historical traffic patterns, and
predictive modeling to provide users with the best possible routes.

For builders and infrastructure designers, route optimization
involves a more complex and multifaceted approach. The objectives
expand beyond immediate efficiency to include long-term
sustainability, economic viability, and environmental
considerations. Key components include: Minimizing the
expenses involved in building the route, including materials,
labor, and equipment. Reducing the ecological footprint by
considering factors such as deforestation, pollution, and wildlife
disruption. Navigating through or around natural barriers such as
mountains, rivers, and urban areas. Ensuring the route remains
functional and efficient in the long term, accounting for
maintenance, upgrades, and resilience to environmental changes.

Research has shown that many highways fail to attract traffic post-
construction because they did not adequately consider user behavior
during the design phase. This issue highlights the importance of
incorporating path choice models into the planning and design
process. Di Gangi and Polimeni (2022) examines this problem in
depth. Their research, “Path Choice Models in Stochastic
Assignment: Implementation and Comparative Analysis,” focuses on
how users’ route choices are influenced by various factors such as travel
time, cost, and convenience. They utilized stochastic user equilibrium
(SUE) models to better predict and understand these choices. These
models take into account the randomness in users’ perceptions and
preferences, offering amore realistic approach to traffic assignment and
route planning. By applying these models, planners can design highway
routes that align more closely with actual user preferences, thereby
increasing the likelihood that the new roads will be used as intended.
This approach helps avoid the costly mistake of building highways that
end up underutilized due to a lack of consideration for how users decide
on their travel routes (Di Gangi and Polimeni, 2022). Incorporating
user behavior modeling into highway route optimization involves using
random utility models (RUMs) to simulate decisions based on
maximizing perceived utility. This method integrates various
determinants of utility, such as travel time, cost, and convenience,
which are crucial for understanding and predicting route choice
behavior. By leveraging advanced computational techniques such as
deep learning and genetic algorithms, planners can achieve a more
comprehensive and adaptive optimization process. This ensures that
new highways not only meet technical and economic requirements but
also align with the preferences and behaviors of the users, ultimately
leading to higher traffic volumes and better utilization.

However, because there are many influencing conditions in the
implementation of route optimization, the route optimization
design in China is rarely applied in the actual highway
infrastructure project design (Jesus et al., 2011; Deng et al., 2017;
Bongiorno et al., 2019). After a long time of research on line
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optimization design, the measures to optimize the line design at
present are as follows:

(1) The design of line space, such as: the design of plane,
horizontal and vertical sections;

(2) Design of line shape, such as: design of line straightness;
(3) Design of line speed limit;
(4) The design of the line landscape.

These are the design measures of the route itself, which together
affect the operating speed of the traveling vehicle and the driving
experience of the driver, such as comfort and warning. Therefore, it
can be concluded that road route optimization is a complex problem
involving a variety of factors, including technical, economic and
environmental factors. In addition, understanding and
incorporating user behavior, especially route choice behavior, is
essential for developing effective and realistic models. Users’ route
choice decisions have a significant impact on the efficiency and
sustainability of highway networks.

Since the 21st century, computer and Internet technologies have
entered a period of rapid development, and the development of
computerized artificial neural networks has matured. People use it as
a research tool of applied mathematics to study the optimal route
design scheme in highway construction projects using optimization
theory. In this paper, the mature deep learning theory of computer
artificial neural network is selected to synthesize the various aspects
of optimal route design, combined with the user behavior model, to
optimize the running speed of the vehicle and the driving comfort of
the driver.

2 Literature review

2.1 Route design

Route optimization design first emerged in the mid-20th
century, with developed countries such as the United States, the
former Soviet Union, and Germany establishing profile optimization
programs. These early efforts focused on enhancing the efficiency
and effectiveness of highway route design by integrating various
engineering and economic considerations. In 1973, the Organization
for Economic Cooperation and Development (OECD) integrated
the route optimization procedures of Britain, Germany, Denmark,
and France, conducting an application test in constructing a new
14 km expressway in Italy. The test results showed significant
economic value, saving about 10% of main materials such as
cement and aggregate. This demonstrated the practical benefits of
route optimization, highlighting the potential for substantial cost
savings in highway construction.

A notable study in this domain is by Billheimer and Gray (1973),
which presents a route selection algorithm balancing fixed
construction costs and variable user costs in transportation
networks (Billheimer and Gray, 1973). This algorithm, designed
for a fixed set of nodes with known demand, applies link elimination
and insertion criteria to converge to a local optimum. The
algorithm’s practical application, demonstrated using a
representation of Minneapolis-St. Paul, underscores the
importance of balancing cost elements in network design.

Gao et al. (2005) introduced a solution algorithm for the bi-
level discrete network design problem, dealing with the selection
of link additions to an existing road network under given demand
conditions (Gao et al., 2005). The proposed algorithm,
addressing the computational difficulties of nonlinear bi-level
mixed-integer programming, demonstrated efficiency in
minimizing total travel cost while considering route choice
behaviors of network users.

Cantarella, Pavone, and Vitetta (2005) discussed heuristics for
urban road network design, focusing on lane layout and signal
settings (Cantarella et al., 2006). Their methods, employing
metaheuristics like Hill Climbing, Simulated Annealing, Tabu
Search, Genetic Algorithms, and Path Relinking, were compared
by applications to real networks, highlighting the effectiveness of
these approaches in optimizing urban road networks.

Urban network design has also evolved, incorporating heuristic
multi-criteria techniques based on genetic algorithms. Cantarella
and Vitetta (2006) analyzed urban network design through such a
heuristic approach, optimizing both network layout and link
capacity (Cantarella and Vitetta, 2006). Their method,
considering elastic demand with respect to mode choice and
incorporating peak period considerations, reflects the complexity
of urban route optimization and the need for multi-criteria
evaluation.

Russo and Vitetta (2006) proposed a topological method for
sorting and reducing solutions to urban network design problems
(Russo and Vitetta, 2006). Their approach, which applies cluster
analysis based on topological similarity and criteria values, provides
a systematic way to identify latent optimal network layouts, further
advancing the field of route optimization.

Additionally, Comi and Polimeni (2022) explored path choice
models using floating car data (FCD), emphasizing the importance
of reliable data collection and model structures that balance forecast
accuracy and real-world applicability (Comi and Polimeni, 2022).
Their methodology, applied to both passenger and freight transport,
highlights the practical benefits of integrating real-time data in route
optimization models.

Over time, the development of computer technology
significantly advanced route optimization methods, transitioning
from graphic design to three-dimensional design. This evolution
allowed for more accurate and comprehensive modeling of highway
routes, incorporating a broader range of variables and constraints.
Despite these advancements, the implementation of route
optimization design in China remains limited. The country’s
highway network has faced challenges such as insufficient total
mileage and structural contradictions, which have hindered the
widespread adoption of advanced route optimization techniques.
Continued research and development in this area are crucial to
overcoming these challenges and fully realizing the benefits of
optimized highway route design in China.

2.2 Genetic algorithms

Genetic algorithms (GAs) are widely used in various
optimization problems, including highway route optimization.
They simulate the process of natural evolution, using operations
such as selection, crossover, and mutation to evolve solutions
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towards the optimal. The fundamental principle behind GAs is to
iteratively improve a population of candidate solutions by retaining
beneficial traits and discarding less effective ones. This process is
analogous to natural selection, where the fittest individuals are more
likely to survive and reproduce.

The integration of GAs with other optimization techniques, such
as deep learning, further enhances their capabilities. In a study by
Turner and Miles (1971), a computer-assisted method was
developed for regional route location, marking one of the early
applications of GAs in transportation (Turner and Miles, 1971). The
book “Genetic Algorithms in Search, Optimization and Machine
Learning” by Goldberg (1989) is a seminal work that provides
comprehensive coverage of GAs and their applications in various
fields, including transportation planning (Goldberg, 1988). Later,
Beasley (1993) and Coley (1999) further refined these approaches,
demonstrating their practical benefits in optimizing highway
alignments (Beasley, 1993; Coley, 1999).

Zhang and Lu (2007) summarized the structural characteristics
of the bi-level programming model for CNDP and developed a
modern genetic algorithm tailored for solving these problems
(ZHANG and Jian, 2007). Their approach demonstrated excellent
convergence properties and reliable solutions, confirming the
practical applicability of GAs in transportation planning.

Xu, Wei, and Wang (2008) compared the efficacy of simulated
annealing (SA) and genetic algorithms in continuous network
design problems (CNDP) (Xu et al., 2009). Their findings
indicated that while SA is more efficient for high-demand
scenarios, GAs reach a more optimal solution in low-demand
scenarios despite requiring more computation time.

For highway route design, GAs are particularly effective in
addressing complex, multi-objective optimization problems. They
help find the best routes by considering multiple conflicting
objectives like cost, safety, and environmental impact. For
instance, Maji and Jha (2009) explored multi-objective highway
alignment optimization using GAs, highlighting their effectiveness
in dealing with complex, nonlinear problems (Cascetta, 2009). The
flexibility and adaptability of GAs make them well-suited for
highway route optimization, as they can efficiently navigate large
solution spaces and identify high-quality solutions that balance
various design criteria.

A significant advancement in this field is the bi-level model
proposed by Madadi et al. (2019) for optimizing road networks
accommodating both manual and automated driving (Madadi et al.,
2020). Their model formulates the problem as a network design
problem and presents an efficient algorithm that meets specific
solution requirements, outperforming other methods in all
considered criteria.

The work of Shanmugasundaram et al. (2019) applied genetic
algorithms to optimize one-way road network designs, focusing on
minimizing vehicle travel distance (Shanmugasundaram et al.,
2019). Their research showcased the potential of GAs to
effectively handle network design problems, emphasizing their
utility in optimizing travel directions and improving overall
network efficiency.

More recently, research by Li and Zhao (2020) applied GAs to
the optimization of taxi pick-up routes, showcasing their versatility
in modern traffic systems (Li and Zhao, 2020). By simulating natural
evolutionary processes, GAs provide robust solutions that balance

multiple conflicting objectives, making them an invaluable tool in
modern transportation planning and infrastructure development.

2.3 Neural networks

Neural networks, particularly deep learning models, have shown
great potential in solving complex optimization problems. They
mimic the human brain’s structure, consisting of multiple layers of
neurons that process inputs to produce outputs. This architecture
allows neural networks to learn from data and identify intricate
patterns that traditional methods might miss. The ability to handle
large datasets and extract meaningful insights makes neural
networks a powerful tool for various applications, including
highway route optimization.

Convolutional Neural Networks (CNNs) are a type of neural
network commonly used for image recognition tasks. They excel at
identifying spatial patterns and features within images, making
them useful for analyzing visual data related to highway design,
such as satellite imagery and terrain maps. By leveraging CNNs,
researchers can incorporate spatial data into the route
optimization process, enhancing the model’s accuracy and
comprehensiveness.

Deep Belief Networks (DBNs) are another type of deep learning
model applied in various pattern recognition and classification
problems. DBNs consist of multiple layers of stochastic, latent
variables, which enable them to learn hierarchical representations
of data. In highway route optimization, DBNs can effectively
integrate and process diverse data sources, such as traffic
patterns, environmental constraints, and economic factors. This
capability allows for the development of robust multi-objective
optimization models that address the complexities of highway
route design.

Notable research by Hinton et al. (2006) on deep learning has laid
the foundation for using neural networks in complex optimization
tasks (Hinton et al., 2006). More recently, applications by Krizhevsky
et al. (2012) with CNNs in image recognition have influenced their use
in spatial data analysis for transportation planning (Krizhevsky et al.,
2012). Additionally, Huang et al. (2018) demonstrated the
effectiveness of DBNs in traffic flow prediction, further validating
the applicability of deep learning in highway route optimization
(Huang et al., 2018). A significant advancement in the field is the
hybrid deep-learning-metaheuristic framework proposed by Madadi
and Correia (2023). Their framework uses a graph neural network
(GNN) to approximate the solution of the user equilibrium traffic
assignment problem and employs this model to calculate the fitness
function evaluations of a genetic algorithm (GA) for network design
problems (NDPs). This hybrid approach was tested on three networks
and demonstrated that it could provide solutions within a 1.5% gap of
the best results in less than 0.5% of the time used by exact solutions
(Madadi and Correia, 2023). Another noteworthy study by Chiou
(2024) introduced a knowledge-assisted reinforcement learning
evolution optimization (KARLEO) for road network design
problems under uncertainty. This method uses a stochastic link
traffic model to capture time-varying costs incurred by traffic flow
when link capacity is uncertain. The proposed approach significantly
improved over conventional methods by effectively reducing total
costs at a low computational expense (Chiou, 2024).
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2.4 Integration of genetic algorithms and
neural networks

The integration of genetic algorithms and neural networks in
highway route optimization leverages the strengths of both techniques
to enhance overall performance. Genetic algorithms provide a robust
mechanism for exploring the search space and optimizing multiple
objectives, while neural networks offer powerful predictive capabilities
that can evaluate the fitness of various route configurations.

In this integrated approach, the initial population is generated
randomly to cover a wide search space, ensuring diverse potential
solutions. The crossover operator used in this study is a two-point
crossover, where two parent solutions exchange segments of their
genetic code to produce offspring. The mutation operator introduces
random changes to the genes of offspring solutions with a low
probability, ensuring the exploration of new areas in the search space.

The neural network is integrated with the genetic algorithm
through a feedback loop. It evaluates the fitness of each solution,
predicting the performance of highway routes based on historical
data and real-time inputs such as traffic patterns, environmental
conditions, and construction costs. This prediction informs the
genetic algorithm, guiding it to select, crossover, and mutate
solutions more effectively. The genetic operators continuously
generate new and diverse route configurations, helping the neural
network learn and adapt more effectively.

By incorporating genetic operators, the neural network is exposed
to a broad spectrum of potential solutions, including both high-
performing and suboptimal routes. This comprehensive exposure
helps the neural network develop a nuanced understanding of the
factors influencing route performance, enhancing its ability to predict
the fitness of new solutions accurately.

Research by Zhang et al. (2019) demonstrated the successful
integration of GAs and neural networks in optimizing highway
alignments, achieving significant improvements in travel efficiency
and environmental impact (Zhang et al., 2019). Similarly, studies by
Wang et al. (2020) and Liu et al. (2021) further validated the benefits
of this integrated approach in various transportation scenarios,
underscoring its potential for widespread application (Wang
et al., 2020; Liu et al., 2021).

The integration of these techniques results in a powerful
optimization model capable of addressing the complex, multi-
objective nature of highway route design. This approach not only
improves the efficiency and sustainability of the transportation
network but also provides a scalable and adaptable solution for
future infrastructure planning and development.

3 Materials and methods

3.1 Problem definition

Highway route optimization is a multi-faceted problem
involving technical, economic, and environmental factors. The
primary objectives are to minimize travel time, construction
costs, and environmental impact while maximizing safety and
user comfort. Traditional methods often fall short in balancing
these objectives due to their inability to handle complex,
nonlinear relationships between variables. Therefore, an advanced

approach integrating deep learning and genetic algorithms is
proposed to address these challenges effectively.

3.2 Consider the optimal design of vehicle
running speed

First of all, we shouldmake it clear that there is an essential difference
between the designed speed limit of highway and the actual speed of
vehicles. The actual driving speed of vehicles is an important indicator to
truly reflect the quality of highway design. There are many conditions
that affect the driving speed of vehicles (Maji and Jha, 2009; Hou et al.,
2019). The subjective condition is the driver’s driving behavior4, and the
objective conditions are the quality of highway design and the quality of
driving vehicles. When the vehicle is running at a fast speed, the changes
of the road conditions, such as steep slopes and sharp bends, will affect
the driver’s driving behavior and lead to traffic accidents. It can be seen
that the comprehensive influence of subjective and objective factors
should be considered in the optimization design of vehicle running speed
(Mohammadi et al., 1995; Han et al., 2016).

(1) Driver’s driving behavior

Subjectively, the driver occupies the control dominance of the
vehicle. Drivers’ driving skills and habits determine the speed of
vehicles running on different road surfaces. When driving in a
straight line, most drivers will choose to drive at a constant speed
according to the speed limit or at a speed that can make them feel safe.
In the curve, it will slow down first, then pass, and then accelerate.

(2) Category composition of road vehicles

Vehicles on the road can be divided into passenger vehicles and
freight vehicles according to their uses, and small vehicles and large
vehicles according to their sizes. From the point of view of line design, the
design is generally based on large and small cars. Small cars are
characterized by small size, light load and good maneuverability.
Large cars are characterized by large volume, heavy load and poor
maneuverability. When designing the line, we should take into account
the composition of vehicles that may appear after the line runs, such as
roads with large vehicles, wide lanes and high subgrade strength.

(3) Line characteristics of the line

Generally, the linear characteristics of highways are mainly
straightness, slope and crisscross. When there are more straight lines
on the line, the overall running speed of the line vehicles will be faster,
andwhen there aremore curves on the line, the overall running speed of
the line vehicles will be slower. The larger the turning radius, the faster
the vehicle turns. As for the slope, the bigger the uphill slope, the more
difficult it is for a large vehicle to climb the slope, and the slower the
overall running speed of the vehicle will be. The steeper the slope, the
more difficult it will be to brake large vehicles, which will easily lead to
brake failure and serious traffic accidents (Jha, 2001; Vishnuraj and
Vishak, 2017).

According to the requirements of China’s “Code for Safety
Evaluation of Highway Projects”, when the running speed
of vehicles in line design is less than or equal to 80 km/h,
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designers need to evaluate the coordination of the running speed of
vehicles (Davis and Jha, 2011). The evaluation criteria are the
absolute value of the difference between the running speeds of
vehicles on adjacent road sections and the absolute value of the
gradient of the running speeds of vehicles. The absolute value of
running speed gradient is calculated as Eq. 1:

| ΔIv |� | ΔV85 |
L

× 100 (1)

Among them:
ΔIv Is the absolute value of the running speed gradient, km/h m;

ΔV85 Is the absolute value of the difference between the running
speed of the starting point and the end point of the unit line; L is the
target line length, M.

The following Table shows the evaluation standards for the
coordination of operation speed of various classes of highways. (Table 1).

(4) User Behavior in Route Choice

User behavior must be modeled concerning route choice to
create a realistic and effective highway route optimization model. In
highway networks, users’ route choices are typically modeled using a
stochastic utility model, specifically the maximum perceived utility
method. This approach assumes that users choose routes based on
maximizing their perceived utility, considering factors such as travel
time, cost, and convenience.

The model employs random utility models (RUM) (Cascetta,
2009), to simulate user decisions. These models calculate the
probability of a user choosing a particular route based on the
utility derived from each route option. The utility Uij of a route j
for user i is defined as Eq. 2:

Uij � Vij + εij (2)

Among them:
Vij is the deterministic part of the utility, and εij is the stochastic

component, capturing the unobserved factors. The probability Pij
that user i chooses route j is then modeled as Eq. 3:

Pij � eVij

∑ke
Vik

(3)

This utility function can be incorporated into both static and
dynamic assignment models. In static models, user behavior is
considered a constraint in the optimization problem, ensuring
that the route choices align with the equilibrium conditions
where no user can unilaterally reduce their travel cost by
switching routes. In dynamic models, user behavior is
continuously adjusted based on real-time conditions and
feedback, offering a more responsive and adaptive approach to
route optimization.

The integration of user behavior modeling into the highway
route optimization process enhances the model’s realism and
accuracy, ensuring that the proposed routes align with actual
user preferences and behaviors.

3.3 Optimal design considering
driver’s comfort

The driver’s comfort in the driving process is determined by
three main influencing factors and several secondary factors. The
main factors are:

(1) The characteristics of the highway are the straightness, slope,
etc., mentioned above;

(2) Road supporting facilities, such as traffic lights, traffic signs,
service areas and rest areas;

(3) External factors, that is, non-objective factors other than the
road itself and supporting facilities, such as the natural
landscape and climate on both sides of the road.

See the following Table for the primary and secondary factors of
driver’s comfort evaluation. (Table 2).

3.4Optimal design considering sustainability
objectives

The objectives to be considered must take into account the three
components of sustainability: economic, social, and environmental.

TABLE 1 Evaluation criteria for operation speed coordination of highways of various grades.

Highway classification, class of highway Evaluation criterion Coordination evaluation

Highways and first-class highways | ΔV85 | < 10 km/h excellent

| ΔIv | ≤ 10 km/h•m

10km/h≤ < 20 km/h | ΔV85 | good

| ΔIv | ≤ 10 km/h•m

| ΔV85 | ≥ 20km/h be poor

| ΔIv | > 10km/h•m

Second-class and third-class highways | ΔV85 | < 20km/h excellent

| ΔIv | ≤ 15km/h•m

| ΔV85 | ≥ 20km/h be poor

| ΔIv | > 15km/h•m
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Furthermore, it is necessary to balance the objectives of the users
(i.e., minimum travel time, minimum perceived monetary cost), the
manager (i.e., minimum management cost, minimum building cost),
and citizens (i.e., minimum pollution, minimum noise) (Banister,
2001; Cascetta et al., 2015; Russo and Rindone, 2021).

3.5 Deep learning and integration of
genetic algorithm

Deep learning is a branch of machine learning research, and its
main purpose is to imitate the human brain to establish a neural
network for analytical learning. Deep learning is a kind of
unsupervised learning. The concept of deep learning originates
from the research of artificial neural network. It mainly includes
three aspects of pattern analysis methods: (1) Convolution-based
neural network system, namely, Convolution Neural Network
(CNN). (2) Self-coding based on multilayer neurons neural

network, including self-encoder, and those that have received
wide attention in recent years. Sparse codingTwo classes (Sparse
Coding). (3) Pre-training with multi-layer self-coding neural
network, and then further optimizing the deep confidence
network (DBN) of neural network weights by combining the
discrimination information. After deep learning gradually
transforms the initial “low-level” feature representation into
“high-level” feature representation through multi-level
processing, complex learning tasks such as classification can be
completed with “simple model”, and multi-level perceptron with
multiple hidden layers is a deep learning structure.

Deep learning is applicable to nonlinear multi-objective
programming problems like highway route design optimization.
Combining deep learning with multi-objective genetic algorithms
(MOGA) effectively addresses multi-objective nonlinear problems
such as highway route design optimization (Figure 1).

(1) Initial Population Generation: Randomly generated based on
possible route parameters.

(2) Crossover: Combines two parent solutions to produce
offspring, promoting genetic diversity.

(3) Mutation: Introduces random changes to offspring,
preventing premature convergence and exploring
new solutions.

(4) Fitness Evaluation: Each solution’s fitness is evaluated based on
multiple objectives, ensuring diverse and optimal solutions.

3.6 Integration of genetic algorithms and
neural networks

The proposed methodology integrates genetic algorithms
(GAs) with neural networks to optimize highway route
design. This hybrid approach leverages the strengths of both
techniques to enhance the overall performance of the
optimization process.

The initial population is generated randomly to cover a wide
search space, ensuring diverse potential solutions. Each
individual in the population represents a possible highway
route, encoded as a sequence of parameters such as node
connections, segment lengths, and curvature. The diversity in
the initial population is crucial for exploring various regions of
the solution space, increasing the likelihood of finding high-
quality solutions.

The crossover operator used in this study is a two-point
crossover. In this process, two parent solutions exchange
segments of their genetic code to produce offspring.
Specifically, two crossover points are selected randomly along
the length of the parent chromosomes. The segments between
these points are swapped, creating two new offspring that inherit
characteristics from both parents. This operator promotes
genetic diversity by combining different traits, potentially
leading to superior solutions.

The mutation operator introduces random changes to the
genes of offspring solutions with a low probability. This process
involves altering one or more parameters of the offspring,
such as changing a node connection or adjusting a segment
length. The mutation operator ensures the exploration of new

TABLE 2 Primary and secondary factors for evaluating comfort.

Primary factor Secondary cause

Self-characteristics Road surface quality
Line pavement characteristics

Road width
Road surface grade

Supporting facilities Service area and rest area
Traffic light
Traffic signs

Line design landscape

External factor Natural landscape along the route
Weather

Toll-gate traffic flow

FIGURE 1
Basic theoretical model of deep learning.
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areas in the search space, preventing premature convergence to
local optima and maintaining genetic diversity within the
population.

3.7 Impact of genetic operators on
neural networks

The genetic operators play a critical role in the integration with
neural networks, particularly in how they influence the neural
network’s evaluation and learning processes.

The deep learning model is integrated with the GA through a
feedback loop, where the neural network evaluates the fitness of each
solution. The neural network is trained to predict the performance of
highway routes based on historical data and real-time inputs, such as
traffic patterns, environmental conditions, and construction costs.
This prediction provides a fitness score for each individual in the
population, guiding the selection process for the next-generation.

The genetic operators (crossover and mutation) affect the neural
network by continuously generating new and diverse route
configurations. As the GA evolves, it presents the neural network
with a wide variety of potential solutions to evaluate. This constant
influx of diverse data helps the neural network to learn and adapt more
effectively, improving its predictive accuracy over time. The neural
network, in turn, informs the GA about the quality of the solutions,
allowing the algorithm to focus on promising regions of the search space.

By incorporating the genetic operators, the neural network is
exposed to a broad spectrum of potential solutions, including both
high-performing and suboptimal routes. This comprehensive
exposure helps the neural network to develop a more nuanced
understanding of the factors influencing route performance,
enhancing its ability to predict the fitness of new solutions
accurately. The parameters used in the GA were as follows:

(1) Population size: 100
(2) Number of generations: 500
(3) Crossover rate: 0.8
(4) Mutation rate: 0.05

The test application demonstrated the model’s ability to
optimize route design by balancing travel time, construction cost,
and environmental impact. The results showed a significant
improvement in overall network efficiency and sustainability
compared to traditional design methods.

4 Results

4.1 Deep learning based on multi-objective
genetic algorithm

The core of highway optimization design is to determine the
best route scheme by optimizing technology on the basis of
satisfying external constraints, so as to realize the optimal
solution of technology and economy. Route design should not
only make the economic and social benefits optimal, but also meet
the multi-objective optimal consideration of safety, environmental
protection and aesthetics. Multi-objective optimization problem takes

the non-dominated solution or Pareto and optimal solution in
mathematics, which means that it can’t be compared simply. The
characteristic is that changing one of the objective functions will affect
other objective functions. If the multi-objective programming is
simply transformed into a single-objective programming, each
operation can only have one result, and multiple operations are
needed to get the myopic optimal solution, which will lead to a
large number of operations. Multi-objective genetic algorithm not
only satisfies the whole population, but also emphasizes individual
integration, which is an important way to solve the multi-objective
optimization problem. The deep learning network has the
characteristics of fitting the causal relationship between any input
and output, and is suitable for solving all kinds of nonlinear problems.
Combining multi-objective genetic algorithm with deep learning can
effectively solve all kinds of multi-objective nonlinear problems.

Multi-objective genetic algorithm (MOGA) is a global
optimization scheme based on Darwin’s evolution theory, which
is suitable for solving all kinds of constrained and unconstrained
problems. Its basic logic is to select the best individual as parents to
generate offspring in each iteration, so that the population can be
solved in the optimal direction. Figure 2 shows the flow chart of the
multi-objective algorithm. Each time, whether the genetic result
meets the optimal solution is checked. If yes, the result is output, and
if no, the iteration is repeated.

The core of MOGA training deep learning lies in mapping the
network to chromosomes. In the existing coding mode, network
parameters are used as chromosome elements. However, in large-
scale networks, this method will make the structure redundant.
Taking the deep learning network layer and the full link layer as
chromosome elements becomes a new thinking, which makes each
chromosome element always contain a connection weight or filter
value, thus reducing the chromosome structure and having a higher
convergence speed.

4.2 Multi-objective optimization model of
highway route

The multi-objective optimization problem can generally be
described as solving Y = (x1, x2, x3 . . . xn), as Eqs. 4 and 5:

Gi x( )≤ 0 i � 1, 2, 3 . . .m (4)
Hj x( )≤ 0 j � 1, 2, 3 . . . n (5)

If there are R constraints and Q solving objectives, and the Q
solving objectives contain certain conflicting factors, the optimization
objectives are expressed as f(Y) = {f1(Y), f1(Y), f3(Y). . .fQ(Y)}, and
f(Y*) can be satisfied when the optimal solution is {x1*, x2*,
x3*. . .xn*}. When establishing a function, it is often assumed that
the lowest cost or risk is the solution value. If the solution value is in
the opposite direction, it can be converted into the minimum value,
and the objective function can be expressed as Eq. 6:

minf Y( ) � min f1 Y( ), f1 Y( ), f3 Y( ) . . .fQ Y( ){ } (6)

The optimal solution can be expressed as Eq. 7:

P* � Y*{ } � X’∈ Ω, fj X’( )≤fj X( ), j � 1, 2, 3 . . .Q{ } (7)
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The set of all the non-dominated solutions is called the non-
dominated set (NDSET) of the current evolutionary population.
Through iterative solution, NDSET is constantly approaching
the optimal solution, and finally meets the following
requirements, as Eq. 8:

NDSET � f Y*( ) (8)

Figure 3 shows the systemmodel of deep learning network based on
multi-objective genetic algorithm training applied to highway route
planning optimization, in which expert design system and the
evaluation results of various national design indexes and safety
specifications on the survey results of the route are used as the basic
basis and weight reference, and then digital quantitative modeling is

FIGURE 2
Flow chart of multi-objective genetic algorithm.

FIGURE 3
Deep learning model based on multi-objective optimization.
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carried out for each index, and the data weight and evaluation results are
sent into the deep learning model to complete its multi-objective
optimization research, thus obtaining the optimal highway route scheme.

4.3 Optimize the objective function

Conventional multi-objective optimization is to quantitatively
evaluate all indexes by taking a certain index as a general
equivalent index, and carry out optimization research under this
index environment, such as taking economic indexes as equivalent
conversion in safety, environmental protection, technology and other
aspects, and finally forming a variable evaluation model, but this
model is affected by the conversion of equivalent indexes. Using
multi-objective optimization algorithm, multiple objective functions
can be directly coupled and ideal optimization results can be obtained.
The following mainly describes three optimization objectives: safety,
construction cost and geological disasters.

Road safety is the primary consideration in road design,
especially in mountainous areas of southwest China. Safety
requirements refer to the national JTG/TB -2014 Guide for Safety
Evaluation of Highway Projects, and the safety of the road sections
under construction is evaluated. The percentage of the road sections
evaluated as “good” is p1, the percentage of the road sections
evaluated as “good” is p2, and other evaluation results are p3 . . .

pn in turn. The objective function is Eq. 9:

minfs x( ) � w1* p1 + w2* p2 + w3* p3 + . . .wn* pn (9)

Where w1 . . . wn represents the safety impact coefficient
corresponding to different percentages.

The construction cost is an important consideration in the
construction project, and its total cost is the arithmetic sum of
the costs of all parts. Considering the construction of related lines,
the total cost of highway construction as Eq. 10:

minfe x( ) � Cos tew + Cos tcaa + Cos tcc + Cos ts + Cos tc (10)

Among them, Costew represents Earthwork, Costcaa represents
covers an area, Costcc represents civil construction, Costs represents
subgrade, and Costc represents curing.

In geological hazard assessment, the unit length of the line (such
as 1 km) and a certain distance on both sides of the line are often
taken as the assessment units (Figure 4). According to the evaluation
standards of geological survey and related articles, the risk of
geological disasters is divided into several grades according to

different degrees, such as slight, medium, medium-high, high-
risk, etc., the proportion of which is recorded as N1, N2 . . . Nn,
and the function description is Eq. 11:

minfd x( ) � b1* N1 + b2* N2 + . . . b2* Nn (11)
Where, b1 . . . bn represents the risk weight corresponding to
different percentages.

4.4 Test network and parameters

The test network consisted of a simplified model of a highway
system with varying terrain, traffic conditions, and environmental
constraints. The network parameters included:

(1) Number of nodes: 50
(2) Number of edges: 120
(3) Average traffic flow: 2000 vehicles per hour
(4) Environmental sensitivity zones: 10% of the total area

The fitness function was designed to evaluate each solution
based on travel time, construction cost, and environmental impact.
The results were compared to traditional route planning methods to
assess the improvements achieved by the proposed model.

The test application demonstrated the model’s ability to
optimize route design by balancing travel time, construction cost,
and environmental impact. The results showed a significant
improvement in overall network efficiency and sustainability
compared to traditional design methods. (Table 3).

These preliminary results highlight the effectiveness of
integrating deep learning and genetic algorithms in highway
route optimization. The model successfully identified routes that

FIGURE 4
Different optimization objective functions.

TABLE 3 Summary of results.

Metric Proposed model
improvement (%)

Risk
Weight

Average Travel Time
Reduction

15 0.4

Construction Cost Savings 12 0.3

Reduction in
Environmental Impact

18 0.3
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offered substantial improvements over traditional methods,
achieving a balanced optimization across multiple objectives.

4.5 Test network route analysis

To illustrate the effectiveness of the proposed model, we will
compare the routes identified by the proposed model with those
identified by traditional methods. Traditional methods in highway
route optimization typically include heuristic approaches and linear
programming techniques. These methods, while useful in certain
contexts, often fall short in addressing the complex, multi-objective
nature of highway route optimization.

(1) Traditional methods
① Route A (Heuristic approach)

Heuristic approaches in route optimization involve rule-based
strategies or expert knowledge to determine feasible routes. These
methods often prioritize a single objective, such as minimizing travel
time or construction costs, without considering the broader context. For
example, a heuristic approach might focus on finding the shortest
possible route to reduce travel time, disregarding other critical factors
like environmental impact or terrain difficulty. This narrow focus can
lead to suboptimal solutions where improvements in one area are offset
by significant drawbacks in others. Furthermore, heuristic methods lack
the flexibility to adapt to dynamic traffic patterns and evolving
environmental constraints, making them less effective in real-world
applications where multiple, often conflicting, objectives must
be balanced.

This route prioritizes the shortest distance to minimize travel
time. While effective in reducing travel duration, it often neglects
construction costs and environmental impacts. For example, Route
A might traverse environmentally sensitive zones, leading to higher
long-term ecological damage and potential regulatory challenges.
The heuristic approach’s single-objective focus limits its ability to
provide holistic solutions.

② Route B (Linear programming)

Linear programming techniques solve optimization problems by
modeling them as linear relationships. These methods can be highly
effective for certain types of problems, especially those with well-
defined, linear constraints and objectives. However, the inherent
limitations of linear programming become apparent in the context
of highway route optimization, which involves nonlinear and multi-
objective challenges. For instance, a linear programming approach

might successfully minimize construction costs by selecting routes
that avoid expensive terrains, but this often results in longer travel
times and higher environmental impact. The rigidity of linear
programming models makes it difficult to incorporate the complex
interactions between different objectives, such as the trade-offs between
cost, travel time, and environmental sustainability.

This route focuses on minimizing construction costs, often by
avoiding expensive terrains. Although this can lead to significant
cost savings, it frequently results in longer travel times and increased
environmental impacts. Route B may circumvent hilly areas or
bodies of water, extending the route length and thus the travel
time. Additionally, the longer route may pass through multiple
environmentally sensitive areas, further complicating its feasibility.

(2) Route C (integrated model)

The proposed model integrates deep learning with genetic
algorithms to address the limitations of traditional methods. This
hybrid approach simultaneously optimizes multiple objectives,
offering a more balanced and comprehensive solution. Deep learning
algorithms analyze vast amounts of historical and real-time data to
predict traffic patterns, environmental impact, and construction costs.
These predictions are then fed into a genetic algorithm, which iteratively
evolves a population of potential routes to find the optimal balance
between competing objectives. By considering a broader range of factors
and utilizing advanced machine learning techniques, the proposed
model can dynamically adapt to changing conditions and constraints,
providing more robust and sustainable route optimization solutions.

This route represents the optimized solution generated by the
proposed model, balancing travel time, construction cost, and
environmental impact. Route C demonstrates a 15% reduction in
travel time, a 12% reduction in construction costs, and an 18%
reduction in environmental impact compared to traditional methods.
The integratedmodel considers dynamic traffic patterns, adjusts for real-
time environmental data, and uses genetic algorithms to explore a wide
range of possible routes, ensuring that the chosen route is not only cost-
effective but also environmentally sustainable. This holistic approach
results in a more efficient and sustainable highway network, addressing
the multi-faceted challenges of modern infrastructure planning.

The comparison highlights the advantages of the proposed model
over traditional methods. (Table 4). By integrating deep learning and
genetic algorithms, the proposed model provides a more
comprehensive and adaptive solution to highway route optimization.
Traditional methods often excel in specific areas but fail to balance
multiple objectives effectively. In contrast, the proposed model’s ability
to optimize across various parameters results in routes that are not only
shorter and cheaper but also less harmful to the environment.

TABLE 4 Comparative results of routes identified by traditional methods and recommended models.

Metric Route A (heuristic approach) Route B (linear programming) Route C (proposed model)

Travel Time Relatively short, prioritizing the shortest distance Longer due to avoidance of expensive terrain Optimized to reduce overall travel time
by 15%

Construction Cost Moderate, as it does not fully account for terrain
costs

Lower, focusing on cost minimization Reduced by 12% compared to traditional
methods

Environmental
Impact

Higher, as it may pass through sensitive zones Moderate, with partial consideration of sensitive
zones

Minimized by 18%, avoiding sensitive zones
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5 Conclusion

5.1 Innovations

This paper presents a comprehensive approach to highway route
optimization by integrating deep learning and multi-objective
genetic algorithms. By incorporating user behavior modeling and
sustainability objectives, the proposed model offers a realistic and
effective solution to highway route optimization.

(1) Integration of Deep Learning with Genetic Algorithms: The
paper introduces a novel approach that integrates deep
learning with multi-objective genetic algorithms (MOGA).
This integration leverages the strengths of both techniques,
allowing for a more comprehensive and adaptive
optimization process. The deep learning model provides
robust predictive capabilities, while the genetic algorithm
efficiently explores and optimizes the search space.

(2) User Behavior Modeling: The inclusion of user behavior
modeling using random utility models (RUMs) adds a
layer of realism to the optimization process. By simulating
users’ route choice behavior based on perceived utility, the
model aligns more closely with actual user preferences and
behaviors, leading to higher traffic volumes and better
utilization of the proposed routes.

(3) Sustainability Objectives: Unlike traditional single-objective
optimization methods, this research focuses on balancing
multiple conflicting objectives, including travel time,
construction cost, and environmental impact. This multi-
faceted approach ensures that the proposed routes are not only
efficient but also economically viable and environmentally
sustainable.

(4) Dynamic Adaptation: The proposed model incorporates
dynamic traffic patterns and real-time environmental data,
allowing it to adapt to changing conditions. This capability
enhances the model’s accuracy and reliability, making it
suitable for real-world applications where conditions are
constantly evolving.

(5) Comprehensive Evaluation Metrics: The research employs a
detailed fitness function that evaluates each route based on
multiple criteria. This comprehensive evaluation ensures that
the selected routes optimize travel time, minimize construction
costs, and reduce environmental impacts.

5.2 Further advancement

Future research should focus on applying the model to larger and
more complex highway networks to validate its scalability and
effectiveness. Developing more sophisticated user behavior models
that consider additional factors such as individual preferences,
weather conditions, and traffic incidents can improve the model’s
accuracy and reliability.

(1) Scalability and Complexity: While the proposed model shows
promising results on a simplified highway network, its
scalability to larger and more complex networks needs
further validation. Future research should focus on testing

the model on extensive real-world networks to ensure its
effectiveness and efficiency in diverse scenarios.

(2) Enhanced User BehaviorModels: The current model incorporates
basic user behavior modeling. However, user preferences can be
influenced by a wide range of factors, including individual
preferences, weather conditions, and traffic incidents.
Developing more sophisticated user behavior models that
consider these additional factors can improve the model’s
predictive accuracy.

(3) Real-World Implementation and Validation: The model’s
application in real-world projects is crucial for assessing its
practical utility. Pilot projects and case studies should be
conducted to gather empirical data and refine the model based
on real-world feedback. This step is essential to bridge the gap
between theoretical research and practical implementation.

(4) Advanced Data Integration: The integration of advanced data
sources, such as high-resolution satellite imagery, real-time
traffic data, and environmental sensors, can further enhance
the model’s accuracy. Future research should explore ways to
incorporate these data sources effectively, providing a richer
dataset for the deep learning model.

(5) Interdisciplinary Collaboration: The complexity of highway
route optimization requires collaboration across multiple
disciplines, including transportation engineering,
environmental science, and computer science. Promoting
interdisciplinary research can lead to more innovative
solutions and a holistic approach to infrastructure planning
and development.
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