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Understanding and forecasting complex freight mode choice behavior under
various industry, policy, and technology contexts is essential for freight planning
and policymaking. Numerous models have been developed to provide insights
into freight mode selection; most use discrete choice models such as
multinomial logit (MNL) models. However, logit models often rely on linear
specifications of independent variables despite potential nonlinear
relationships in the data. A common challenge for researchers is the absence
of a heuristic and efficient method to discern and define these complex
relationships in logit model specifications. This often results in models that
might be deficient in both predictive power and interpretability. To bridge this
gap, we develop an MNL model for freight mode choice using the insights from
machine learning (ML) models. ML models can better capture the nonlinear
nature of many decision-making processes, and recent advances in “explainable
AI” have greatly improved their interpretability. We showcase how interpretable
ML methods help enhance the performance of MNL models and deepen our
understanding of freight mode choice. Specifically, we apply SHapley Additive
exPlanations (SHAP) to identify influential features and complex relationships to
improve the MNL model’s performance. We evaluate this approach through a
case study for Austin, Texas, where SHAP results reveal multiple important
nonlinear relationships. Incorporating those relationships into MNL model
specifications improves the interpretability and accuracy of the MNL model.
Findings from this study can be used to guide freight planning and inform
policymakers about how key factors affect freight decision-making.
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1 Introduction

Freight transportation, or the movement of goods, is a major component of the
economy and directly impacts the transportation system, public wellbeing, and
economic growth (Plumeau et al., 2012; Uddin et al., 2021). In the United States, the
transportation system moved a daily average of about 55.2 million tons of freight valued at
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more than $54.0 billion in 2019, and the tonnage shipped is
anticipated to grow at about 1.4% per year between 2019 and
2050 (Bureau of Transportation Statistics, 2019). Furthermore,
the freight system is constantly experiencing disruptions with
emerging technologies, changing business models, and behavior
shifts. For example, emerging autonomous truck technology has
the potential to greatly affect freight operations by reducing labor
costs and increasing operational efficiency. Indeed, freight is
anticipated to be the leading sector for autonomous vehicle
adoption in the United States (Viscelli, 2018). In addition, with
the growth of e-commerce and online shopping, the share of
smaller-sized shipments is also increasing (Keya et al., 2019).
Given the magnitude of the existing freight system, these changes
will dramatically impact economic sectors. Assessing the potential
implications of these changes and other technology advancements
on future freight demand requires understanding how current
freight decisions are made.

Among all freight-related decision-making, mode choice is one of
the most important issues and has critical implications for
transportation and energy systems (Uddin et al., 2021). In the
United States, freight travels over an extensive network of highways,
railroads, waterways, pipelines, and airways (Bureau of Transportation
Statistics, 2019). Shifts in freight demand by mode drive infrastructure
requirements across multiple networks. Moreover, freight mode
selection can greatly affect the energy and environmental impacts of
freight systems, given that the energy intensity of various modes can
vary by an order of magnitude (Bushnell and Hughes, 2020). Although
trucks are less energy-efficient, they make up the dominant freight
mode. In the United States, trucks transport 60% of commodities by
tonnage, resulting in about 300 billion vehicle miles traveled (VMT),
accounting for 25% of total highway energy use in 2019 (Bureau of
Transportation Statistics, 2019). One way in which public policy can
directly impact freight energy use is through regulation or incentives to
improve truck energy efficiency. However, policies that only target
trucks may not guarantee systemwide energy savings as the choice to
ship goods via truck rather than other possible modes is driven by a
range of factors. A rebound effect in energy use may emerge if demand
shifts frommore energy-efficient modes (e.g., rail) to trucks, potentially
offsetting the benefits of these policies (Bushnell and Hughes, 2020). A
well-constructed freight mode choice model can provide accurate
freight demand predictions to help inform policymakers about
potential freight mode shifts in the case of new regulations or
policies under consideration.

Numerous freight mode choice models have been developed to
date, offering insights into how mode decisions are made (de Jong
and Ben-Akiva, 2007; Pourabdollahi et al., 2013; Stinson et al., 2017;
Jensen et al., 2019; Keya et al., 2019; Bushnell and Hughes, 2020;
Holguín-Veras et al., 2021; Uddin et al., 2021). The major influential
factors on freight mode choice identified in those studies can be
broadly categorized into four groups:

• Industry categorization: representing the industry
classification of the shipper;

• Commodity characteristics, including commodity type,
shipment size, and value of goods being transported;

• Shipping characteristics by mode, including locations of
shippers, buyers, and carriers; travel distance, time,
shipping cost; and service quality by different modes;

• Infrastructure characteristics, including characteristics such as
network density of highways and railways and the presence of
intermodal facilities, ports, and warehouses.

Most of these previous freight mode choice models relied on
discrete choice models, especially logit models, which have long been
the gold standard in transportation behavior studies (Aboutaleb
et al., 2021; Jin et al., 2022). These models are theory-driven, provide
clear subject-matter interpretation, and hint at causal relationships
for meaningful extrapolation of behavioral outcomes (Aboutaleb
et al., 2021). Therefore, those models are well established for policy
analysis and allow users to fully scrutinize the results and
recommend potential amendments. One common form of logit
model used is the multinomial logit model (MNL) model, which is
based on random utility maximization and assumes that individuals
choose an alternative with the highest utility among all possible
options (Ben-Akiva and Lerman, 1985). Due to their practicality and
interpretability, MNL models are widely used by transportation
agencies, consultants, and researchers to simulate travel behaviors in
activity-based or agent-based modeling frameworks (Stinson et al.,
2017; Laarabi et al., 2023). However, the estimation of logit models
often relies on linear specifications of independent variables, as
defining nonlinear specifications in MNL or other forms of discrete
choice models is often an unwieldy task (Han et al., 2022) and
requires careful treatment of the formulation and interpretation
(Liao et al., 2020). Among existing freight mode choice models,
Pourabdollahi et al. (2013) adopted nonlinear transformations of
distance, cost, and value for mode choice and shipment size after
comparing performance from three candidate specifications (linear,
categorical, or logarithmic). Jensen et al. (2019) incorporated
nonlinear transformations of costs in mode choice modeling after
comparing several pre-defined cost functions. Keya et al. (2019)
created shipment weight bins for joint freight mode and size models
to allow for nonlinear impacts of shipment size. In these referenced
studies, formulating and comparing the specifications for MNL
models is a non-trivial task, often requiring researchers to
explore a large set of factor combinations with limited technical
and methodological guidance available. An approach to guide model
selection and refinement early on in the process would greatly
improve the ability of researchers to quickly identify critical
relationships in explanatory factors driving mode choice and,
therefore, improve the accuracy and applicability of these models
much more efficiently.

Recently, machine learning (ML) methods have attracted great
interest in travel behavior analysis and often outperform logit
models in terms of predictive accuracy (Zhao et al., 2020;
Javadinasr et al., 2023). Unlike logit models, which are
parametric and require a pre-defined model specification, ML
models often allow a more flexible structure and capture the
complex and nonlinear relationships of influential features. Some
preliminary studies have applied ML methods to model freight
mode choice and achieved satisfactory predictive accuracy
(Uddin et al., 2021). However, applications of ML methods in
behavior analysis are still limited due to a lack of theoretical base
for the extrapolation of findings and the low transparency and
interpretability of their results (Choudhury et al., 2018; Aboutaleb
et al., 2021). This hampers the ability of model users to understand
the potential implications of various policies on behavior shifts. ML
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models have proven useful in capturing the correlations in the
variable space where data are available and in making accurate
predictions (Aboutaleb et al., 2021). However, they cannot substitute
for discrete choice models in policy analyses where causal
mechanisms are required to justify the results under domain-
knowledge assumptions. Furthermore, implementing high-
dimensional ML models in existing travel demand modeling
frameworks can be challenging, and many transportation
agencies may lack the technical and financial resources to
support the adoption of advanced modeling methods in general
(Miller, 2023). Because of these limitations, ML approaches are
unlikely to completely replace MNL methods in travel demand
modeling. Instead, fundamental advances are needed to integrate
both approaches, enhancing knowledge and practice on freight-
related decision-making. A promising integration of MNL and ML
models involves using high-dimensional ML methods for model
specification and refinement. This produces an improved MNL
model specification while preserving the interpretability and
microeconomic grounding of traditional methods. Some early
successes directly couple ML and MNL methods in modeling the
travel behaviors of passengers to improve parameter estimation and
enhance the performance of MNL models in terms of prediction
(Han et al., 2022; Kim et al., 2022). Those studies rely on pre-defined
model specifications, and the final interpretations are still based on
MNL parameters, which do not fully reveal the complex
relationships of influential features captured within ML models.
In addition, such direct linkages may be prone to higher estimation
bias for out-of-distribution samples if insufficient samples in the
input space are used to train ML methods (Han et al., 2022).
Therefore, the integration of MNL and ML models should be
guided by a deep understanding of each model, relying heavily
on the interpretability and transparency of ML models and
resulting insights.

Recent advances in “explainable AI” have greatly improved the
interpretability of ML results in high-dimension spaces (Lundberg
et al., 2017; 2020). Thus, it has become possible to apply ML
methods to boost the performance of traditional logit models.
Specifically, SHapley Additive exPlanations (SHAP) is a game
theoretic approach to interpreting the output of any machine
learning model (Lundberg et al., 2017). With the SHAP
approach, a model prediction can be explained by assuming that
each factor value of the observation is a “player” in a game where the
prediction is the payout (Hart, 1989; Lundberg et al., 2017). Using
SHAP can reveal complex and nonlinear relationships between
behavior outcomes and various plausible factors. The SHAP
approach also supports most modern ML algorithms, allowing us
to select the best-performing ML methods and make informed
decisions on travel behavior outcomes based on accurate
prediction of the underlying trends. The insights from SHAP can
be used to improve the model specification in traditional logit
models to help enhance model performance (e.g., model
goodness of fit, accuracy, etc.). To date, a handful of studies have
adopted the SHAP approach for passenger travel behavior analysis
(Zima-Bockarjova et al., 2020; Jin et al., 2022; Lee, 2022). However,
its application in understanding freight behavior (Ahmed and
Roorda, 2022), especially in freight mode choice, remains limited.

In this study, we develop an MNL-based freight model choice
model using insights from ML models. Inspired by prior work on

passenger vehicle behavior (Jin et al., 2022), the MNL model
specification is informed by results from several off-the-shelf ML
models combined with SHAP interpretation. The findings from
both MNL and ML model interpretations are also compared to
investigate whether the interpretations from ML models are
supported by travel behavior theory and whether convergence of
results can be achieved between MNL and ML models on how key
factors affect freight mode choice. To the best of our knowledge, this
is the first study employing this approach in the context of freight
mode choice. We used the public-use data from the
2017 Commodity Flow Survey (CFS 2017) (U.S. Census Bureau,
2020) to develop both MNL and ML models of freight mode choice.
The CFS2017 is a collaborative effort between the Bureau of
Transportation Statistics (BTS) and the U.S. Census Bureau. The
CFS data are widely used by policymakers and transportation
professionals to assess demand for transportation facilities and
services, energy use, safety, and environmental concerns (Bureau
of Transportation Statistics et al., 2020). Using ML models
combined with the SHAP approach, we identify influential
factors affecting freight mode choice and their relationship with
specific modes. These findings are subsequently applied to revise the
MNL model specification for better performance.

The study aims to address the following research questions
related to freight mode choice:

• Understanding key factors related to freight mode decision-
making: Multiple influential factors and their relationships
with freight mode choice are identified, revealing nonlinear
and interactive relationships among factors that have not been
sufficiently addressed in prior studies.

• Advancing freight behavior analysis with ML approaches:
Several tree-based ML approaches are evaluated based on
their performance in predicting freight mode choice and
the validity of interpretation from ML models using
traditional econometric models. The evaluation not only
quantifies the improvement in prediction accuracy that can
be achieved using ML compared to MNL methods; it also
investigates if ML applications in freight mode choice provide
consistent interpretation with the theory-based discrete
choice approach.

• Improving the state of the practice for mode choice estimation:
The performance of the traditional MNL model is enhanced
using insights from theMLmethods and SHAP approach. The
enhanced MNL model better captures the nonlinear and
complex relationships between various factors and freight
mode selection. Moreover, the efficiency gained from the
SHAP approach allows for a significant reduction in
technical effort.

The proposed workflow is demonstrated using a case study for
Austin, Texas. The case study shows the effectiveness of the proposed
approach and evaluates the major drivers in regional freight mode
decision-making. The outcomes from this study can be used to inform
policymakers and practitioners about key factors that affect freight
mode decision-making and the variation of impacts under different
factor levels. The enhanced model can provide valuable insights
regarding potential mode shifts that might be anticipated under
various policy changes and the nonlinear impacts of certain policy
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levers on mode choice. For example, one insight derived from our
results is that policies targeting short-haul shipmentsmay have a greater
impact on mode choice than policies targeting long-haul shipments.
This study also provides a practical workflow that is applicable to other
regions and countries with similar data to improve their
modeling practice.

2 Materials and methods

In this study, the freight mode choice model is estimated using
CFS2017 data using two approaches: 1) a conventional logit model
and 2) anML-guided approach that advances logit models using ML
and SHAP interpretation. With the interpretable ML approach,
nonlinear relationships between various factors and mode selection
are identified and applied in the MNL model to improve model
specifications. The extent to which model performance improves by
incorporating the identified nonlinear relationships in the MNL
model specification is evaluated. Furthermore, the interpretations
from best-performing ML and MNL models are compared to
investigate if ML-generated interpretations are aligned with
conventional econometric models under theory-based
assumptions. The proposed approach is demonstrated using an
Austin, TX case study, with a focus on regional industry
characteristics and freight flow between Austin and the rest of
the United States. The general workflow is illustrated in Figure 1.
First, the data pre-processing steps, including cleaning, imputation,
and variable selection, are performed for all mode choice models.
Then, exploratory data analysis is performed to identify factors that
influence mode choice. Next, a conventional MNL model is
estimated using all available factors. Several ML classifiers are
trained in parallel, and the SHAP interpretations are generated
using the best-performing ML model. Nonlinear relationships

identified in SHAP results are used to improve the baseline MNL
model. Finally, the accuracy measures from the MNL and ML
models applied in this study are compared to evaluate model
performance. The joint insights from the improved MNL model
and the SHAP interpretation provide policy-relevant findings and
recommendations in Section 3.

2.1 Data cleaning and imputation

In this study, the shipments originating from and/or attracting to
the greater Austin region, including Austin-Round Rock (CFS code 48-
12420), San Antonio-New Braunfels (CFS code 48-41700), and the
remainder of Texas (CFS code 48-99999), are selected from CFS 2017
(U.S. Census Bureau, 2020) as the primary data source to estimate the
freight mode choice model. A shipment in CFS2017 is defined as a
single movement of goods, commodities, or products from an
establishment to a single customer or another establishment owned
or operated by the same company as the originating establishment.
Each shipment record includes detailed shipment characteristics, such
as shipment weights, distance, Standard Classification of Transported
Goods (SCTG) commodity types, and industry code (NAICS) of the
shippers. All these characteristics are essential drivers of freight mode
choice decision-making, as discussed in the Introduction. A total of
103,877 shipments are reported in CFS 2017, providing a modal picture
of disaggregated national freight flows and representing the only
publicly available source of multimodal commodity flow data
(Bureau of Transportation Statistics et al., 2020).

2.1.1 Data cleaning and pre-processing
The raw Austin-region dataset consists of 253,810 shipments

using 15 transportation modes. Several data-cleaning measures are
undertaken before model development to ensure the data quality

FIGURE 1
Workflow of freight choice modeling with interpretable machine learning methods.
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and practicality of model estimation. First, the modes representing
less than 0.3% of the sample are dropped due to their low market
share. Therefore, modes such as waterways and pipelines are
excluded. Samples missing critical information, such as shipment
weights and commodity types, are also excluded. In addition, the
data removal rules described by Stinson et al. (2017) are applied to
remove potentially erroneous records, such as air shipments above
15,000 lbs. or rail shipments less than 1,500 lbs. Finally, international
shipments are excluded due to gaps in generating factors (e.g., travel
time and cost) to account for their shipping characteristics. The
remaining shipments are categorized into five modes, including 1)
for-hire truck, 2) private truck, 3) intermodal rail (both rail and
InterModal truck + rail eXchange [IMX]), 4) air, and 5) parcel. The
two rail-based modes are combined into one rail intermodal (rail/
IMX) mode as each of them separately does not have a sufficiently
large sample size and may lead to difficulty in estimation if modeled
separately. The final sample size and mode split are summarized in
Figure 2. The cleaned Austin data contain 247,073 shipments, with
2.6% of samples removed due to the above-described data
cleaning steps.

2.1.2 Explanatory variable selection and imputation
The 2017 CFS dataset provides key shipment characteristics to

be used as explanatory variables in mode choice models. The
variables included for the model estimation, as well as their
summary statistics by freight mode (weighted by CFS scaling
factors), are provided in Table 1 and Figure 3. Regarding
shipment distance, private trucks are typically used for short-
distance shipments, while longer-distance shipments are often
made by rail, parcel, and air. Regarding shipment weights, trucks
(private and for-hire) are used more often for shipments greater
than 150 lbs. The share of freight carried by trucks declines and shifts
to rail when shipment weights reach 30,000 lbs. Finally, both trucks
and rail are more often used for shipping lower-value-density
commodities, while parcel and air are more often used for
higher-value goods. All these factors play essential roles in freight
mode decision-making and are included in the mode choice model.

Several categorical variables are derived to reduce the
dimensionality of the input features, including the commodity
type and industry type. The 41 commodity types in CFS2017 are

grouped into five categories based on shared characteristics: 1)
bulk commodities; 2) interim products and food; 3) fuels,
fertilizers, and other chemical products; 4) manufactured
goods; and 5) other unclassifiable commodities. The
commodity type categorizations are presented in
Supplementary Table SA1. As shown in Figure 3, those
commodity groups have different preferences for freight mode,
with trucks and rail mainly adopted for bulk goods and parcel
modes primarily used for manufactured goods. Regarding
industry type, the 2-digit North American Industry
Classification System (NAICS) codes of the shippers are used
to represent broader industry types. As shown in Figure 3, the
mining industry relies heavily on truck and rail/IMX modes, while
retail, management, and information industries prefer the parcel
mode. The transportation/warehouse industry has a high parcel
shipment share as CFS2017 only surveyed freight trucking and
warehousing establishments in this category (Bureau of
Transportation Statistics et al., 2020). Those establishments
mostly perform local pickup and delivery, sorting and terminal
operations, and line haul, leading to substantial parcel shipments.

In addition to the attributes obtained directly from CFS 2017,
two level-of-service variables, specifically shipping costs and
shipping time, are used in the mode choice model. These
variables are estimated based on methods described by Stinson
et al. (2017) for truck and rail and by Keya (2016) for air and
parcel (as the former study combined air and parcel into a single
mode). The detailed parameters of shipping time and cost
imputation are provided in Supplementary Table SA2. As those
variables are imputed using empirical values and may not capture
shipment-level variation, they are included as generic variables in
model estimation. The nonlinear relationships for mode preferences
by shipping time and costs are not explicitly studied in this work.
Shipping time is composed of in-vehicle travel time (IVTT) plus
delays/idling time for most modes except parcel. The IVTT is
estimated using distance and mode-specific average speed, as
presented in Eq. 1. The delay/idling times are estimated using
values from empirical studies.

t � t0 + d

v
(1)

FIGURE 2
Summary of sample size and mode split in cleaned Austin CFS data.
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• t is total shipping time;
• t0 is delay time;
• d is the distance in miles;
• v is the mode average speed in mph.

For parcel mode, Keya (2016) calculated that the shares of
shipping speeds of overnight (1-day), express (3-day), and
ground service (5-day) were 18%, 9%, and 73%, respectively,
based on FedEx data. Shipments are randomly assigned to the
three options using this time distribution. According to Figure 3,
private trucks and air are primarily used for shorter trips within the
day, while for-hire trucks, rail, and parcel are more often used for
multi-day shipments.

The shipping cost for all modes other than parcel is composed of
a minimum charge and an elastic charge based on the shipping rate
and shipment quantify, as shown in Eq. 2. The minimum charge and
shipping rate can vary by shipment characteristics, such as weight
and distance.

C � max c0, c1px( ) (2)

• C is the total shipping cost;
• c0 is the minimum charge;
• c1 is the shipping rate;
• x is the quantity of shipment (weight for truck/rail or
weight*distance for air/parcel).

TABLE 1 Summary statistics for selected explanatory variables (blue–lowest, red–highest).

Variable Variable definition Mean and standard deviation (std. dev. in parenthesis)

All modes Air Parcel Private
truck

For-hire
truck

Rail

Distance Shipment distance in miles 618.20 (582.00) 1,098.55
(514.88)

902.51
(509.58)

67.36 (91.74) 424.42 (564.84) 1,294.15 (566.07)

Weight Shipment weight in lb. 2,857.51
(71,411.46)

10.65 (56.16) 8.51 (16.81) 4,627.98
(17,110.55)

7,193.22
(16,598.42)

190,381.10
(1,467,300.60)

Value density Value density in $/lb. 34.62 (386.10) 136.94
(694.78)

45.92
(480.33)

10.68 (64.22) 27.05 (266.71) 1.05 (3.51)

Shipping cost Imputed shipping cost in $ 53.51 (226.49) 57.03 (50.35) 37.60
(45.07)

30.46 (98.70) 132.32 (503.36) 94.83 (25.73)

Shipping time Imputed shipping time in hr 64.24 (49.93) 14.00 (0.94) 99.16
(36.87)

12.74 (6.23) 24.35 (19.66) 94.83 (25.73)

Commodity—bulk Bulk goods 0.028 (0.165) 0.003 (0.056) 0.009
(0.096)

0.037 (0.188) 0.070 (0.256) 0.526 (0.499)

Commodity—Fuel_fert Fuel, fertilizer, and chemical
products

0.165 (0.371) 0.027 (0.161) 0.075
(0.264)

0.348 (0.476) 0.211 (0.408) 0.156 (0.363)

Commodity—Interim_food Interim products and food 0.064 (0.245) 0.019 (0.136) 0.017
(0.131)

0.174 (0.379) 0.069 (0.254) 0.069 (0.253)

Commodity—Mfr_good Manufactured goods 0.694 (0.461) 0.948 (0.222) 0.866
(0.341)

0.343 (0.475) 0.612 (0.487) 0.229 (0.420)

Commodity—other Other commodities 0.049 (0.216) 0.003 (0.059) 0.032
(0.176)

0.099 (0.298) 0.038 (0.191) 0.021 (0.142)

Industry—wholesale Wholesale industry 0.512 (0.500) 0.655 (0.475) 0.295
(0.456)

0.892 (0.310) 0.693 (0.461) 0.125 (0.331)

Industry—Manufacturing Manufacturing industry 0.090 (0.286) 0.139 (0.345) 0.082
(0.274)

0.045 (0.208) 0.166 (0.372) 0.405 (0.491)

Industry—mining Mining industry 0.009 (0.093) 0.000 (0.000) 0.000
(0.000)

0.010 (0.098) 0.029 (0.169) 0.465 (0.499)

Industry—retail Retail industry 0.286 (0.452) 0.166 (0.372) 0.466
(0.499)

0.045 (0.207) 0.049 (0.216) 0.000 (0.000)

Industry—information Information industry 0.005 (0.068) 0.001 (0.031) 0.006
(0.076)

0.000 (0.021) 0.007 (0.082) 0.000 (0.000)

Industry—Mgt_companies Management company
industry

0.002 (0.041) 0.001 (0.024) 0.002
(0.048)

0.001 (0.025) 0.001 (0.035) 0.000 (0.004)

Industry—Trans_Warehouse Transportation and
warehouse industry

0.097 (0.296) 0.039 (0.194) 0.149
(0.356)

0.007 (0.085) 0.054 (0.227) 0.004 (0.066)
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For the parcel mode, an exponential function is applied to
generate the shipment cost based on parcel weight. Based on
Figure 3, shipping costs for parcel modes are generally cheaper,
while for-hire trucks are often more expensive.

2.2 Conventional approach of the freight
mode choice

Conventional discrete choice models are based on random
utility theory, which assumes decision-makers select the
alternative with the highest utility (Ben-Akiva and Lerman,
1985). Those utilities are not known with certainty and are
treated as random variables. In the case of freight mode choice,
using the MNL approach as presented in Eq. 3, the utility Uik of
choosing mode k for shipment i takes the following form:

Uik � vik + εik � αk + βkXi + γkYik + δZik + εik (3)

• Uik is the utility derived from selecting mode k for shipment i;
• vik is the systematic component of the utility;
• εik is the unobserved error term, assumed to follow the
Gumbel distribution;

• αk is the alternative-specific constant vector;
• Xi is the vector of shipment-level factors, including the
commodity group, shipper industry group, shipment
weight, and value density;

• βk is the alternative-specific coefficient vector associated with
shipment-level attributes;

• Yik is the vector of joint shipment-level and alternative-
specific factors, notably shipment distance (routed distances
for truck and rail and great circle distances for parcel and air);

• γk is the vector of shipment distance coefficients;
• Zik is the vector of imputed level-of-service factors, including
travel time and shipping costs;

• δ is the generic coefficient vector for travel time and
shipping costs;

The probability pik of choosing mode k from a set ofKi available
alternatives for shipment i can then be specified, as shown in Eq. 4.

pik � exp vik( )
∑k∈Ki

exp vik( ). (4)

Mode availability constraints are imposed on individual
shipments to generate the available choice set, Ki, based on the
following rules, as suggested by CFS2017 data:

• Parcel mode is only available to shipments below 150 lbs.
• Air mode is only available to shipments below 410 US tons.
• Private truck mode is only available to shipments
within 500 miles.

2.3 Machine learning guided approach

The second pathway to estimate the freight mode choice model
is using the insights fromML classifiers to improve the specifications
in MNL models. This approach provides broader benefits beyond

improving the model prediction accuracy demonstrated in prior
studies (Zhao et al., 2020; Uddin et al., 2021; Javadinasr et al., 2023).
It also offers a practical way of visualizing and understanding the
complex relationships between various factors and behavioral
outcomes and capturing those complex relationships into the
conventional logit model structure.

2.3.1 Machine learning method selection and
estimation

In this study, three tree-based ML methods are selected for the
freight mode choice estimation due to their 1) suitability for
resolving nonlinear relationships observed in high-dimensional
data with high accuracy and 2) seamless connection with the
SHAP TreeExplainer (Lundberg et al., 2020) to ensure
interpretability. Tree-based methods partition the factor space
into a set of rectangles and then fit a simple model (like a
constant) in each one (Hastie et al., 2009). There are three major
advantages of the tree-based methods in the context of modeling
freight mode choice: 1) tree-based methods have advantages in
handling mixed data types, missing values, and outliers, which are
known issues within CFS data (Bureau of Transportation Statistics
et al., 2020); 2) tree-based methods are computationally efficient and
do not require intensive computational resources; and 3) when
boosted or ensembled, tree-based methods can fit high-dimensional
data with high accuracy. In previous applications, tree-based models
consistently outperformed standard deep learning models on
tabular-style datasets where features are individually meaningful
and do not have strong multi-scale temporal or spatial structures
(Lundberg et al., 2020). They also outperform many other ML
classifiers and achieve similar accuracy to deep neural networks
in the area of travel behavior (Wang et al., 2021). Therefore, they are
promising in predicting mode choice with the CFS2017 data.
Specifically, the following tree-based ML models are selected for
this study:

Random forest (RF): RF (Breiman, 2001) is a substantial
modification of bagging that builds a large collection of de-
correlated trees and then averages them. RF models often
perform similarly to boosting methods, and they are simpler to
train and tune. In a previous benchmark effort comparing the
performance of various ML and discrete choice models in travel
behavior studies, the RF method was the most computationally
efficient, thus balancing between prediction and computation
(Wang et al., 2021).

Boosting trees: The motivation for boosting was a procedure that
combines the outputs of many “weak” classifiers to produce a
powerful “committee” by constructing an ensemble predictor
using gradient descent in a functional space (Hastie et al., 2009;
Prokhorenkova et al., 2017). There are many implementations of
boosting tree classifiers, such as XGBoost, pGBRT, LightGBM, and
CatBoost (Chen and Guestrin, 2016; Prokhorenkova et al., 2017). In
this study, two boosting tree methods are selected due to their
scalability for large datasets and demonstrated model accuracy in
prior studies.

• XGBoost: XGBoost is a scalable ML system for tree boosting
that is computationally efficient, provides scalable solutions to
many complex problems, and is suitable for handling sparse
data (Chen and Guestrin, 2016). Those advantages are
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particularly relevant for the freight mode choice model,
especially given that most shipments are heavily skewed
toward regional travel, manufactured products, and a subset
of industries, as indicated in Table 1.

• CatBoost: CatBoost is another tree-based boosting method
that implements an ordered boosting algorithm for processing
categorical data (Prokhorenkova et al., 2017). With such an
implementation, CatBoost addresses the “prediction shift” of

FIGURE 3
Summary of freight mode split by selected explanatory variables: (A) commodity type, (B) industry type, (C) shipment distance, (D) shipment weight,
(E) value density, (F) travel time, and (G) travel cost.
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other boosting methods, in which the distribution of
prediction shifts from training data to testing data.
CatBoost often outperforms other boosting methods in
modeling categorical data and thus is selected for
estimating the freight mode choice model.

The selectedMLmethods are trained and tested in Python, using
input factors described in Table 1. A stratified sampling is used to
generate the 80%/20% training/testing split by mode to include
sufficient observations within each mode. The hyperparameter
selection and cross-validation are performed using the
“HalvingGridSearchCV” function from Python’s “scikit-learn”
package (Pedregosa et al., 2011) on training data. Essential model
hyperparameters, such as learning rate, regularization terms, and
tree size, are selected to provide the highest cross-validation
accuracy. Model performances are demonstrated using the out-
of-sample testing data.

2.3.2 Model interpretation and enhancing
specification using SHAP TreeExplainer

In addition to accuracy, these ML methods are also expected to
be interpretable and explain how themodel uses the input features to
make predictions (Lundberg et al., 2017). While the tree-based
methods provide feature importance to rank the global
contributions of input factors on the output, they often lack a
way to provide local explanations that show the direction of
impacts of input factors on individual predictions or interactions
among input factors. To address this, the SHAP TreeExplainer is
introduced to provide a local explanation for tree-based models
(Lundberg et al., 2020). It facilitates the exact computation of
optimal local explanations for tree-based models, captures factor
interaction, and provides a set of visualization tools to understand
global model structure based on local explanations. In
TreeExplainer, Shapley values (the attributions of output to
factors) are computed by introducing each factor into a
conditional expectation function, fx, of the output, as presented
in Eq. 5.

fx � fx S( ) ≈ E f x( )∣∣∣∣xS[ ] (5)

• f(.) is the estimated model;
• x is a specific input;
• S is the subset of factors (or independent variables).

Using the conditional expectation functions in Eq. 5, the Shapley
values in TreeExplainer are defined in Eq. 6.

ϕi f, x( ) � ∑
S⊆N\ i{ }

S| |! M − S| | − 1( )!
M!

fx S ∪ i{ }( ) − fx S( )[ ] (6)

• ϕi(f, x) is the attribution (or Shapley value) of the i th factor to
tree-based model f among input x;

• N is the set of all factor ordering;
• S is the subset of all factors that do not include factor i;
• M is the number of input factors for the model.

After calculating the SHAP values for ML classification models,
the attribution of each factor toward the preference of each mode,

ϕi(f, x), can be generated for each observation to understand the
local impact of these factors. A series of SHAP visualization tools is
demonstrated in Figure 4 using SHAP values from the CatBoost
model to illustrate how to interpret ML outcomes using
TreeExplainer and leverage those insights for MNL specifications.
First, an example of the SHAP interpretation of a single observation
is provided in Figure 4A, which illustrates the SHAP values for a
single shipment and selection of a single mode. The model output of
the single shipment, in this case, the log odds of choosing private
truck, is captured in the blue line. The expected log odds
corresponding to values on the x-axis are generated after
introducing each factor, and the final values after including all
factors are color-coded on the line. Each row represents how
individual factors shift the model output to its final values; for
example, travel time and distance decrease the log odds of choosing
private truck, while shipment weight increases the log odds. The
value in parentheses annotates the current values of each factor; for
example, the distance for this shipment is approximately 900 miles.
Overall, most factors contribute negatively to the log odds of
choosing private trucks, with travel time having the largest
negative impact. Some factors, such as all the industry indicators,
do not affect the preferences for selecting private trucks in this case.
After performing a logit conversion of the model output and
decomposing factor contributions by the probability of choosing
private truck in Figure 4B, the trends are even clearer. Introducing
travel time to the model led to the expected probability of choosing
private truck shift from 0.6 to 0.1, while distance, travel cost, and
value density also contributed negatively but to a lesser extent. In
summary, the SHAP TreeExplainer helps define how the
combination of input factors contributes to individual
observations and can help users understand the local effects of
various factors in estimating results.

The SHAP interpretations of each observation and mode must
be assembled to generate the final insights to support the
specification of the MNL model, which captures the global trends
of all observations. In addition, the SHAP value is calculated using
output log odds of choosing each mode from the ML model, which
provides a direct connection between the SHAP interpretations
from the ML model and the functional forms of mode utilities in
the MNLmodel. Three sets of summary results are provided to show
the relationship between the predicted outcomes and input factors
(Lundberg et al., 2020) and can be used to guide the development of
MNL specifications:

2.3.2.1 Global measure of feature importance for
variable selection

Global feature importance is generated by averaging the
absolute SHAP values across the entire dataset, as illustrated
in Figure 4C. It indicates the global importance of all input
factors and is often used as a reference for variable selection. The
variables labeled with “CMD” are commodity types, while
variables labeled with “IND” are industry indicators. The
factors ranked at the top of the figure, such as travel time,
distance, and cost, have substantial impacts on mode selection
and should be kept in MNL specifications. The lower-ranked
factors with low feature importance, such as management and
information industry, have negligible impacts on the results and
can be dropped from model specifications.
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2.3.2.2 One-dimensional scatter plots (or beeswarm plots)
for identifying the direction of impacts

The beeswarm plots provide both the magnitude and prevalence
of a factor’s effect for each output class, as illustrated in Figure 4D.
Each point represents the SHAP values of a single factor toward each
mode within a single observation, and the vertical spread of each
swarm represents the density of the points. The direction of such
effects can also be revealed by adding color that reflects the raw
factor values. The directions of impacts are labeled for the top eight
influential factors based on the sign of the SHAP values under
various factor values. For example, lower travel time tends to have
positive SHAP values on log odds of private trucks, suggesting a
negative correlation between travel time and preference toward
private trucks. The beeswarm plots can be used to validate the
direction of impacts in MNL estimations and to identify potential
mixed impacts if no clear directions are identified in the plots.

2.3.2.3 Dependence plots of individual features for
nonlinearity identification

Plotting the factor’s values on the x-axis and the factor’s SHAP
values on the y-axis for all observations produces a SHAP
dependence plot that shows how much a selected factor impacts
the prediction of a candidate mode, as illustrated in Figure 4E. The
interactive effects of several factors can also be revealed by color-
coding each dot with a secondary factor. The direction of the scatter
shows the direction of impacts for selected factors, with a downward
trend indicating the negative impacts of this factor on selecting the

specific modes and vice versa. The slope of the scatterplots indicates
whether potential nonlinearity is observed for selected factors on
choosing this mode, and intervals of factor values with different
slopes suggest that potentially heterogeneous effects are being
captured by the MNL model. The vertical spreads under fixed
factor values indicate the degree of interactive effects associated
with this factor value, color-coded by factors with the highest
interactive effects. The dependence plots are useful in
determining nonlinear functional forms of mode-specific
variables in MNL specifications, and the turning points of SHAP
dependence plots can be used to define the nonlinear bins in an
MNL model. The color code from SHAP can also inform potential
interactive factors to be included within the MNL specifications.

In summary, the insights from the SHAP TreeExplainer can be
used to enhance the specifications of the MNL model. The potential
new specifications may include 1) selecting factors based on feature
importance, 2) generating nonlinear specifications, such as using
binary variables with binning/turning points identified from SHAP
dependence plots, and 3) adding interaction terms. Not all the
observed relationships can be estimated in the MNL model, as it
has a much longer run time and becomes computationally
impossible to fit with large sample sizes, high input dimensions,
or simulation-based estimation (Wang et al., 2021).

Finally, the performances of each model (both MNL and ML)
are evaluated using several accuracy measures on the out-of-sample
testing dataset, including overall accuracy, precision, recall, and F1-
score. The accuracy measures can be combined for all modes either

FIGURE 4
Illustration of SHAP TreeExplainer interpretations, including: (A) SHAP interpretation of single observation using log-odds, (B) SHAP interpretation of
single observation using probability, (C) global feature importance of all modes, (D) beeswarm plot of a single mode, and (E) dependence plot of a
selected factor for a single mode.
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through the flat average of mode-specific measures (macro average)
or weighted by sample size in each mode (weighted average). The
detailed formulation of each performance metric can be found in
Supplementary Appendix B. In addition, result interpretations from
best-performing ML and MNL models are also compared against
each other to investigate if both models suggest similar mode
preferences with respect to key influential factors. The directions
of impacts from both sets of models are compared, together with
findings from empirical studies, to examine if a correlation derived
from ML is supported by causal relationships defined through the
econometric approach and if convergences can be drawn from two
distinct approaches.

3 Results

The methodology described above is implemented in the Austin
region to develop MNL and ML models and provide insights into
freight mode choice decision-making. Specifically, a baseline MNL
model (“bMNL”) is estimated using the conventional approach
described in Section 2.2, while an advanced MNL (“aMNL”) model
is estimated withML-guided improvements to the baseline as described
in Section 2.3. This section compares the performance of the MNL and
ML models to evaluate the accuracy of different approaches. Next,
results from the SHAP TreeExplainer are demonstrated with the best-
performing ML model to investigate the relationships between various

factors and freight mode choice. Finally, the bMNL and aMNL results
are compared to the insights from the SHAP interpretation. The
conclusions and recommendations are drawn based on the SHAP
results and the aMNL estimations.

3.1 Performance measures

The performance measures of all models are illustrated in
Figure 5, with performance metrics generated from out-of-sample
testing data. Regarding overall classification accuracy, RF and
CatBoost have the highest accuracy, followed by XGBoost, and
the tree-based models outperform the MNL models. The aMNL
model has higher accuracy than the bMNL model, with additional
parameters capturing nonlinear relationships. Regarding detailed
accuracy measures such as precision, recall, and F1-score, MNL
models generally have lower accuracy than ML models. The aMNL
model provides a better balance between precision and recall (as
they move in opposite directions) than the bMNL model, leading
to slightly higher F1-scores in aggregate. Finally, regarding
accuracy by modes, ML methods generate accurate predictions
for all modes, while the accuracies of the two truck modes are
slightly lower (as they share great similarities and existing factors
may be insufficient to distinguish them). Compared to ML, MNL
models have larger prediction errors with respect to air and rail/
IMX modes, potentially due to their low sample size. The aMNL

FIGURE 5
Performance comparison of all models on testing data, including (A) overall prediction accuracy, (B) accuracy measures of ML methods, and (C)
accuracy measures of MNL methods.
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model helps improve F1-scores for for-hire truck and rail
compared to the bMNL model, while F1-scores for other modes
do not change. In general, ML models outperform MNL models in
all performance measures, but partially including the nonlinear
relationship in the MNL specifications helps increase the accuracy
of MNL models.

3.2 Machine learning model performance
and interpretation

In this study, SHAP interpretations are generated from the
CatBoost model for a close examination of the results. Among
the three ML models, CatBoost demonstrates the best
performance (and is similar to RF) and supports the exact
estimation of SHAP values, while SHAP values of the RF
model can only be approximated due to the high
computational burden. The outputs of CatBoost provide log
odds for each output class (freight mode in this study), and
SHAP values are estimated for each mode to demonstrate the
attribution of factors to expected log odds for all five freight
modes (regardless of mode availability). Positive SHAP values
indicate increases in the log odds of the predicted freight mode
or preferences toward this mode and vice versa. First, the global

feature importance using mean SHAP values is shown in
Figure 4C, color-coded by mode to show the attribution of
those factors to each freight mode. Travel time, cost,
shipment weight, distance, and value density are the top five
factors that affect the freight mode choice. Industries such as
management, information, and mining have negligible impacts
on freight mode choice, potentially due to their low presence in
the region, as indicated in Table 1.

Next, the beeswarm plots in Figure 6 demonstrate the
importance ranking of input factors and the direction of
impacts toward each freight mode. The factors on the top
with a wider range of SHAP values are the most important
factors influencing a selected freight mode; the density of the
dots shows the number of observations, and the color of the dot
shows in which direction the factor drives the mode choice. For
for-hire trucks, used as the base alternative in the MNL model,
higher shipment weight and distance increase the likelihood of
choosing for-hire truck, while higher value density decreases the
preferences toward this mode. The shipment distance has the
opposite impacts on private versus for-hire trucks, while impacts
of other top influential variables remain similar between the two
truck modes. Rail mode shows great similarity to for-hire trucks
in terms of major factors and directions of impact, except that
travel time is often positively correlated with rail due to its longer

FIGURE 6
Local feature importance of input factors by mode, including (A) for-hire truck, (B) private truck, (C) air, (D) parcel, and (E) rail.
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delays. Air and parcel modes show different use cases from truck
and rail and are more likely to be used for high-value and light-
weight goods. Most industry and commodity variables show
relatively small impacts on the mode selection. A few notable

findings include shipments containing manufactured goods or
from manufacturing industries exhibiting a negative preference
towards private trucks and a positive preference for air. All of
these relationships are aligned with observed trends from

FIGURE 7
Dependence plots for selected factors and all modes, including (A) for-hire truck, (B) private truck, (C) rail, (D) air, and (E) parcel.
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Figure 3. Finally, the beeswarm plots suggest some nonlinear
relationships between factors and mode selection, especially
when asymmetrical positive versus negative SHAP values are
observed. For example, in the case of rail mode, the higher
shipment weight segment has a long tail of positive SHAP
values, while the lower weight segment has negative SHAP
values close to 0, suggesting the higher weight segment has a
more profound impact on choosing rail.

The dependence plots in Figure 7 provide a clear view of
intricate relationships between each freight mode and top
influential continuous factors (excluding travel time and cost as
they are imputed and not individual-specific). The shapes of the
curves show the relationship between input factors and predicted log
odds of freight mode. The vertical spread at a fixed factor level
indicates the degree of interactive effects the selected factor has with
other factors toward freight mode selection. Some plots are zoomed
in to show the location of turning points (e.g., air and parcel modes
are mostly used for small shipments, so the weight ranges are
truncated). For distance, weight, and value density, almost all the
relationships demonstrated are nonlinear, and some are non-
monotonic. In general, when distance increases, the likelihood of
private trucks decreases, while the likelihood of for-hire trucks and
air increases. Rail and parcel modes show some mixed and non-
monotonic changes. However, after a 500-mile range, the SHAP
curves turn flat for almost all modes, and the increment of distance
no longer causes a major shift in mode preferences. For shipment
weight, the likelihood of choosing truck and rail increases with
higher weights, while the likelihood of parcel and air decreases. For
all freight modes, there appears to be a weight threshold (e.g.,
150 lbs. for air), and the levels of impact almost stay constant
after that threshold. For value density, the directions of impacts
under low-value density (≤ $5/lb.) are mixed, especially for for-hire
trucks and rail. The level of impacts almost remains constant after
$25/lb., and additional value density does not seem to bring
substantial changes to the mode preferences.

Some interesting interactive effects are observed in Figure 7. For
example, for private trucks, the SHAP values under the low distance
range with longer travel time (perhaps long-haul trips across the
region) declined faster than the curve under short travel time. This
suggests that private trucks are less preferred if the trips are external
to the region and face more potential delays. A similar relationship is
also found in for-hire trucks as longer travel time with overnight
delay will discourage the use of for-hire trucks over the same
distance range. For the two truck modes, the impacts from value
density changes are much less under the long travel time cases,
potentially due to elevated travel costs in those cases offsetting the
attributions of value density. Similarly, for air mode, the SHAP
values of value density are lower under the longer travel time cases,
suggesting that the longer travel time lowers the likelihood for air
even if the value density is high. Finally, for air mode, the SHAP
curve of weight is also flat under the long travel time case, and the
influence from weight is less significant when travel time is high.
Those interactive effects may result from how the travel time and
costs are imputed and their high correlation with other factors.
Nevertheless, as travel time and costs capture major differences in
modal service quality and have potential impacts on mode choice,
they should be collected in future survey efforts to advance the
modeling practice.

3.3 MNL model results and comparisons of
interpretation

Without considering insights from SHAP, the bMNL model is
estimated using all the factors combined with necessary binning to
prevent collinearity of variables (e.g., the weight bins are adopted to
prevent collinearity with shipping costs). The estimation results are
provided in Table 2. Overall, the bMNL model has a reasonable
performance with an adjusted ρ2 � 0.567. Most coefficients are
aligned with the SHAP values in terms of directions of impacts,
with some nuances to interpretation needed as MNLmodels capture
relative preferences compared to the omitted alternative while the
SHAP values reflect the absolute preferences toward all individual
modes. For example, although long distance generally increases the
preference for rail, it is still less preferred than for-hire truck and
thus has a negative coefficient in the bMNL model. In general, the
results from MNL models do not capture the intricate relationship
demonstrated in Figure 7. For example, value density has non-
monotonic and substantial impacts on rail, while the bMNL model
does not generate a significant result due to such a mixed effect. For
parcel, the bMNL model fails to generate a significant coefficient for
value density despite the strong impacts indicated in Figure 7.
Rather, several industry indicators, such as management and
information, have significant estimation of coefficients at 95%
confidence level. Those low-impact factors may be correlated
with more influential factors, thus absorbing their effects, and the
estimated coefficients may be arbitrary and can mislead the result
interpretation.

Next, the insights from the SHAP interpretation are
incorporated to revise the specifications of the bMNL model to
improve its performance, and the estimation results of the aMNL
model are provided in Table 3. Overall, with four more parameters
estimated, the aMNL model achieves higher adjusted ρ2 � 0.576
than the bMNLmodel. The likelihood ratio test also suggests that the
aMNLmodel is significantly better than the bMNLmodel at the 99%
confidence level. The SHAP results help remove nine low-impact
factors, such as most industry indicators for parcel and rail. In
addition, binned specifications are introduced for distance and value
density for most modes, which helps reveal significant relationships
between those modes and explanatory factors. In general, the
directions of impacts for most variables are aligned with SHAP
interpretations from the CatBoost model, as illustrated in Figures 6,
7. There are a few exceptions where trends are visible in Figure 7 but
are not found to be significant in aMNL models, such as long
distance for air, potentially due to lack of observations and impacts
from confounding factors.

For shipping distance, after using a piecewise linear function for
parcel in the aMNLmodel, the linear portion under the low-distance
range shows a higher coefficient than the bMNL model, indicating
more substantial impacts of distance during this range for choosing
parcel over for-hire truck. In addition, after applying a binned
approach for rail distance, the aMNL model demonstrates a
significant positive impact of distance on rail within the 500-mile
range, which is aligned with the interpretations from CatBoost in
Figure 7 and similar to findings from a prior study (Pourabdollahi
et al., 2013). The disutility of distance in the aMNLmodel for private
trucks over for-hire trucks remains unchanged compared to the
bMNL model and consistent with SHAP interpretations and
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findings from the prior study that uses CFS data and the same truck
mode definitions (private versus for-hire trucks) (Keya et al., 2019).

For value density, after introducing bins into the specification,
both parcel and rail have significant coefficients estimated in the
aMNLmodel. For parcel, although value density already shows some
positive impacts in choosing parcel under a low-value-density range,
the coefficient of value density within $5–25/lbs. is even larger than
values below $5/lbs. After $25/lb., a positive constant coefficient is
estimated, and adding more value density does not further increase
the likelihood of parcel. The increasing likelihood of choosing parcel
and air under higher-value density is also aligned with findings from
prior studies, where modes like air that carry smaller shipments are
preferred for high-valued goods (de Jong and Ben-Akiva, 2007;
Pourabdollahi et al., 2013). For rail, value density negatively impacts
rail preference if lower than $1/lb., but the impacts become positive
if value density is between $1–$10/lb., which is aligned with the
mixed influences in Figure 7. In prior studies, it has been shown that
preference for rail over trucks generally decreases with a higher value
of goods (Jensen et al., 2019), while results in this study provide a

more complex response to value density for rail mode. The
coefficient for private truck only shows a constant negative
impact under the high-value density case.

For shipment weight, while the original weight bin definitions are
kept, a linear weight specification is applied to the lowest weight bin to
capture greater sensitivity to weight within that range. In general,
those weight bins capture major turning points, as indicated in
Figure 7, with estimated coefficients remaining similar.
Incorporating weight multipliers helps explain the strong negative
impacts of weight on air and parcel modes and the positive impact on
private trucks within the low-weight range. While numerous prior
studies have performed joint modeling of shipment size bin andmode
choice (de Jong and Ben-Akiva, 2007; Pourabdollahi et al., 2013;
Stinson et al., 2017; Keya et al., 2019), the results from this study
suggest the preferences of modes (especially air and parcel) are highly
sensitive to weight, and more disaggregated specification of shipment
size for these modes is potentially needed. Finally, the positive impact
of weight on choosing rail over truck has been demonstrated in prior
studies (Samimi et al., 2011), while the results from this study further

TABLE 2 Baseline MNL mode choice model estimation results for Austin, TX.

Variable Mode (for-hire truck as the base)

Air Parcel Private truck Rail/IMX

ASC −5.05*** 0.472*** 1.395*** −5.49***

Distance (mile) 0.002*** 0.001*** −0.005*** −6.1e−5

Value density ($/lb.) 1.4e−5*** −0.001***

Weight between 150 and 1,500 lbs. −3.211*** 1.798***

Weight between 1,500 and 30,000 lbs. −3.784*** 0.044** 3.352***

Weight between 30,000 and 45,000 lbs. −0.67*** 2.627***

Weight greater than 45,000 lbs. −1.207*** 4.296***

Commodity is bulk −1.107*** −0.78*** −2.094***

Commodity is fuel, fertilizer, or other chemical −0.77*** −0.338*** −1.296***

Commodity is the interim product or food −0.98*** −1.312*** −3.077***

Commodity is manufactured goods 0.882*** −0.912*** −1.458***

Information industry 0.126** −0.968***

Manufacturing industry 0.327*** −0.319*** −0.558***

Management industry 0.325*** 0.202* −2.185***

Retail industry 0.558*** 2.459*** 1.08***

Transport and warehouse industry −2.311***

Wholesale industry 0.493*** −1.403***

Shipping costs −0.001***

Shipping time −0.003***

Number of parameters 47

Number of observations 247,073

Log-likelihood −157,515

Adjusted ρ2 0.567

Note: *p < 0.1, **p < 0.01, and ***p < 0.001.
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demonstrate the more substantial impacts over the higher
weight range.

In general, the aMNL model provides more explanatory power
for factors that displayed nonlinear relationships with mode choice
than the bMNL model and removes the factors that may mislead

model interpretation. However, not all the SHAP relationships can
be successfully implemented in an MNLmodel, potentially due to 1)
lack of observations for some cases causing singularity in model
estimation (e.g., long distance interacted with multi-day travel of
private trucks is omitted due to lack of sample); 2) collinearity

TABLE 3 Advanced Austin-region MNL mode choice model using SHAP results.

Variable Mode (for-hire truck as the base)

Red cells indicate variables removed from the aMNL model

Air Parcel Private truck Rail/IMX

ASC −5.258*** 0.237*** 1.405*** −6.366***

Distance*(distance ≤ 500 miles) 0.004*** 0.004*** −0.005*** 0.001***

Distance*(distance > 500 miles) 0.002*** 0.001***

(Distance > 500 miles) 0.321***

Value density*(value density ≤ $5/lb.) −0.114* 0.012 0.009

(Value density > $5/lb.) −0.301***

Value density*($5/lb. < value density ≤ $25/lb.) 0.039*** 0.025***

(Value density > $25/lb.) 1.557*** 0.372***

Value density*(value density ≤ $1/lb.) −0.223*

Value density*($1/lb. < value density <= $10/lb.) 0.124***

Weight*(weight ≤ 150 lbs.) −46.389*** −33.591*** 2.815***

Weight between 150 and 1,500 lbs. −3.329***

Weight between 1,500 and 30,000 lbs. −3.619*** 2.151***

Weight between 30,000 and 45,000 lbs. −0.749*** 1.606***

Weight greater than 45,000 lbs. −1.281*** 3.232***

Commodity is bulk −0.732*** −1.273***

Commodity is fuel, fertilizer, or other chemical −0.329*** −0.248*** −0.843***

Commodity is interim product or food −0.642** −0.790*** 0.144*** −2.681***

Commodity is manufactured goods 0.354*** 0.089** −0.847*** −1.049***

Information industry −1.100***

Manufacturing industry 0.155*** −0.375*** 0.519***

Management industry

Retail industry −1.625***

Transport and warehouse industry

Wholesale industry 0.469***

Shipping costs −0.001***

Shipping time −0.003***

Number of parameters 51

Number of observations 247,073

Log-likelihood −145,857

Adjusted ρ2 0.576

Note: *p < 0.1, **p < 0.01, and ***p < 0.001.
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among variables causing counterintuitive results for key factors. In
this study, the maximum number of parameters with meaningful
interpretation was retained in the aMNL model, capturing some of
the most important nonlinear relationships indicated by SHAP
interpretations.

4 Conclusion and discussions

In this study, we estimate a logit-based freight mode choice
model using the CFS2017 survey, informed by results from state-of-
the-art ML models and interpretable ML methods. The influential
factors and their relationship with individual freight modes are
identified using ML and SHAP TreeExplainer and applied to the
MNLmodel specification to improve its performance. The workflow
is demonstrated using a case study for Austin, Texas. In general, ML
models outperform MNL models in both overall accuracy and
mode-specific accuracy measures. By applying the CatBoost
model and SHAP TreeExplainer, we evaluated the relationship
between the predicted outcomes and input features and then
identified factors like travel time, cost, shipment distance, weight,
and value density as the most influential. In contrast, industries such
as management, information, and mining show negligible impacts
on mode selection. Nonlinear relationships are observed for
shipment distance, weight, and value densities across all modes.
Additionally, value densities display mixed, non-monotonic impacts
on the selection of both rail and for-hire trucks. Upon applying some
of those insights to refine the MNL specifications, the MNL model’s
interpretability and accuracy surpass that of the baseline model.
Moreover, the advanced MNL model reveals significant and
complex relationships that are hidden in the baseline model, such
as the impact of value density on the selection of rail and parcel. The
directions of impacts yielded by the aMNL and CatBoost results are
often aligned with findings from empirical studies and help reveal
more intricate relationships between some factors and mode
preferences.

4.1 Contributions to freight mode choice
applications

The methodology and results from this study can help advance
freight mode choice applications in several ways. First, the
comparison of result interpretations in this study demonstrates
some convergence between MNL and ML results because the
insights from the two approaches are generally aligned with each
other. Some of the nuanced trends from ML methods may not lead
to significant parameter estimates in an MNL model, but the major
trends/behavior preferences can be captured in an MNL model and
supported by a more theory-based approach. AlthoughMLmethods
cannot be directly used to demonstrate causal relationships, the joint
insights from ML and ML-guided MNL approaches suggest ML
methods are still useful in identifying potential hypotheses for
testing in econometric approaches. Second, ML methods
combined with SHAP interpretations can also help prioritize
highly influential factors and vice versa. This approach enhances
the refinement of MNL models, helps prevent arbitrary variable
selection, and reduces the risk of incorrect interpretation caused by

confounding factors. It also saves the time and effort needed to
develop MNL specifications, which is pertinent to users and
practitioners who operate within a limited timeframe and
computational resources, as training discrete choice models on a
large dataset can be computationally challenging (Wang et al., 2021).
Furthermore, the ML methods and SHAP interpretations approach
serve as more practical and intuitive methods for data exploration, in
addition to the conventional cross-tabulation approach, and are
especially powerful in revealing individual-level heterogeneity of
preference instead of only showing generalized trends (Lundberg
et al., 2020). Finally, the technical workflow demonstrated in this
paper could also support freight model choice modeling in other
regions or countries with analogous data, thereby advancing the
state of the practice in this domain.

4.2 Policy implications

The findings from this study can help inform freight-related
policymaking and deepen the understanding of how potential
policies might influence mode shift and subsequent
transportation externalities (e.g., congestion, energy, or
emissions) in specific contexts. First, by including nonlinear
relationships in the model specification and achieving better
accuracy, the MNL model becomes more helpful in revealing
complicated trade-offs between mode selection and influential
factors. For example, with a nonlinear relationship between
weight and air/parcel, the bundling or consolidation of packages
may have greater impacts on mode shift from air/parcel to trucks in
lower-weight versus higher-weight packages. On the other hand,
policies targeting very long distance, heavy shipments, or high-
valued goods may be less effective as the preferences toward each
mode are more stable in those ranges, and additional changes of
those factors do not lead to sizeable mode shifts. By further
integrating the freight model choice model derived in this study
with traffic simulation tools (Spurlock et al., 2024), the system-level
impacts of congestion mitigation, energy efficiency, and
environmental impact policies can be further investigated at the
regional level. Finally, from a theoretical perspective, the empirical
findings and domain knowledge derived from various contexts and
datasets can serve as a priori, whereas the findings from interpretable
ML methods can provide additional evidence or insights into the
trends from a specific dataset as posteriori. Both sets of insights and
findings are valuable for developing a comprehensive understanding
of the mechanism of freight mode choice and supporting MNL
model estimation, interpretation, and amendment.

4.3 Future research directions

The findings and insights drawn from this study are constrained
by the limited number of factors available from the survey data, with
potential impacts of unobserved factors to be revealed through
future work. Additional influential factors, such as shipping
reliability and quality of service (Holguín-Veras et al., 2021),
should be accounted for in the model if available from more
recent data sources. In addition, the current analysis is based on
the 2017 data, and the prevalence of freight modes is constantly
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changing, especially due to the COVID-19 disruptions on road, air,
and rail freight transportation (Borca et al., 2021; Khan et al., 2022).
The freight mode choice model will be revisited and updated if more
recent data and additional attributes become available.

The existing methodology can also be further enhanced to
achieve better modeling performance and advance our
understanding of freight mode choice behavior. Potential future
work includes 1) improving the travel time and cost estimation by
incorporating local transportation data, either observed or modeled,
to enhance the accuracy of the model and capture the local
congestion patterns; 2) exploring other high-performance ML
models, such as deep neural network and the ensemble of several
ML classifiers, to further improve the model accuracy and reveal
additional complex relationships potentially not yet discovered in
current models; 3) generating policy insights by running the
estimated model under potential policy scenarios and measuring
the effectiveness of those policies in shifting freight mode choice
behavior, and 4) utilizing SHAP interpretations on advanced forms
of discrete choice models that can better capture heterogeneity of
mode preferences, such as the mixed logit model or latent class
models, and developing a more automatic and streamlined ML and
discrete choice model integration pipeline that improves both
prediction accuracy and result interpretability. Furthermore, if a
panel survey on freight decisions is available, the ML and SHAP
interpretations can help reveal the complex decision-making process
of mode choice through time under changing firmographics and
economic trends. A prior study has applied SHAP interpretation on
a panel survey of vehicle ownership and revealed how major life
events can affect household vehicle ownership decisions (Jin et al.,
2022). If such panel data are available for freight movements, similar
techniques can be used to identify how major firm events
(relocation, revenue growth), economic trends, and infrastructure
development can affect the preferences toward each freight mode.
These improvements will require additional data, computational
resources, and inputs from stakeholders and experts, paving the way
for a more profound understanding of the domain.
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