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The European Union has intensified efforts to reduce CO2 emissions from the
transport sector, with the target of reducing tailpipe CO2 emissions from light-
duty vehicle new registrations by 55% by 2030 and achieving zero emissions by 2035
according to the “Fit for 55” package. To promote fuel and energy consumption
awareness among users under real-world conditions the MILE21—LIFE project
provided tools such as a self-reporting tool and a find-a-car tool that included
the official and representative on-road fuel/energy consumption values. In order to
produce representative values, an in-house vehicle longitudinal dynamics simulation
model was developed for use in the background of the on-line platformutilizing only
a limited amount of inputs. To achieve this, the applied methodology is based on
precalculated efficiency values. These values have been produced using vehicle
micro-model simulations covering a wide range of operating conditions. Themodel
was validated using measurements from a dedicated testing campaign and
performed well for petrol vehicles with an average divergence of −1.1%. However,
the model showed a divergence of 9.7% for diesel vehicles, 10.6% for hybrids and
8.7% for plug-in hybrids. The model was also applied to US vehicles and showed a
divergence of 1.2% and 10% for city and highway driving, respectively. The application
of the developed model presented in this work showed that it is possible to predict
real-world fuel and energy consumptionwith the desired accuracy using a simplified
approach with limited input data.
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1 Introduction

The European Commission proposes to update the 2030 carbon dioxide (CO2) emissions
standards for new passenger cars and light commercial vehicles (vans) registered in the
European Union (EU) to a reduction of 55% compared to 2021, as defined in the Fit for
55 package under the European Green Deal (European Commission, 2021), and to a
reduction of 100% by 2035. The main intention of lowering the CO2 emission standards
is to reduce global warming induced by greenhouse gas (GHG) emissions from road transport
and eventually mitigate climate change. In the EU, light-duty vehicles (LDV) are responsible
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for 14.5% of the total CO2 emissions (European Commission, 2022)
and relevant standards for the reduction of CO2 emissions are in place
based on a reproducible laboratory type-approval process. However,
in real-world driving, a wide range of different operating conditions
can occur, such as traffic and ambient conditions, road conditions and
gradient (Fontaras et al., 2017b), which no test procedure can
adequately cover. In addition, an individual driving style, either
smoother or more aggressive, may be followed. This variability in
operating conditions results in a 15%–20% difference between the
real-world CO2 emissions and the type-approval test over the
Worldwide harmonised Light vehicle Test Procedure (WLTP)
(Dornoff et al., 2020).

The divergence between type-approval and real-world CO2

emissions, which is not stable but has been increasing over the
years is a major issue in the effort to reduce CO2 emissions. For this
reason, the European Commission has implemented vehicle fuel and
energy consumption monitoring through an On-Board Fuel and/or
Energy Consumption Monitoring (OBFCM), mandatory for all new
light-duty vehicle registrations since 2021 (Regulation (EU) 2018/
1832; Regulation (EU) 2019/631). Such measures aim at monitoring
on-road emissions for tracking performance towards the set targets.
Alongside, there has been a growing interest in the creation of low-
emission zones in city centres by municipality authorities (CLARS,
2022), in an attempt to abate both air pollution and climate change.

Independently from the regulatory actions, an important parameter
is the user’s impact on fuel/energy consumption. Towards this, the
European Commission and other authorities support actions that aim
at raising user awareness to choose fuel/energy-efficient vehicles and at
educating users about a more ecological driving style and habits. The
Joint Research Centre of the European Commission (JRC, 2016) has
presented the Green Driving tool, with which the user can select a
vehicle, pick a route, calculate fuel/energy consumption over the
selected route and propose alternative routes if available. The users
can insert several technical parameters, while some aspects are
predefined based on the vehicle segment. IFPEN has developed
Geco Air (IFPEN, 2021), a smartphone application focusing on
pollutant emissions and training users to drive and commute in an
environmentally friendly way. The user provides data related to vehicle
characteristics, while the global positioning system of the phone
provides the route. This enables the calculation of several
parameters, such as NOx emissions but, the user has limited control
over other parameters. Similarly, the MILE21—LIFE project (MILE21,
2019) aimed at informing users about their fuel/energy consumption
and providing ways to reduce it by offering a find-a-car tool and fuel/
energy consumption self-reporting tool. The first one assists the users in
finding a fuel/energy-efficient vehicle that would suit their needs, while
the self-reporting tool allows them to record their consumption and
benchmark it against an ecological driving style. Both tools deliver
representative values of the expected on-road conditions, calculated
through vehicle simulation.

The current paper presents the developed tool capable of simulating
vehicle representative on-road fuel and energy consumption values at
minimal calculation time. The tool uses generic data regarding vehicle
fuel consumption and drivetrain losses, based on findings of previous
studies regarding fuel consumption calculation using generic data
(Samaras et al., 2018; Doulgeris et al., 2020; Zacharof et al., 2020).
Both conventional and electrified powertrains are covered over a wide
range of operating conditions. Regarding implementation, the tool has

low processing needs and is suitable for integration into online
platforms. The tool has already been deployed in the MILE21—LIFE
platform (MILE21, 2019) to provide representative on-road fuel and
energy consumption values using the bareminimum inputs, demanding
low effort from the average driver/user. Despite that, the tool offers the
possibility to define specific cases (regarding the velocity profile, vehicle
load or driving behaviour) and calculate the fuel/energy consumption
for such cases. In addition, the tool has further capabilities as it is easy to
deploy in other applications. Having this in mind, it was designed to be
easily expandable to new technologies with the use of modules and
utilizes actual routes by enabling linking with an Application
Programming Interface (API). With a recalibration, it is also possible
to extend its use to vehicle markets other than the European, as it has
been demonstrated for the USmarket. In addition, future developments
can be incorporated since the tool can be easily trained and hence
automatically updated by utilizing OBFCM data. This capability is
necessary, especially for hybrid powertrains, where it could be possible
to improve the generic energy management strategy by developing a
vehicle specific strategy. The importance of this capability lies in the fact
that hybrid vehicles are expected to play a crucial role in transitioning to
fully electric vehicles.

2 Methods

2.1 Model description and
development workflow

2.1.1 Background approach and workflow
The current section outlines the workflow followed in the

development of the simulation tool that calculates fuel/energy
consumption and CO2 emissions based on vehicle technical
characteristics and a given route. For a better understanding of
the development process, it is important to clarify key terms as they
are used in this work.

The term “simulation model” refers to a software tool that
calculates energy consumption and emissions for a given driving
route, based on vehicle technical characteristics. If no specific software
is referenced, the “simulation model” or simply “model” refers to the
tool developed in this work. The term “vehicle model” refers to a set of
vehicles that share common characteristics and market name under a
manufacturer’s brand. In “vehicle modelling,” on the other hand,
technical characteristics of a vehicle model and operating conditions
are parametrized to be used as inputs to the simulation model.
Regarding the route, the “mission profile” refers to the
combination of vehicle speed and road slope values.

The simulation model developed in the context of this study,
utilizes two approaches, a physical and a statistical which are applied
in parallel and complement each other. The basic theory for these
two approaches is described in the work of Treiber and Kesting
(2013), where the physical approach considers the vehicle’s
longitudinal dynamics, while the statistical approach is a
phenomenological model for fuel consumption prediction.
Vehicle longitudinal dynamics is used to calculate the energy
required for vehicle propulsion and hence, it requires the
calculation of the traction force (Ftr), i.e., the force needed to
maintain a constant speed—as well as accelerate or
decelerate—and which is calculated using the well-known Eq. 1.
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The equation takes into account aerodynamic drag (Faero), rolling
resistance (Ffr), inertia force (Fin), and slope (Fslope), which are
summed together to obtain the traction force at a specific
velocity (v).

Ftr � Ffr + Faero + Fslope + Fin

� μMvehgcos φ( ) + 1
2
ρcdAv

2 +Mvehgsin φ( ) +Mveh
dv

dt
(1)

Mveh: mass of the vehicle (kg)
φ: angle equivalent to the road grade (rad)
g: acceleration of gravity, 9.81 m/s2

μ: rolling resistance coefficient (−)
ρ: air density (kg/m3)
cd: aerodynamic drag coefficient (−)
A: frontal area (m2)
The parameters μ, cd, A,Mveh can be used for calculating the so-

called road load coefficients and are characteristic of each vehicle
model. Regulation (EU) 2017/1154 considers a standard
ρ � 1.21 kg/m3 and defines the road loads as F0 � μMveh and F2 �
1
2 ρcdA.

Eq. 1 is multiplied by the vehicle speed to calculate the required
power. In order to translate this value to the actual fuel/energy
consumption from the vehicle’s fuel tank or battery, the losses in the
powertrain are needed. These depend on different conditions such
as vehicle speed and can be accounted for through an efficiency
factor as shown in Eq. 2. The term Ptr represents only the traction
power, any additional power loss related to auxiliaries (e.g., air
conditioning) can be included in Eq. 2 by adding this power to
the Ptr.

Ptr � Ftr v � neff _mfuel LHV0 _mfuel � Ptr

neff LHV

Ptr � Ftrv � neffPbat0Pbat � Ptr

neff
(2)

Ptr: traction power (kW)
neff: efficiency factor (−)
_mfuel: fuel flow rate (kg/h)
LHV: fuel lower heating value (kWh/kg)
Pbat: battery power (kWh)
An additional method to calculate fuel consumption is the

statistical approach that was also applied in a complementary
way to the physical approach. This is based on the calculation of
fuel consumption using a polynomial function (Treiber and Kesting,
2013) that utilizes velocity, acceleration and road slope as inputs.
The polynomial fit of Eq. 3 is similar in shape to the longitudinal
dynamics equation and the regression coefficients (βn) resemble the
physical parameters of Eq. 2. This way, even though these
coefficients are statistical values, they include a variable efficiency.

_mfuel � β0 + β1v + β2 v
2 + β3 v

3 + β4 v
dv

dt
+ β5 vφ (3)

The efficiency factor (neff) of Eq. 2 for ICE includes the engine
(neng) and transmission (ntrans) efficiencies. Evidently, the efficiency
factor depends on the technical characteristics of each vehicle model,
such as engine type (Otto or Diesel), capacity, power, tuning, etc.
Naturally, the calculation of the fuel consumption using Eq. 2
requires the efficiency factor along with the vehicle specifications
and mission profile. Similarly, fuel consumption calculation using

Eq. 3 requires as input the mission profile and the regression
coefficients (βn).

Ideally, each vehicle model should have a set of efficiency factors
(neff ) for every operating condition (v, dv/dt,φ), as depicted in Eq. 2.
The same applies to the (βn) coefficients, whichmay be constant for the
different operating conditions, however, they are different for each
vehicle model. Nonetheless, it would not be feasible to measure or
model in-detail all available vehicle models in the market and cover all
possible operating conditions. It was considered that vehicles sharing
common characteristics could be grouped as their technical parameters
are represented by similar values such as fuel/energy consumption
maps, e.g., vehicles from different brands sharing the same engine. For
this reason, the Europeanmarket carmodels were allocated into clusters
and for each cluster, a generic vehicle was created with representative
technical characteristics. Subsequently, efficiency factors over a wide
range of conditions were calculated using the simulation approach
described in-detail below. Despite the generic vehicles do not
correspond to actual market-available passenger cars, they function
as a proxy to assess actual vehicle behaviour on-road. In this way, the
actual vehicle efficiency parameters can be eventually calculated from
the generic ones.

Therefore, the current work focused on a few generic vehicles that
covered the majority of market-available vehicles. The generic vehicles
were simulated inAVLCruise, a commercially available software, under
a wide range of operating conditions (road load andmass value sets and
mission profiles). Subsequently, solving Eq. 2 using the simulated fuel
consumption provided a dataset of efficiency factors for different
operating conditions, which are expressed collectively from traction
power (Ptr). This essentially created a matrix of efficiency factors
covering all operating conditions, road loads andmasses. It is important
to state that the derived efficiency factors originate from the fuel
consumption and transmission efficiency maps that were introduced
in Cruise vehicle models. This means that any technology included in
the utilized (fuel consumption and efficiency)maps, is transferred to the
calculated efficiency factors.

Using the same simulated vehicle models’ results, the dataset of the
regression coefficients (βn) was also derived using polynomial
multilinear regression for the calculated fuel consumption, velocity,
acceleration and road slope. The result of this regression was the set of
βn coefficients for each generic vehicle. The statistical model was trained
for each road load and mass value set (F0, F2,Mveh) simulated over
specificmission profiles (analysed in the text below). Finally, the derived
efficiency factors and regression coefficients are correlated with
F0, F2,Mveh and the mission’s profile driving style. The correlation,
described in detail in the following sections, resulted in formulas that
provide the efficiency factors neng, ntrans{ } and βn coefficients as a
function of vehicle characteristics and driving conditions. Thus, it is
possible to calculate efficiency factors and regression coefficients for any
actual vehicle and subsequently calculate fuel consumption for any
mission profile using Eqs 2, 3.

The simulation model calculates the fuel consumption using
both approaches, which complement each other. The physical
approach is mainly used for fuel consumption calculation as the
utilized efficiency factors inherently contain engine technologies
such as cylinder deactivation and valve timing, via the use of engine
fuel and gearbox efficiency maps in vehicle modelling. Eq. 3 is
employed for calculating fuel consumption under conditions where
the accuracy of Eq. 2 is notable limited. Initial validation of the fuel
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consumption calculation using Eq. 2 revealed diminished accuracy
during deceleration phases attributed to fuel cut-off. This
discrepancy is primarily ascribed to the need for an additional
function in the physical approach to accommodate this
technological aspect. In this way, Eq. 2 is used to calculate fuel
consumption under all conditions except for deceleration phases,
where fuel cut-off occurs. In these phases, Eq. 3 is used, as it better
incorporates the effect of this technology. That way, the final fuel
consumption calculation is realized with the application and
combination of both approaches.

The simulation model development workflow is presented in
detail in Figure 1.

The steps followed for the development of the simulation model
can be summarized as follows:

• Step 1:Market analysis and clustering. A market analysis was
performed to identify the passenger car types that are in use in
Europe. The goal was to identify vehicle clusters that share
similar characteristics regarding the body, powertrain and
drivetrain. Each cluster was represented by a generic vehicle.

• Step 2: Simulation cases. Definition of the simulation cases
that were subsequently executed using detailed vehicle
modelling developed for the generic vehicles. The
simulation cases covered a range of road load and mass
values and different mission profiles.

• Step 3: Utilization of the simulation results and their
correlation with the varied input parameters. At this step,
the database with efficiency values and the polynomial
coefficients was developed forming the core of the
simulation model.

• Step 4: Model validation. The accuracy of the simulation
model’s calculated fuel/energy consumption values was
determined with measurements. The simulation model was
used to replicate the fuel consumption for the mission profiles
recorded during the experimental campaign. Subsequently,
the calculated fuel consumption was compared with the
measured to evaluate the model’s performance.

• Step 5:Model application. Themodel was used to calculate the
overall fuel consumption for vehicles that were monitored for
a period of time. In addition, to evaluate the transferability of
the model, the fuel consumption of vehicles belonging to the
US fleet was calculated. This was preformed to evaluate the
model’s capabilities to replicate the fuel consumption of
vehicles that have different calibration than those found in
the European market.

2.1.2 Vehicle clustering
Step 1 (see Figure 1 above) included an analysis of the market and
vehicle grouping. To that aim a vehicle database containing
technical characteristics and sales information for the majority
of vehicle models available in the European market was obtained
from the German automotive club “Allgemeiner Deutscher
Automobil-Club” (ADAC). The ADAC vehicle database was
analysed extensively in a previous study (Bieker and Diaz,
2021) and was found to contain more than 10,000 vehicle
models on sale in Germany since 2013. Despite containing
vehicle sales from Germany only, it was found that it was
representative of the European fleet, therefore vehicle clustering
is considered to be applicable for Europe. The vehicles were
grouped into clusters based on powertrain and engine
capacity—if available—as further described below. Additional
details are also available in 10.1 in the Supplementary Material.

Conventional vehicles were grouped into several different
clusters to account for the variety of ICE and transmissions that
affect efficiency factors (neng, ntrans). BEVs, PHEVs and hybrid
electric vehicles (HEV) did not present such high variability in
the period our study was conducted, therefore each of these
powertrain types was assigned a single cluster. In hybrid
powertrains, the internal combustion engines did not present
high variability either to justify further clustering. Although
different engine sizes are used in different vehicle bodies and
powertrains, the energy management control of hybrid
powertrains typically aims to best ICE efficiency. As a result, the
operating points of the ICE may be limited to specific points that
ensure optimal efficiency (Ichikawa et al., 2017; Kato et al., 2017).
Future development could consider expanding the hybrid cluster,
especially if more manufacturers offer a wider range of hybrid
powertrains and they do not shift their focus on battery electric
vehicles. Similarly, for pure electric vehicles, the efficiency maps of
the electric machines and the battery characteristics have also low
variability, and the parameters mostly affecting electrical
consumption are vehicle mass and road load.

FIGURE 1
Simulation model development workflow.
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In the simulation runs presented in the next section, clusters
with low market shares that contained mainly over- or
underpowered vehicles of both powertrains were excluded from
the Cruise simulations to optimise the necessary effort. Table 1
displays the 5 plus 4 clusters for conventional petrol and diesel
models respectively that were finally included in the simulation runs.
In the same table the engine displacement, power and official CO2

emissions bin ranges, along with the minimum and maximum road
load and mass values are provided.

2.1.3 Model and simulation cases development
As mentioned above, the clusters’ representative generic vehicles

were in detail simulated with the Cruise simulation platform. Cruise
simulations with cluster representative generic models were
performed to obtain the efficiency and fuel consumption
calculations for a large dataset of vehicles. That way, it was made
possible to obtain a combination of mass and road loads that are
representative of the range for each cluster. The necessity for these
simulations arose as a means to replace the labor-intensive
experimental campaigns that would otherwise be essential to
comprehensively address all vehicle clusters and their respective
vehicles. In essence, these simulations can be regarded as intelligent
tools for interpolation and extrapolation, enabling the generation of
a more substantial dataset to populate each cluster. Since the ADAC
database did not comprise all the required simulation inputs, such as
engine fuel consumption maps and road load values (F0, F2),
additional vehicle data was acquired from other available sources.
The EPA database (EPA, 2021) provided the required road load
values for each vehicle model. Moreover, the overall Cruise model
layout was based on template models, while the engine fuel
consumption maps and vehicle component characteristic curves
and efficiency maps were derived based on generic approaches
developed in previous studies (Tsokolis et al., 2015; Samaras
et al., 2018; Doulgeris et al., 2020). The development of the
generic vehicles’ fuel consumption maps was based on scaling
models of actual vehicles in Cruise, which was done by applying
the Willans lines approach, as detailed in prior research (Sorrentino
et al., 2015; Tsiakmakis et al., 2017). For instance, a measured engine
fuel consumption map of 1,300 cc was scaled to 1,200 cc for the
simulation needs of the Petrol 2 cluster generic vehicle. The detailed

vehicle modelling process also accounted for the transmission
efficiency via the gearbox efficiency map, the calculation of which
drew from a method outlined in Zacharof et al. (2020). Following
this methodology, the generation of gearbox efficiency mapsmakes a
distinction between manual and automatic transmission. This
process produced one single generic vehicle for each cluster with
representative engine, transmission, mass and road load values.
Figure 2 presents an example of a typical vehicle simulation
model topology in AVL Cruise based on which the clusters’
representative models were built.

Based on the vehicle clusters, the road load (F0 and F2
coefficients) and mass series were combined to form a matrix
that resulted in 343 vehicle configurations for each generic
vehicle. Each parameter varied according to the range of the
vehicle cluster, and the combinations represented a different
vehicle or vehicle configuration. The 343 cases derived by the F0,
F2 and mass variations, were combined with 3 different
mission profiles.

The mission profiles comprised different speed profiles
(representing a driving style) and routes that present different
terrain morphology. Driving style with acceleration and
deceleration values well within the Real-Driving Emissions (RDE)
regulation was considered regular or normal, and it was combined
with a flat and a hilly route. Higher absolute acceleration/
deceleration values were considered as dynamic driving and were
combined only with a flat route. Although dynamic driving could
occur over any route, it was considered that it would be less frequent
over a hilly route for safety reasons. Therefore, the dynamic/hilly
combination was excluded to reduce the computational effort.
Hence three mission profiles were considered, which combined
with the vehicle configurations resulted in a simulation matrix of
1,029 cases for each generic vehicle.

The gear selection was taken into consideration in the
simulation model by choosing a representative gear-shifting
pattern for each generic vehicle and mission profile (regular,
dynamic, hilly) taking that way also into account the interlink
between driving style and gear selection. The gear-shifting
pattern was extracted following the provisions of the WLTP
(Regulation (EU) 2017/1151) and it was provided as input along
with the velocity and road grade profile in Cruise. For the generic

TABLE 1 Clusters for conventional petrol and diesel vehicles.

Powertrain Cluster
name

Engine
displacement (cc)

Engine
power (kW)

CO2 emissions
(g/km)

Vehicle
mass [kg]

F0
[N]

F2 [(N/km/
h)2]

Petrol Petrol 1 875–1,100 44–95 84–137 925–1,874 73–190 0.0214–0.0421

Petrol 2 1,100–1,300 44–97 93–158 985–1,945 70–201 0.0274–0.0398

Petrol 3 1,300–1,500 57–136 105–178 1,101–2,142 70–207 0.0234–0.0593

Petrol 4 1,500–1700 61–155 115–184 985–1,742 87–156 0.0270–0.0348

Petrol 5 1,700–1,900 85–165 129–188 1,235–2,130 92–201 0.0240–0.0380

Diesel Diesel 1 875–1,300 40–70 84–136 960–1,905 69–138 0.0214–0.0357

Diesel 2 1,300–1,500 50–96 82–148 1,120–2,135 69–175 0.0214–0.0427

Diesel 3 1,500–1700 55–120 82–164 1,200–2,333 70–228 0.0214–0.0593

Diesel 4 1,700–2,100 55–165 92–188 1,295–2,529 69–360 0.0240–0.0705
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vehicles that deployed automatic gearboxes—as they were
representative of their cluster—the gear-shifting was also
extracted following the WLTP provisions.

The cases matrix was used to run simulations in Cruise that
introduced realistic vehicle operation by implementing a driver
model expressed with an appropriate gear-shifting strategy for
each mission profile. For each simulation case, the runs delivered
time-series of v, PTR, _mfuel, neng, ntrans,φ.

Additional energy consumption from auxiliaries such as air
conditioning was not included in the simulations at this stage,
there was a lack of suitable measured data for calibration and
validation. Since the impact of air-conditioning alone can lead to
an increase of up to 10% in fuel/energy consumption (Fontaras et al.,
2017b) in conventional vehicles and account for much more in
electric ones, it was decided to address the topic in the future.

2.1.4 Correlation of simulation results with the
input parameters

As described above, the correlation between the simulation case
inputs and outputs (simulation results) was performed using a
physical and a statistical approach, both applied for each generic
vehicle, considering as inputs the road load and mass values shown
in Eqs 4, 5.

The simulation results for each generic vehicle were segmented
by mission profile (i.e., driving style) and route type (urban, rural,
highway). The separation between urban, rural and highway is based
on vehicle speed (v) with the respective bins being [0, 60) [60, 90)
and ≥90 km/h. The driving style (dynamic or normal driving) is
determined based on acceleration (a � dv

dt) and particularly utilizing
the product of vehicle speed and acceleration (v · a). The 95th

percentile of the positive v · a was compared with the limits of
the RDE regulation to characterize the dynamicity. The closer to the
limit, the more aggressive the driving style. However, the dynamicity
limits are not stable and are determined based on the route
segment’s average vehicle speed. A more detailed description is
included in section 10.2 of the Supplementary Material. Finally, the
hilliness was defined from the slope (φ) with segments having a
positive elevation gain of 850 m/100 km being considered as hilly.
This way, each mission profile delivered three segments based on the
route type resulting in a total of 9 types of segments (3 mission
profiles × 3 route types). Segmenting the results facilitated the
correlation between inputs and outputs thanks to the more or
less homogenous conditions within each segment. Subsequently,
an average efficiency value was calculated for each segment type.

As a result, the regression coefficients (a, a’, b, b’, c, c’, d, d’) are
derived for each cluster and segment type by applying a multilinear
regression to the inputs from the simulation runs (F0, F2, mass)
enabling the calculation of powertrain efficiency and βi coefficients
for any combination of inputs and subsequently, fuel and energy
consumption.

neff � aF0 + b F2 + cMveh + d (4)
βi � a′F0 + b′F2 + c′Mveh + d′ (5)

a, a’, b, b’, c, c’, d, d’: regression coefficients (−)

2.1.5 Integration of electrified powertrains
Vehicles with an electrified powertrain were simulated using an

additional sub-model that implements an operational strategy. The
generic simplified energy management strategy (EMS) introduced

FIGURE 2
Typical vehicle simulation model topology in AVL Cruise.

Frontiers in Future Transportation frontiersin.org06

Zacharof et al. 10.3389/ffutr.2024.1334651

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2024.1334651


for PHEVs and HEVs, deploys charge-depleting and charge-
sustaining modes, with Figure 3 presenting the conditions under
which each mode is deployed. During charge-depleting mode, the
vehicle is considered to be moving with pure electric driving, while
during charge-sustaining mode the vehicle is assumed to enter the
hybrid operation with either battery charging or discharging.

The decision for the transition between charge-depleting and
charge-sustaining mode is made based on the battery state of charge
(SOC) which is calculated using Eq. 6 where C is the nominal
capacity of the high-voltage battery in kWh and SOC is expressed as
a percentage of the nominal battery capacity (0%–100%). SOC
thresholds are used to define when the vehicle operates in
charge-depleting mode or when to engage the internal
combustion engine. The decision margins could differ depending
on the battery size (PHEVs have larger batteries compared
to HEVs).

SOCi � SOCi−1 + 100
Pbat

3600 s
· 1
C

(6)

APHEV operates as pure electric in charge-depleting mode until
the battery is depleted below the transition SOC threshold when the
vehicle enters charge-sustaining mode and the internal combustion
engine starts. During charge-sustaining mode, the battery SOC
oscillates in a bandwidth, e.g., 11%–12% for PHEVs. HEVs on
the other hand which have no off-grid charging, are associated
with rather limited pure electric driving and as they have smaller
batteries this bandwidth is in the range of 40%–50% SOC. The
selection of theses thresholds was made based on experimental data
from (P)HEV testing and considered as generic,
representative values.

In charge sustaining mode, engagement of the internal
combustion engine is not only related to the SOC but also to

power demands. For this reason, there is also a controller for the
vehicle speed where the maximum speed of electric driving is 50 km/
h, while for a velocity above 80 km/h, the battery is charged by the
ICE. This feature is mainly applicable to HEVs, where due to the low
nominal capacity, it is possible to re-charge the high voltage battery,
at a significant level, using the ICE. At that vehicle speed, the ICE can
reach optimum operating conditions directing some of the power in
vehicle propulsion and the remaining to charge the battery, thus
making more efficient use of the fuel. In these cases, battery charging
above 80 km/h continues until the SOC charge limit is reached.
Again, these velocity thresholds were selected as representative
generic values, extracted from experimental data. With this
approach, it is possible to capture the battery charging using the
electric motor and the torque assist, by increasing or decreasing the
power demand from the ICE. The amount of power used to assist the
ICE or added to the ICE for battery charging is controlled by the fps

(Power split factor) and the fchrg (Factor for battery charging
power) respectively. This factor was extracted from the
experimental campaign with the electrified vehicles. During
laboratory testing the standard emissions measurement set-up
was enhanced with the introduction of a power analyser which
allowed the measurement of the currents and voltages from the
electric machine(s) and high voltage battery. Using the power
analyser recordings, the electric power of the electric components
was calculated, making possible (using also the power on wheels
demand and engine power whenever was calculation was possible)
the investigation of the power flow and power split within the
different components of the powertrain. Hence, these two factors are
expressed as the fraction of the tractive power request and were
selected empirically from experimental data and calibrated during
model development. Finally, during deceleration, the inertia force is
used to charge the battery simulating the regenerative braking.

FIGURE 3
Generic strategy applied for the plug-in hybrid and hybrid vehicles.
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2.2 Model integration

The simulation model is a comprehensive tool that integrates
various aspects required for calculating fuel and energy
consumption in a streamlined process. Figure 4 illustrates the
internal steps that the model takes to produce the required
values using decision-making processes on different levels.

The simulation model requires minimum inputs, such as vehicle
technical characteristics (brand, model, powertrain, fuel type, engine
details, weight, dimensions), route data (time, speed, altitude, driving
style, share of urban/rural/motorway) and, if available, optional
inputs like road loads (F0, F2), frontal area and aerodynamic
drag. Initially, the tool checks for road load values; if absent, it
selects generic road load values based on similar vehicles and adjusts
them according to curb weight and dimensions or frontal area
inputs. For hybrids, the model allocates them to the respective

cluster with an energy management strategy, while conventional
vehicles are allocated based on the engine details. Generic coefficients
are selected based on route and vehicle attributes, considering factors
like road slope and driving style. Fuel/energy consumption
calculations involve traction power, consideration of coasting and/
or fuel cut-off conditions, and the implementation of the energy
management strategy for hybrid powertrains. The goal of the
simulation model is to calculate the fuel/energy consumption of a
passenger car under real-world conditions for a specific mission
profile, or typical real-world fuel/energy consumption values (based
on a representative mission profile).

An example of the steps to calculate fuel consumption with the
simulation model include:

• retrieval of the vehicle’s engine characteristics, fuel type, road
loads and mass and allocation of the vehicle in a cluster;

FIGURE 4
Simulation model structure.
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separation of the route in segments based on route type,
hilliness and driving style dynamicity

• for each segment, calculation of an average efficiency factor
and bi coefficients according to its type utilizing the regression
coefficients for the physical and statistical approach

• then calculation of the traction power for every timestamp
along the route

• derivation of the fuel consumption

To illustrate the efficiency factor and bi coefficients calculations,
an example follows that considers an actual petrol vehicle with
1,200 cc engine displacement, 55 kW power, F0 � 136 N,
F2 � 0.04214 N/(km/h)2 and Mveh � 992 kg, which is classified in
the Petrol 2 cluster. The vehicle is driven over a specific route, which
is segmented as shown in Figure 5.

The route is separated into urban, rural and highway segments
based on the vehicle speed. Subsequently, based on the slope
calculated from the GPS signal each segment is classified as flat
or hilly. In the third step, the dynamicity is determined for the
flat segments.

Finally, for each segment, the regression coefficients a, b, c, and d
are chosen for each segment type and the average efficiency is
calculated based on Eq. 4. Similarly using the a’, b’, c’, d’ for each
segment type the bi coefficients are calculated with Eq. 5. The
efficiency values for each segment of Figure 5 route are shown
in Table 2.

The efficiency values vary for the same mission profile due to the
road load and mass combinations that lead to different ICE

operating points. In order to visualize this, an example is
provided for the Petrol 2 cluster. Figure 6 displays the calculated
efficiency factors, representing both “low” and “high” combinations
where efficiency ranges between 18.7% and 33%. These
combinations correspond to the minimum and maximum road
load and mass within the cluster. Previous studies by Fontaras
et al. (2017a) and Pavlovic et al. (2018) have also reported
similar trends. Improved efficiency values over highway driving,
which are further improved with dynamic driving style are also
expected due to the engine functioning on a more optimal operating
range (Rodríguez-Fernández et al., 2022).

As described earlier, efficiency factors for each route segment
and generic vehicle were calculated utilizing a representative gear-
shifting strategy. Therefore, the simulation model does not consider
any gear-shifting pattern for the calculation of the fuel consumption
at user-inserted routes.

For each route segment (regular, dynamic, hilly), the allocated
efficiency factors inherently include transmission efficiency, which is
also affected by the gear-shifting strategy. However, as described
earlier, efficiency factors for each route segment and generic vehicle

FIGURE 5
Route segmentation according to vehicle speed, hilliness and driving style.

TABLE 2 Calculation of efficiency factor by segment type for the example.

Segment type Efficiency factor (neff )
Urban—Hilly—Regular 23.6%

Rural—Hilly—Regular 25.8%

Urban—Flat—Dynamic 20.4%

Rural—Flat—Regular 26.8%

Highway—Flat—Dynamic 29.5%

Rural—Flat—Dynamic 24.5%

Highway—Hilly—Regular 26.8%

Urban—Hilly—Regular 23.6%

FIGURE 6
Efficiency factor for minimum and maximum road load/mass
combinations for Petrol 2 cluster.
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were calculated utilizing a representative gear-shifting strategy.
Therefore, the simulation model does not consider differences in
gear-shifting at user-inserted routes as such an approach would
require the user to also introduce engine speed along with the
mission profile. Naturally, this would be a complicated process for
the average user. In addition, it would also be out of the scope of the
current work as it would increase the calculation time, which is not
desirable for an online platform. Future research that includes
further improvements for expert users could develop a gear-
shifting feature.

In the case of a (P)HEV, the sub-model for electrified vehicles is
enabled. The selection and calculation of the coefficients is the same
as for the conventional vehicles derived from the xEVs’ cluster
though. In addition to the fuel consumption calculation, the EMS
decision process is enabled along with the SOC and energy
consumption calculation.

2.3 Vehicle measurements

Fuel and energy measurements were conducted through an
extensive experimental campaign, comprising on-road and
laboratory testing. Target of the measurements was to obtain
data to validate the fuel consumption prediction performance of
the simulation model. Diverse vehicle types and powertrains were
tested under various operating conditions to ensure data
coverage. An additional monitoring scheme involved actual
users with logging devices recording consumption and other
operating parameters.

2.3.1 In-house measurements
The measurements included both real-world and WLTP testing

on a chassis dynamometer using the standard CVS (Constant
Volume Sampling) methodology recording instantaneous and bag
concentrations of CO2 and pollutant emissions (CO, NOx, HC, PM).
On-Board Diagnostic (OBD) data, including engine speed, velocity,
intake mass flow, control module voltage and fuel rate, were
recorded using a generic OBD scan tool. On-road tests deployed
a Portable Emissions Measurement System (PEMS) for measuring
CO2 and pollutant emissions along with an exhaust flow meter
(EFM) to measure the exhaust mass flow rate. For both laboratory
and on-road testing, instantaneous fuel consumption was calculated
utilizing the recorded concentrations of CO2, CO, and HC based on
the carbon balance method following the calculation methodology
in Regulation (EU) 2017/1151. The baseline route and driving style
were designated following the RDE regulations, while additional
conditions such as uphill/downhill routes and different driving
styles, based on similar approaches (Dimaratos et al., 2019;
Triantafyllopoulos et al., 2019; Zacharof et al., 2020; Toumasatos
et al., 2022) were also considered for testing. Table 3 presents a
description of the on-road tests performed.

Figure 7 presents the on-road testing routes: (A) represents the
RDE-compliant route, (B) extends the route to include higher road
gradients and (C) presents a custom route emphasizing highway
driving with varying road slopes. The figure also includes the
mission profiles—namely, the vehicle speed and altitude profiles
along the routes—that offer insights into the testing conditions and
terrain characteristics.

Eight vehicles—whose main specifications are presented in
Table 4 were used for the experimental campaign that covered a
wide range of the most popular market segments. In total, 29 on-
road tests with petrol and 19 with diesel vehicles were performed,
which included different driving patterns.

2.3.2 Vehicle monitoring
In addition to PEMS testing, another set of measurements was

carried out as part of the MILE21 project. This was a long-term
monitoring initiative focusing on actual users and their driving
behaviours, aiming to capture real-world data. For this reason, OBD
loggers were installed to record information regarding the driving
style and fuel consumption directly from the vehicle’s OBFCM.
These measurements played a crucial role in the verification of the
model, effectively assessing its performance across a broader
spectrum of vehicles and driving conditions. Table 5 provides an
overview of the vehicles included in the monitoring scheme
equipped with OBFCM devices.

Throughout the monitoring process, the installed loggers were
transmitting OBD data via a wireless connection, with all data
promptly stored in a database. These signals included velocity,
engine speed, fuel consumption and other parameters relevant to
the operation of the powertrain. The recording frequency was 1 Hz.
In addition to capturing instantaneous data, the loggers also tracked
cumulative values over the lifetime distance and fuel/
energy consumed.

It should be highlighted that the OBFCM ensured that fuel/
energy consumption was within ±5% accuracy as required by
Regulation (EU) 2018/1832. While the regulation established
these accuracy standards for reference fuel and vehicle wheels,
market fuel blends can introduce variations that may impact
accuracy. However, the study by Dornoff and Zacharof, 2022
confirmed the accuracy of the OBFCM with market fuels
showing expected variations of up to ± 3.9% in petrol and ±3.3%
in diesel vehicles. Post-processing of the recorded data allowed the
characterization of each driver’s driving style (normal, dynamic) the
determination of the proportion of urban, rural and highway
driving, as well as the calculation of the total fuel consumption.

2.4 Model application

2.4.1 Measurement and monitoring data
verification

The accuracy of the fuel consumption calculation model was
further assessed using on-road monitoring data. From this dataset, it
becomes possible to compute the proportions of urban, rural and
highway driving, which are then utilized as inputs to the model.
Consequently, the total fuel consumption was calculated by knowing
the vehicle specifications and driving styles of each driver (inferred
from recorded velocity).

To predict real-world fuel consumption, a representative
mission profile is employed, with adjustments made to align with
the urban, rural and highway driving shares. It is worth noting that
an alternative approach could involve using the actual recorded
velocity profile. However, this approach proved to be insufficient
due to extended monitoring periods, often spanning many hours or
even days. The purpose of this verification using real-world data was
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to assess the model’s performance when confronted with limited
input data. It is essential to emphasize that the outputs of fuel
consumption calculation models, akin to the one presented in the
study, exhibit high sensitivity to the input data. The choice between a
generic or actual vehicle profile can yield notable variations in the
results (Mogno et al., 2020).

2.4.2 US fleet
To demonstrate the model’s versatility beyond its applicability to

EU passenger cars, the model was utilized to calculate CO2

emissions for United States (US) cars using data provided by the
Environmental Protection Agency (EPA). The choice of the
United States was motivated by its position as one of the largest
vehicle markets worldwide—along with China and Europe—with

new annual vehicle registrations of about 5 million passenger cars
and 12 million light trucks (NTS, 2019).

It is important to note that vehicle segment definitions in the
United States differ from those in Europe. In the United States,
the term “passenger car” includes vehicles with car-like body
types and gross vehicle weight (GVW) of up to 3,900 kg, as well as
two-wheel drive SUVs of up to 2,700 kg. In contrast, the term
“light trucks” includes all vans and four-wheel-drive SUVs up to
4,500 kg GVW and includes cargo vans and pick-up trucks with
GVW up to 3,900 kg. While light trucks may be perceived as a
separate category, they often function as passenger vehicles
(Tietge et al., 2017) and they are included in the EPA
database. Consequently, making a direct comparison with the
EU passenger car category, which comprises vehicles with a

TABLE 3 Overview of performed on-road tests.

Test description Driving
style

Slope Comments

RDE compliant with regular driving Normal Flat Baseline for a flat route

Lower gear: concerns the incident while the driver shall have n-1 gear
than the vehicle’s indication for optimal driving, without violating the

compliance of the test

Non-RDE compliant and with extended conditions with slope
variation and high positive elevation, with regular driving

Uphill/
downhill

Baseline for uphill/downhill

Frequent and continuous braking, non-complying with the provisions
of the RDE regulation

Non-compliant RDE with regular driving mainly on highway Thessaloniki area (highway)

RDE compliant with dynamic driving Dynamic Flat -

FIGURE 7
On-road test routes mission profiles, (A) RDE compliant route, (B) route that includes uphill and downhill driving, (C) route with mainly highway
driving including uphill and downhill.
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GVW below 3,500 kg and with no more than eight passenger
seats, poses challenges. To address this, the current application
considered exclusively vehicles with car-like bodies and SUVs
with a GVW below 2,700 kg.

The EPA maintains FuelEconomy.gov (US Department of
Energy and EPA, 2022), a website designed to assist consumers
in making informed vehicle purchasing decisions by providing fuel
economy labels. These labels offer representative values of real-
world fuel economy in Miles Per Gallon (MPG) (Tietge et al., 2017).
Notably, the term “fuel economy (MPG)” in the United States is
equivalent to “fuel consumption (l/100 km)”. For consistency, all
final values in this study are reported as fuel consumption in
l/100 km.

The EPA label values are derived from a series of five laboratory
test cycles designed to capture representative real-world conditions.
As a detailed description of the EPAmethodology is out of the scope
of the current work, the EPA provides also a two-cycle approach
where vehicles are measured over the Federal Test Procedure (FTP-
75) for urban driving and the Highway Fuel Economy Test Cycle

(HWFET) for highway driving. Subsequently, post-processing of the
measured values proceeds as shown in Eq. 7 to calculate EPA
label values.

FCcity � 1

0.004091 + 1.601
FCFTP−75

( )
FChighway � 1

0.003191 + 1.2945
FCHWFET

( )
(7)

FCcity: City fuel consumption (MPG)
FCFTP-75: FTP-75 fuel consumption (MPG)
FChighway: Highway fuel consumption (MPG)
FCHWFET: HWFET fuel consumption (MPG)
The model application focused on simulating FCFTP-75 and

FCHWFET values for the available vehicles and subsequently
applying Eq. 7 in the post-processing. The latter step was needed
to enable comparison with the respective EPA label values.

TABLE 4 Technical characteristics of measured vehicles.

ID Vehicle Fuel Engine capacity (L) Engine power (kW) Transmission type Euro standard

D1 C-segment hatchback Diesel 1.6 82 Manual Euro 6b

D2 B-segment hatchback Diesel 1.5 66 Manual Euro 6c

D3 B-segment hatchback Diesel 1.5 55 Manual Euro 6b

P1 B-segment hatchback Petrol 1.0 85 Automatic Euro 6d TEMP-EVAP-ISC

P2 B-segment hatchback Petrol 1.0 55 Manual Euro 6b

P3 B-segment hatchback Petrol 1.2 66 Automatic Euro 6b

PHEV 1 D-segment sedan Petrol PHEV 1.8 72 Automatic Euro 6b

PHEV 2 D-segment sedan Petrol PHEV 1.6 77 Automatic Euro 6b

TABLE 5 Monitored vehicles with OBFCM.

Vehicle ID Fuel/powertrain
type

Monitored
distance (km)

Fuel
consumption
(l/100 km)

Route type share urban/rural/
highway (%)

Vehicle 1 Diesel 13,976 5.6 52/29/19

Vehicle 2 Diesel 1,040 5.9 3/4/93

Vehicle 3 Diesel 420 8.4 45/29/26

Vehicle 4 Diesel 1,278 5.4 15/10/75

Vehicle 5 Petrol 186 6.4 38/16/46

Vehicle 6 Petrol 1,570 6.5 13/10/77

Vehicle 7 Petrol 1,738 6.3 15/12/73

Vehicle 8 Petrol PHEV 6,813 7.5 66/27/7

Vehicle 9 Petrol PHEV 480 5.1 60/29/11

Vehicle 10 Petrol PHEV 481 6.7 21/14/65

Vehicle 11 Petrol HEV 271 6.6 24/11/65

Vehicle 12 Diesel PHEV 331 8.3 4/3/93
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Regarding, the vehicles, the EPA data include vehicle
specifications, road loads and test mass for FTP-75 and HWFET
cycles, which were utilized as inputs to the model. Vehicles that were
not within the boundaries set by the model in terms of capacity, were
excluded from the application. The EPA 2020 database contained
764 and 606 test results for the FTP-75 and HWFET cycles
respectively (EPA, 2021). Notably, all vehicles were powered by
petrol engines as this is the dominant fuel type for passenger cars in
the United States.

3 Results and discussion

3.1 Validation with in-house
measured vehicles

The simulation model accuracy was validated through a
comprehensive process that included measurements from nine
conventional vehicles—both petrol and diesel variants—and two
electrified vehicles, specifically PHEVs. A total of 73 tests were
conducted to assess the model’s accuracy employing various criteria
such as total and instantaneous trip consumption by urban, rural
and highway parts. The validation is explicitly based on the
comparison of the model’s prediction and the fuel consumption
obtained from measurements, either from the carbon balance
method utilizing emissions recording or the OBFCM reported
values from the OBD. Furthermore, the model’s ability to
accurately predict the state of charge for electrified vehicles was
scrutinized and compared with the experimental recordings.

The model calculated fuel/energy consumption for each
measured vehicle and test. The benchmark for model acceptance
was defined with a margin of ±10% in comparison to the measured
values, a threshold commonly accepted in similar studies (e.g.,
Mogno et al., 2020).

For clarity, the validation results are presented separately, with
an initial focus on conventional powertrains including both petrol
and diesel vehicles, followed by an assessment of PHEVs.

As mentioned earlier, the in-house measurements provided
detailed data, which could assist in identifying potential issues in
the simulation model performance.

Figure 8 shows the distribution of the difference between
measured and predicted fuel consumption by fuel type over the
whole trip and separated into urban, rural and highway parts.

For petrol vehicles, the overall (total trip) difference was found
between 9% and −11% at 95% confidence interval. Examining
differences by route type, rural and highway segments remain
within the ±10%, evenly distributed around 0%. However, urban
driving tends to underestimate fuel consumption ranging from −2%
to −20%. Some of this deviation may be attributed to the cold start,
given the urban part occurs at the beginning of the route. The cold
start is the phase when vehicle components, such as engine,
drivetrain, exhaust after-treatment system, suspension, and tyres
have not reached thermally stable operating conditions. During that
phase, additional energy (e.g., from the fuel consumption) is
required for the component warm-up, or losses (e.g., powertrain)
are increased, resulting in higher fuel and electric energy
consumption, in the case of electrified powertrains. The

additional fuel/energy consumption depends also on the selected
thermal management strategy applied to each vehicle.

In contrast, diesel vehicles exhibit an overall trip difference
ranging from 1% to 17%. Rural and highway segments tend to
overestimate fuel consumption, reaching up to 20% on the highway.
Urban routes are associated with a broader range, varying
from −8% to 17%.

In order to assess the statistical significance of these differences,
a paired t-test was also performed. The t-test considered pairs of
measurement and simulation results with an alpha level of 0.05.
Table 6 presents the calculated p-values from the t-test performed
for each powertrain and route type.

FIGURE 8
Model validation for petrol (A) and diesel (B) vehicles by
route type.
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For the interpretation of the t-test results, p-values higher than
the alpha level mean that we can accept the null hypothesis that there
is no difference between the two groups.

Regarding petrol vehicles, in almost all cases the p-value is
higher than the alpha level, except in the case of the urban
segment. This indicates that further work is needed to address
shortcomings such as the cold start, which have been highlighted
earlier. In the case of diesel vehicles, there is a significant difference
in the rural and motorway segments as it has been illustrated also in
Figure 8 with the mean differences being −0.34 and −0.45 L/100 km
respectively. Further calibration of the tool could improve the
results, as, for example, by considering different clustering for
diesel vehicles. Nonetheless, the results for the urban segment
and total trip showed that the p-value is higher than the alpha
level indicating that overall there is a good agreement for the
two groups.

Figure 9 compares cumulative and total fuel consumption for
the best prediction accuracy cases for petrol (Vehicle A) and diesel
(Vehicle B) powertrains. Figure 9A presents the difference between
measured and predicted fuel consumption for Vehicle A—the
P1 B-segment petrol vehicle with a 1.0 L engine and automatic
gearbox (AT)—on a highway route with significant road grade.
Figure 9B presents Vehicle B—the D2 B-segment diesel vehicle with
a 1.5 L engine and a manual gearbox—driven on an RDE-compliant
route with a regular driving style.

For vehicle A, the model calculations showed good agreement
with the measured fuel consumption with an overall difference of
3.7%. However, the urban part of the route showed an
underestimation of 13%, while for the rural and highway parts
that followed, the divergence after engine warm-up was 8.0% and
6.1% respectively. It was observed that the engine coolant
temperature reaches the operating temperature within the first
500–1,000 s of urban driving, but additional effects such as
transient operation should also be considered. The warm-up time
is also affected by the ambient conditions, driving style and engine
thermal management. The cold start effect at a starting temperature
of 20°C was calculated at 13% by Fontaras et al., 2017b, which is in
line with the difference found in this simulation case. It is worth
noting that the model does not currently consider the cold start
effect, which could be a potential area for further improvement.

The model prediction for Vehicle-B also presents an
underestimation from the beginning of the trip that is consistent
for most of the trip. The difference between measured and predicted
fuel consumption shifts to the positive side in the middle of the rural
part. This divergence cannot be attributed solely to the cold start,
and it could originate from other parameters that are related to the
calibration of the model. For the total fuel consumption, the

divergence between measured and predicted fuel consumption is
at 2.2%, while for the rural part, the difference is 11.8%, a value
significantly higher compared to the other parts. This value though
is balanced out by the lower difference of the urban part, which
showed an underestimation of −4.7%, a difference that can be
attributed to the cold start effect.

Figure 10 presents the respective results for the worst cases by
comparing measured and predicted fuel consumption for two RDE-
compliant routes. The vehicles are P3, a B-segment petrol vehicle
with a 1.2 L engine (Vehicle C) and D1, a C-segment vehicle with a
1.6 L diesel engine (Vehicle D). Figure 10B sub-plot presents a route
with regular driving for Vehicle C, while on the other hand, the sub-
plot Figure 10B presents a dynamic driving trip for Vehicle D.

Vehicle C was an example of a worst-case petrol vehicle
simulation, with an overall divergence of −10.8% over the
complete trip. It is noteworthy that the rural and highway parts
were well within the ±10% threshold with a divergence of −6.9% and
4.7% respectively. In contrast, the urban part exhibited a
considerable underestimation of 21.8%. Even when accounting
for 13% due to a cold start, the remaining deviation could be
attributed to factors such as engine idling and the trip’s dynamic
nature of urban driving, characterized by frequent accelerations.
Despite being marginal, the whole trip is considered regular driving
and this is reflected in the simulation results.

For the diesel vehicles, Vehicle D presented a divergence of 16%
over the whole trip. Separating the route into parts showed that the
overestimation was constant with 12.6%, 15.2%, and 19.1%
respectively over the urban, rural and highway parts. The
observed divergence in this case is mainly related to the
calibration of the fuel consumption calculation parameters for
the cluster that the vehicle belongs to. The trip is characterized
by dynamic driving, and after a more detailed investigation, it was
observed that by replacing the parameters with those for regular
driving, the difference drops to 10%. This means that the efficiency
values calculated for the dynamic driving of this cluster are
underestimated. The source of this underestimation could be
related to the gear selection sequence used for the generic
mission profile with dynamic driving, during the training of the
model. Eckert et al. (2022) reported that there is a 15.6% benefit in
fuel-saving achieved with optimal transmission configuration
(number of gears, gear and final drive ratios) and shifting
strategy, a value that indicates the high influence of the
transmission on fuel consumption. The influence of the gear
selection strategy was also investigated during the experimental
campaign. Two tests were also performed on the same route with
normal driving, but for one of the tests, a late gear upshift was
applied by the driver. In these tests, the fuel consumption was 20%
higher than the test with the normal gear shift.

At the next step, the model application was investigated on two
PHEVs, which posed the challenge of essentially deploying two
different power sources: petrol and electricity. Figure 11 presents
PHEV A and B over different driving conditions. The vehicles were
driven both in charge-depleting—mainly electric driving—and
charge-sustaining mode.

In charge-depleting mode, PHEV A presents an overestimation
which could be up to 30.8%. However, it should be highlighted
that in these cases, fuel consumption is relatively low, in the order
of 2 L/100 km, which could have a disproportionate effect on

TABLE 6 Calculated p-values from t-test by route type with an alpha level
of 0.05.

Route Petrol Diesel

Total 0.108 0.050

Urban 0.005 0.823

Rural 0.800 0.002

Motorway 0.963 <0.001
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the relative difference. The maximum absolute difference was 0.5 L/
100 km. In charge sustaining mode, the relative difference between
prediction and measurement was −6.2% and the absolute value
was −0.4 L/100 km. On the other hand, PHEV B predictions
presented a different trend. Test 1 and 2, both RDE-compliant
routes under normal driving conditions in charge-depleting mode
presented an underestimation. Under similar conditions but in
charge-sustaining mode, Test 3 presented an overestimation of
16.9%, while Test 4 in and an underestimation of 5.9%.
Tests 5 and 6 were both with uphill and downhill driving and
presented an overestimation of 36.9% and 9.7%, respectively.
However, it is interesting that the model calculated similar fuel
consumption at 3.6 L/100 km in both cases, while the measurements
delivered values of 2.7 and 3.3 L/100 km.

The model incorporates a generic EMS module that has been
experimentally derived and tested to cover various operating

conditions. However, the observed variability suggests the need
for further optimization and customization of the EMS module
for each PHEV. To illustrate this point, Figure 12 depicts the battery
state of charge evolution for both measured and predicted values.
Specifically, Figure 12A shows the results for PHEV A operating in
charge-depleting mode, while Figure 12B shows the corresponding
results for PHEV B in charge-sustaining mode.

The comparison between the measured and calculated battery
SOC for PHEV A revealed fluctuations during the trip. At the end of
the trip, the difference was in the order of 4%, which indicates good
agreement. However, during uphill driving, the model calculated a
rapid decrease in battery charge resulting in higher fuel
consumption. At around 2,000 s, the vehicle recovered energy
during downhill driving and then entered charge-depleting mode
for a short period until 4,200 s, after which it switched to charge-
sustaining mode completely. This trend shows that the model

FIGURE 9
Measurement and model prediction cumulative fuel consumption comparison for the best case (A) petrol-Vehicle A-and (B) diesel-
Vehicle B-vehicle.
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overestimated electric energy consumption and recuperated less
energy during braking, resulting in higher fuel consumption.
When the vehicle entered in charge sustained mode the
measured and simulated SOC values converged.

Test 4 of PHEV B also showed good agreement in the SOC
evolution over charge-sustaining mode. However, the energy
management strategy was not fully captured. The predicted
battery SOC fluctuated between the charge (12%) and dis-
charge (11%) limit while in the test results, this was not always
the case. For example, in the highway measurements between
5,000 and 6,000 s, the recorded battery SOC was rather constant,
which was achieved by the synergy between the thermal engine and
the electric motor. At this operating point, the thermal engine was
used to propel the vehicle, while the electric machine absorbed
energy from the engine to power the electric motor assisting in
vehicle propulsion. In contrast, the implemented generic strategy
applied in the model, during charge sustaining mode always
considers either battery charging or battery dis-charging with
torque assist.

3.2 Verification with monitored vehicles

The verification of the model’s accuracy in calculating fuel
consumption utilized fuel/energy consumption values and vehicle
speed from the monitored vehicles’ OBFCM device. The data was
categorized into urban-rural-highway parts based on vehicle speed,
which the model used to calculate weighted average fuel consumption.
Figure 13 shows the difference between the predicted and the measured
values for four diesel, three petrol, three PHEV and one HEV.

The results showed that the model was able to calculate fuel
consumption within the error margin of ±10% for most of the cases.
However, two cases slightly exceeded this value by ~0.5%, while one
case had a significantly higher divergence reaching up to 17.6%. The
high divergence is related to the overall performance of the model
for diesel vehicles, where the prediction trends towards the
overestimating of fuel consumption.

For petrol vehicles, the trend seems more distributed with values
ranging from −4.5% to 1.7%. Mogno et al. (2020) reported similar
findings in their study using a similar tool—the Green Driving

FIGURE 10
Measurement and model prediction cumulative fuel consumption comparison for the worst case (A) petrol-Vehicle C- and (B) diesel-
Vehicle D-vehicle.
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tool—where they found an average uncertainty of 12% and a bias of
up to 3%.

PHEVs showed a wider spread in fuel consumption ranging
from −7.6% to 8.3%, but still within the expected margins. This
could be attributed to PHEV drivers driving more in charge-
sustaining mode than in charge-depleting mode. It has been a
common issue that PHEV drivers do not charge their vehicles
regularly, which could have an impact on the technology’s
expectations to reduce fuel consumption (Plötz et al., 2018). The
HEV showed a difference of 10.6%, which was slightly higher than
the limit of ±10%.

3.3 US fleet results

The simulation model calculated city and highway fuel
consumption for the available US fleet vehicles in an exercise to
demonstrate the tool’s capability to extend to another region. This

was done to investigate whether is possible to accurately predict the
fuel consumption of US vehicles using a tool that is calibrated and
validated with vehicles that are from the European market. As a
result, the verification with the US data can provide an insight of
the additions needed to improve and further extend the developed
tool. The results were compared with the respective City and
Highway fuel consumption values from the EPA. Figure 14
illustrates the distribution of the divergence between the
simulated and the EPA values. Since there was uncertainty
regarding hybrid vehicles, the investigation only focused on
petrol vehicles.

In the City route, approximately 77% of the vehicles
demonstrated fuel consumption estimates within a range
of ±10% of the EPA-reported values, with 50.8% of these vehicles
with differences within the ±5%margin. The mean difference in this
case was only 1.2%, indicating good performance. Conversely, in the
Highway route, a larger mean difference of about 10% was observed,
with 45.5% of the vehicles falling within the ±10% margin.

FIGURE 11
Measurement and model prediction of total fuel and energy consumption comparison for PHEV A (A) and PHEV B (B) by route type.
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FIGURE 12
Battery stage of charge development for PHEV A (A) and PHEV B (B).

FIGURE 13
Fuel consumption prediction for the monitored vehicles.
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The model’s tendency to overestimate fuel consumption during
high-speed driving can be attributed to several factors. Firstly, cars
sold in the United States generally possess a higher power-to-weight
ratio compared to their EU counterparts. Secondly, variations in gear
shifting patterns, especially considering the prevalence of automatic
gearboxes in the United States compared to the EU, contribute to this.
Lastly, the model deploys generic gearboxes representative of EU
vehicles, which may deviate from actual US gearboxes. Consequently,
if the actual ratios of the two highest gears are below those of the
generic gearbox, the model underestimates engine efficiency during
highway driving eventually overestimating fuel consumption. A
significant portion of the deviation originates from the model’s
basis in generic vehicles tailored explicitly to represent the EU fleet.

4 Conclusion

The current work introduced a simulation model for
predicting real-world fuel/energy consumption for both
conventional and electrified vehicles. This model relies on
generic vehicle data and minimal input parameters, while the
validation compared the model’s predictions against on-road
measurements. The model was applied to vehicle monitoring
data to further assess accuracy. The results revealed that the
achieved fuel consumption accuracy was within ±10% for a
significant portion of the tests used in the validation. The
exception was the underestimation of petrol vehicles in the
urban part which highlighted the importance of including the
cold start effect. There was also an observed overestimation trend
for diesel vehicles, suggesting some clustering issues.
Nevertheless, the model’s overall performance makes it
suitable for deployment in online platforms or similar

applications that demand a straightforward and rapid
simulation tool. Moreover, its adaptability with the US fleet
was demonstrated, although fine-tuning may be required to
align with specific fleet characteristics.

Future enhancements to the model could address calculation
issues in diesel vehicles and transform it into a comprehensive data-
driven model using OBFCM data. One proposal in this direction
involves developing a simulationmodel to obtain OBFCMdata from
monitored vehicles, subsequently creating an internal database for
calculating efficiency coefficients for specific vehicle models to
replace generic values. This would yield more accurate
representations of each vehicle’s performance compared to the
current generic approach. For hybrid powertrains, this solution
could also be used to train the EMS and adjust it to specific
vehicle models. Furthermore, for hybrid and electric powertrains,
expanding clustering to include a broader range of vehicle sizes
could be explored. Another potential enhancement involves
incorporating a “thermal model module” to assess vehicle warm-
up and apply corrections for the cold start effect, which is
particularly important for electrified powertrains. Additionally,
relative measurements could provide valuable data for auxiliary
usage implementation and improved fuel and energy consumption
calculation, especially in scenarios where auxiliaries like air-
conditioning pose a significant load. Regarding gear-shifting, it
could be possible to train the model in a similar way as the
OBFCM data by introducing the engine speed and correlating it
with the vehicle speed. This could assist in limiting any errors
derived from generic gear-shifting.

To enhance its utility, the model could be integrated with an API
capable of suggesting fuel/energy-efficient routes based on user-
provided origin-destination information. Achieving this would
necessitate the development of a “driver module” capable of
generating the required speed profile. These proposed
enhancements underscore the model’s potential for expansion by
incorporating additional modules to improve accuracy.
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