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Driving is a stressful activity because of themental workload required tomaneuver
a vehicle in certain travel contexts, such as congested traffic, multi-modal
networks requiring complex interaction with surrounding vehicles, and
aggressive driving. Autonomous vehicles (AVs), on the other hand, can reduce
the mental workload by performing most of the driving tasks and providing users
with a comfortable ride. This study develops a pathway model to relate different
health determinants, including travel reliability, safety, driving comfort, and
value of time, to Autonomous vehicles driving and studies their impact on the
value of driving stress. A case study example of Autonomous vehicles simulation
is used to determine the impact of these health determinants. The value of
driving stress in Autonomous vehicles is estimated as a function of the value of
these individual health determinants. The results show that the perception of
safe or unsafe driving in Autonomous vehicles is the most important factor in
changing the perception of driving stress in Autonomous vehicles. Similarly,
perceptions of comfortable driving in Autonomous vehicles and reduced
workload with a higher value of time also reduce driving stress in
Autonomous vehicles. These results allow Autonomous vehicles adoption
models to explicitly consider driving stress reduction as a benefit and can
improve understanding of Autonomous vehicles adoption, which may
require quantitative analysis of underlying motivating benefits, including
driving stress reduction.
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1 Introduction

The emergence of vehicle and communication technologies is giving rise to increasing
market penetration of automated vehicle (AV) technologies such as advanced driving
assistance systems (ADAS). However, it is uncertain how these technologies are
perceived and valued by the users, which represents a knowledge gap in the analysis of
the cost-effectiveness and adoption of AVs. These technological advancements are expected
to bring about a paradigm shift in operations, traffic management, and travel patterns in
cities. AVs will benefit transportation systems by improving vehicle throughput, safety,
energy, and efficiency. However, in order to assess AV adoption and inform policy or
industry decisions, understanding human perceptions of AV driving and their perceived
benefits is necessary but challenging.

AVs could replace human-driven vehicles (HVs) and perform most driving tasks with
little or no human feedback. According to resource theory (Welford, 1978; Funke et al., 2007;
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Funke et al., 2011, p. 1305)”, “As task demand increases, more effort
is required to perform a task and as a result workload increases
[sic]”. Limiting workload can reduce driving stress, which in turn
can improve driving comfort and lead to fewer collisions. Similarly,
reduced workload in critical driving conditions can also lead to
lower stress levels. A reduced workload in AVs will also provide time
for additional on-board activities that may not be possible in a
human-driven vehicle. However, it is uncertain how increased or
decreased workload with transition of controls in AVs may affect
driving performance and how changes in workload may affect
driving stress in AVs. AVs are expected to have an impact on
different mental health determinants, such as travel reliability,
safety, driving comfort, and value of time. A positive influence
on mental health determinants changes the perception of stress.
Previous studies (Funke et al., 2007; Heikoop et al., 2019) have
analyzed driving stress as a function of heart rate and other surrogate
measures of skin response and eye gaze using instrumented
simulators. However, AV driving may be associated with
different health determinants, and the link between these AV
health determinants and their influence on driving stress is
unclear. Moreover, it is uncertain how travelers value driving
stress in AVs. This study would fill the existing gaps regarding
the relationship between health determinants and driving stress in
AVs and answer the following questions:

1) What are the mental health determinants of driving stress
in AVs?

2) How do AVs impact driving stress with the reduced workload?
3) What is the value of driving stress in AVs, and how sensitive is

driving stress to mental health determinants?

2 Literature review

Several previous studies have used driving simulators, surveys,
and field experiments to investigate driving behaviors and stress in
AVs and electric vehicles. Jamson et al. (2020) used a driving
simulator to investigate the ability of drivers to follow the eco-
feedback advisories and their propensity to prioritize it over safe
driving. They observed improved performance with eco-driving
advice. Heikoop et al. (2019) studied driver workload and stress
in partially automated vehicles in the real world using heart rate and
respiratory measures and observed that the Tesla Model S was
associated with a low workload that decreased over time.
Arakawa et al. (2018) studied user reliance on the control of
autonomous systems and observed that driver mental workload
was lower in AVs They also observed distraction from eye gaze
during the control transition Funke et al. (2007) used a driving
simulator to analyze the effects of driving stress and automation.
Consistent with resource theory, they observed that automation had
moderate facilitative effects based on reduced stress due to reduced
workload.

There have been studies on the value of vehicle automation or
technologies and processes that generally reduce mental workload.
Bansal et al. (2016) assessed consumers’ willingness to pay (WTP)
for AVs using survey data and observed that tech-savvy male
respondents who had experienced more collisions in the past had
a higher WTP for AVs. Another study (Maness and Lin, 2019)

analyzed the effect of free charging on consumers’ likelihood to
adopt electric vehicles due to the reduced mental workload of free
charging settings. They observed that short-term free public
charging increases sales of plug-in electric vehicles. Lin (2012)
measured the cost of range anxiety as a function of the value of
time, vehicle ownership, charging infrastructure coverage, and
driving patterns that contribute to the actual cost and mental
workload of dealing with insufficient driving range for known
travel needs. They found that reducing driving intensity,
increasing vehicle range, and providing better charging
infrastructure were effective in reducing range anxiety. Khattak
et al. (2018a) studied driver stress in response to traveling on
corridors with coordinated and non-coordinated traffic control.
They observed that coordinated traffic signals provided a
significant improvement in driving stress. Merat et al. (2014)
used a driving simulator to study the transition from automated
to manual driving. They showed that drivers were able to focus on
the center of the road within 15–20 s for the fixed interval transition.

Harb et al. (2018) designed a naturalistic experiment by
projecting people into a self-driving world using a free 60-h
chauffeur service for 7 days. They observed a significant increase
in vehicle miles traveled and the number of trips. Cottrell and Barton
(2013) studied the effects of automation on driving stress by
considering the personality and environmental factors of
individuals and theorized that automation reduces mental
workload and stress. Rojas-Rueda et al. (2020) reviewed the
public health benefits of AVs, including impacts on traffic safety,
physical activity, stress, congestion, urban design, and clean energy.
They posited that AVs could improve health. Reduce fatalities from
collisions and improve stress. Dean et al. (2019) reviewed the
existing literature on AVs with thematic views on road safety,
social equity, environment, lifestyle, and built environment for
the health implications of AVs. The research provided a
conceptual relationship between AV use and health outcomes.

Pudāne et al. (2019) used qualitative data from a focus group
survey to study the expectations of travel and on-board activities
with AVs. They identified the differences between travelers’
satisfaction with AVs and their potential for travel as an
important aspect for modeling. Steck et al. (2018) analyzed the
effect of AV driving on the value of time using data from a survey
questionnaire that examined travel in privately owned and shared
AVs. Time was considered a primary stress factor, and they observed
that relieving users from driving and allowing time for additional
activities in AVs is considered meaningful. Evans andWener (2006)
assessed how commuting to work by rail affects health and wellbeing
in terms of stress. They found that as commute times increased, so
did perceived stress levels compared to baseline values. Maier and
Wilken (2014) studied the impact of stress on consumer purchasing
behavior and discovered that stressed consumers perceive low- and
high-level product features differently, which affects their
willingness to pay. Bartel et al. (2019) conducted a qualitative
assessment of the health risks of rideshare drivers using focus
group interviews. They noted that the stressful nature of
rideshare work impose stress on drivers, both mentally and
physically.

In conclusion, previous studies have mostly relied on small
samples from driving simulators to test driver responses to AV
driving. These studies have primarily used heart rate sensors and
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perceived stress scales from surveys to assess driving stress. A few
studies have analyzed stress using survey questionnaires, while
others have investigated the implications of autonomous driving
on travel behavior and conducted qualitative reviews of previous
studies on driving stress. However, it is uncertain how travelers value
their driving stress in AVs. There is a lack of guidance on how to
quantify the value of driving stress (or its reduction) in AVs.
Furthermore, the literature lacks a comprehensive assessment of
the impact of autonomous driving on driving stress and the link
between mental health determinants of AVs (such as congestion,
safety, reliability, and value of time) and driving stress The present
study develops a framework for linking mental health determinants
of AVs to driving stress. The study proposes four mental health
determinants, namely, congestion, safety, driving comfort, and value
of time, and assesses the impact of AV driving on these mental
health determinants. The value of driving stress is quantified as a
function of these health determinants using AV simulation case
studies.

3 Methodology

A pathway model (Kim, 2018), which shows the cause-and-effect
relationship in Figure 1, was used to identify the health determinants of
AVs that lead to driving stress. The model links different pathways
(factors such as congestion, safety, operating costs, reliability, collisions,
and driving comfort) that contribute to the outcome of driving stress.
AVs will directly reduce congestion and improve travel time reliability.
These factors were selected because the literature (Rojas-rueda, 2017;
Dean et al., 2019; Rojas-rueda et al., 2020) provided evidence of the
relationship between these health determinants and driving stress.
Additional factors, such as emergencies and bad weather, may also
contribute to driving stress. The role of emergencies has been captured
to some extent through incident modeling. However, it was difficult to
measure a driver’s own level of fatigue since it can vary from person to
person. While driving at night may have some influence on the driver’s

ability to maneuver the vehicle, it may also vary from person to person.
Since human subject testing was not involved in this study, these factors
were not directly considered. Future investigations with human subjects
could also incorporate these factors. Congestion lead to longer travel
times and more stop-and-go waves in traffic, which increased driving
stress (Khattak et al., 2018b). AVs improved travel time reliability, and
drivers or travelers were able to reach their destinations on time, thus
requiring less buffer time and reducing driving stress. Similarly, safety is
another important health determinant that is a leading indicator of
driving stress. AVs improved safety and driving comfort by reducing
collisions and variability in driving profiles. Since 94% of collisions
today (Khattak Z et al., 2020) are caused by human error, AVs are
expected to improve safety by replacing the human factors element with
automated control. While riding in AVs, travelers experienced a safe
and comfortable ride that directly impacted their driving stress and led
to reduced driving stress. Similarly, the value of time in AVs (Pudāne
et al., 2019) was observed to be different compared to HVs since
travelers were able to perform additional activities such as checking
emails, watching movies, preparing for work, or other activities while
traveling in AVs. Thus, having additional time that could be utilized for
valuable activities that would otherwise not have been possible and
being relieved fromdriving itself, also improved the value of time, which
in turn impacts driving stress in AVs. A case study example was used to
simulate AVs driving on a calibrated network under dynamic
conditions. The performance measures from the simulation case
study were utilized to estimate the mental health determinants.
Furthermore, the mental health determinants were assigned a value
in dollars, which was used to calculate the value of stress as a function of
these mental health determinants.

3.1 Travel time reliability

Travel time reliability (Bhouri et al., 2016) is a good indicator of
network-wide congestion, which is important to both policymakers
and road users. Travelers are more concerned about unexpected

FIGURE 1
Mental health determinants of autonomous vehicles that affect driving stress.
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delays due to congestion because of their greater consequences
compared to daily delays Reliability measures capture the
variance in travel time and provide an estimate of the time
buffers that users need to include in their plans to arrive at
their destination on time. The planning time index and buffer
index were used to estimate how reliable time is when traveling in
AVs because they account for both expected and unexpected
delays. According to the Federal Highway Administration
(FHWA, 2017a; Khattak et al., 2019, p.8), the planning time
index (PTI) can be defined as the ratio of the 95th percentile to
free-flow travel time. PTI describes the delay that people are
willing to accept, for instance, if they have a tolerance for being
late on one weekday per month, how early they need to leave for
work PTI compares free-flow traffic time to near-worst-case
travel time The PTI equation is:

Planning time index PTI( ) � 95th Percentile travel time

Free flow travel time
(1)

Similarly, the extra time cushion when planning trips to arrive
on time is represented by the buffer index. The time cushion
accounts for unexpected delays.

Buffer index � 95th Percentile travel time − Average travel time

Average travel time

(2)
The value of reliability is calculated as a function of the cost of

travel, assumed to be the cost of tolls, and the difference in time
savings in AVs and HVs.

3.2 Conflicts

Conflicts are defined as “A situation with risk of collision
between two or more vehicles as they approach each other with
[sic] constant position in space and time” (Amundsen, 1977;
Chin and Quek, 1997, p.172). The premise for using time to
collision (TTC) is its frequent and comparable nature to
collisions, thus proactively predicting safety risks. The risk of
collisions affects the driver’s perception of stress. While there

are several surrogate measures of safety (Gettman and Head,
2003; Cunto and Saccomanno, 2008), TTC is widely used
because it reflects the potential for a collision and is easy to
calculate. Equation 3 provides the time to collision for
successive vehicles.

TTCn t( ) � f x( ) �

xn−1 t( ) − xn t( ) −Kn−1
vn t( ) − vn−1 t( ) ,

if vn t( )> vn−1 t( )
∞, vn−1 t( )≤ vn t( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (3)

where the TTC value for the nth vehicle in a time interval t is given by
TTCn(t), the vehicle position is represented by x, the speed of the
vehicle is given by vn andKn−1 represents the length of the preceding
vehicle. This TTC represents the ability of the preceding vehicle to
have a constant speed, while a scenario where the preceding vehicle
suddenly stops is represented by the braking TTC The braking
TTCbrake is given by:

TTCbrake t( ) � xn−1 t( ) − xn t( ) − Kn−1
vn t( ) (4)

A rear end conflict is identified by an angle below 30°, while a
lane change conflict is identified by an angle below 30–85°. The
conflicts represent the likelihood of a collision. TTC thresholds of
1–2s were used based on guidance from previous studies
(Papadoulis et al., 2019).

3.3 Driving comfort

The driving comfort of a vehicle improves the traveling
experience and has a direct impact on the driver’s perception of
stress. A jerky and bumpy ride with an unpleasant experience is
expected to negatively influence the driver’s perception of stress.
Thus, driving comfort is estimated from measures of volatility,
which express the variation in driving regimes and serve as a
leading indicator of driving comfort by identifying critical vehicle
maneuvers. Vehicular jerk and Bollinger Bands are used as measures
of driving comfort.

FIGURE 2
Simulation framework to estimate driving stress in the case study example.
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Vehicular jerk better represents instantaneous driving volatility
by indicating the marginal rate of change in acceleration or
deceleration, as shown in Equation 5:

Jerk, J � za

zt
� z2v

z2t
� z3s

z3t
(5)

where z
zt is the rate of change of acceleration a), speed v), and

distance s) with respect to time. zt is a small change in time.
Bollinger Bands (Lento et al., 2007) are used to relate the relative

moving average of velocities and accelerations to driving volatility.
The standard deviation value above or below the mean indicates
volatility, while the width and standard deviation indicate the level
of volatility. Thus, the upper band (BBu) and lower band (BBl)
around the mean are provided in Eqs (6, (7.

BBu � MA + 2

����������
yi −MA( )2

n

√
(6)

BBl � MA − 2

����������
yi −MA( )2

n

√
(7)

where y is the instantaneous speed and acceleration, and the total of
observations is given by n. Equation 8 represents the moving average
(MA). The MA was estimated using multiple 5s chunks of the time
series. For instance, the MA was initially estimated using the first 5s
(1–5s) of the series, then the MA was estimated using the next 5s
(i.e., 2–6s) chunk of the time series. Similarly, multiple time chunks
within the entire time series were used to estimate the MA. The
changing volatility is accounted for by the time series, while the
moving average is also used to estimate the upper and lower bands
for the Bollinger Bands.

MA � ∑n

i�1
∑i+4

i xi

5
( )/n (8)

3.4 Value of time

Value of time indicates how much consumers value and are
willing to pay for a technology or product. AVs take over most
human controls and perform driving tasks in an automated manner.
Automated controls in AVs fundamentally change the way people
travel, freeing up time for additional activities. Travelers would value
their time more in AVs due to the time available for on-board
activities. The reduced workload for AVs reduces their perception of
driving stress.

4 Automated vehicle (AV) simulation
case study

A simulation framework, shown in Figure 2, was utilized to
model a case study site with AVs simulated through a calibrated
network. The AV trajectory, travel time, and conflict data were used
to assess the mental health determinants for their influence on AV
driving stress. The VISSIM external driver behavior API was used to
model the behavior of AVs in C++, and the simulation package was

invoked through C#.Multiple factors, including several platoon sizes
(3, 5, 7, 10 vehicles), headways of 0.6, 1.2, and 1.8 s, CACC speeds of
60, 65, and 70 mph, deceleration for platooning in the range of -3 ft/
s2, 3.5 ft/s2, and 4 ft/s2, and roads with collitions or clear conditions,
were used to test the sensitivity of the results as a function of these
values. These parameters required multiple simulation runs in order
to capture the true stochasticity. Thus, the Latin hypercube sampling
approach was used to partition the design space into a small set and
limit the simulation replication with multiple parameters to 15.
These random seed-based replications capture the stochasticity and
were selected based on the minimum sample size. In addition, both
HVs and AVs were simulated on the calibrated I-66 network within
the microscopic simulator VISSIM to generate the output for
analysis.

The AV platoons traveling on a four-lane road network were
modeled for the case study. The platooning model consists of both
adaptive and cooperative adaptive cruise control (ACC and CACC).
To mimic the conditions of congested traffic that could result in
driving stress, incident data were also collected from the study site
and modeled on the network. The disruption of traffic flow caused
by incidents created stop-and-go waves that induced driving stress
similar to that of urban roadways. In addition, the human driver
behavior model parameters were calibrated for both highway and
urban driving. Figure 3 provides an example of AV platoons
operating on the network. A 12-mile directional section of I-66
in Northern Virginia was used as the testbed network. The route,
located in Washington, D.C., is heavily congested and consists of
one high-occupancy lane and three general-purpose lanes. The route
has a speed limit of 65mph. A set of traffic and roadway data
collected from I-66 in Northern Virginia was used to calibrate the
model for HVs. Three days of detector data were collected to
calibrate the simulation model in order to capture day-to-day
variation in traffic conditions and to have confidence in
generalizing the simulation results. Based on these calibration
results in Figure 4, the simulation model was well calibrated with
field data and thus serves as a good representation of real-world
driving conditions at the study site. Different sets of traffic and
driving conditions were used to represent the impact of AVs on
driving performance compared to HVs, leading to conditions that
resulted in the phenomenon of driving stress production.

Figure 5 shows that the AV host scanned the surrounding
network for preceding and following vehicles. Speed control with
ACC was activated when the distance exceeded the specified
threshold in the absence of a preceding vehicle. Conversely, the
host became a CACC follower in the presence of a preceding vehicle
within the communication range. The time gap determined the
specific selection of the gap regulation mode. Furthermore, the host
became the platoon leader when the platoon length exceeded a
specified maximum length. Otherwise, the AV host used the gap
regulation-based logic modes from the previous time.

Platoon AV operation consists of modes including speed
control, ACC control, and gap control mode for the CACC
vehicles. The platooning algorithm identified the subject vehicle
within the platoon during each update interval. The CACC gap
regulation mode (Khattak Z H et al., 2020; Khattak et al., 2022) was
utilized for a gap less than 2s when the host vehicle was identified
within the platoon. The speed and acceleration for the longitudinal
motion of the CACC were estimated with Eqs (9-10:
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vccs t( ) � vccs t − Δt( ) + gpep t( ) + gde
′
pt (9)

accs t( ) � vccs t − Δt( )( )/Δt (10)
whereaccs = recommended host vehicle acceleration (m/s2)Δt =
update interval’s time stepgp and gd = adjustment gains of
preceding and following vehicles (gp = 0.45 s−1 and gd � 0.0125s−1)

The gp and gd gains adjusted the time gap, and multiple iterations
were used to calibrate the final values within the model. The gap error ep
was optimized by the gap control mode, which enabled a constant gap
following policy. During each control cycle, the speed was estimated by
the gap error ep and its derivative e′p. These are provided in Eqs (12–13.
The exiting gap was estimated from the leading vehicle data, and a safe

gap was maintained by accelerating or decelerating according to the
existing and required gap difference. The collision avoidance process in
Eqs (14, (15 was used to decelerate and maintain a safe gap within the
platoon during lane changes (Khattak Z et al., 2020).

ep t( ) � s t − Δt( ) − t1vccs t − Δt( ) − d (11)
e′p t( ) � v1 t − Δt( ) − vccs t − Δt( ) − t1accs t − Δt( ) (12)

where t1 is the constant time gap between the host vehicle and the
preceding CACC string of the last vehicle, s = the distance between
the host and the preceding vehicle’s m) , and d = the length of the
preceding vehicle m).

FIGURE 3
AV Platoons on a four-lane network with incidents.

FIGURE 4
Calibration results for GP lanes.
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dere � −0.165 + 0.685.de1 + 0.080.qp − 0.00889. vccs − v1( ) (13)
q � 1 v1 > 0

0 otherwise
{ (14)

where dere represents the deceleration required to prevent a rear-
ending collision (in g) and de1 is the deceleration of the (preceding)
vehicle (in g). The value of q indicates whether a leader is present,
vccs indicates the speed of the preceding vehicle, and v1 indicates the
speed of the leading vehicle. A value of q = 1 in Equation 15 indicates
the presence of a leader, and a value of zero indicates otherwise.

The CACC vehicle searched for equipped vehicles when the
CACC vehicle itself was not in a platoon. The time lead was 2s and
the vehicle was downgraded to ACC (Khattak Z H et al., 2020) in
Equation 16 during this search period.

accs � g1 s − thvccs − d( ) + g2 vi − vccs( ) (15)

where,
g1 = host and preceding vehicles gain for position
difference (0.24 s−2)
g2 = host and preceding vehicles gain for speed difference
(0.006 s−1)
th = ACC controller’s desired time gap s); taken from previous
studies (Khattak Z et al., 2020)
vi = current speed of the preceding vehicle (m/s)

The error (absolute) of the real speeds from the field tests and the
simulated speeds in this study were used to calibrate the speed and

position gains since the behavior observed from the traceable profiles
was string-stable. The final model used values of 0.24 s−2 and
0.006 s−1, which resulted in minimal absolute error. In addition,
the vehicle was set as a platoon leader when an equipped vehicle was
identified in the same lane. The vehicle switched to ACC control
during the transition, and speed, acceleration, and other vehicle data
such as distance were used to estimate headway.

When there was no preceding vehicle and the vehicle was not
within the range of the on-board sensors, the speed control mode for
ACC (Khattak Z H et al., 2020) was activated, which maintained the
vehicle cruising at the desired speed. This mode is given by
Equation 17:

accs � g3 vf − vccs( ) (16)

where
g3 = differential gain for free flow and the host’s current

speed (0.4 s−1)
vf � host vehicle f ree f low speed (m/s)
Furthermore, the model (car following) from the previous time step

was used through a hysteresis loop when the clearance distance was
between 90 and 130m. This procedure achieved a smooth transition.

5 Experimental results

This section shows the experimental results involving the four health
determinants and how they relate to driving stress in AVs. A scenario

FIGURE 5
Algorithm for AV platoons.
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analysis is also presented to analyze the effect of an increase or decrease
in each of the health determinants on the value of driving stress.

5.1 Value of stress in AVs

The value of stress is theoretically related to the mental health
determinants discussed in the previous section, as they influence the
perception of driving stress. The mental health determinants
have been theoretically observed in the literature to influence
the perception of driving stress (Rojas-Rueda, 2017; Dean et al.,
2019; Rojas-Rueda et al., 2020). The health determinants have
associated costs, which provides a framework to formulate the
value of driving stress in AVs as a function of travel time
reliability, safety, driving comfort, and value of time/cost of
operation. The value of the driving stress function, which is a
summation of all health determinants, is given in Equation 18:

ValueofDrivingStress inAVs�∑Costof

a Reliability( )
b Safety( )
c Comfort( )

d Valueoftime( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

The terms (a-d) represent the coefficients of these factors,
indicating the varying degree to which each factor can contribute
to the value of the driving stress. The value of driving stress is
calculated considering the value of each individual measure
estimated in the later section. The value of driving stress is a
function of all the individual estimated values of the health
determinants based on the assumptions specified in Sections
5.1–5.6. This value is approximately $18,071 over the annual
cycle per mile. The highest percentage corresponds to safety
improvement, followed by driving comfort and travel reliability,
while the value of time has a nominal impact.

5.2 Travel time reliability assessment

The travel time comparisons for both AV andHV operations are
provided in this section. Figure 6 indicates a reduction in travel time
with AVs for multiple scenarios involving low, medium, and heavy
flows of 500 veh/hr, 2500 veh/hr, and 3500 veh/hr. An average
improvement of 27.3% in travel time was observed with AVs as
opposed to HVs. It was expected that AVs would improve travel
time through platooning, allowing vehicles to move through the
network in an efficient manner. Furthermore, travel time reliability
indices, consisting of PTI and buffer index, were also estimated to
account for both expected and unexpected delays (due to recurring
and non-recurring congestion). This is helpful in making intuitive
travel decisions, and the improvement in reliability contributed
positively to driving stress, i.e., higher reliability led to a
reduction in driving stress due to travelers’ confidence in AV to
get to their destination on time. An improvement in reliability of
40.9% and 21.1% for PTI and buffer index, respectively, was
observed for AVs compared to HVs. This was expected since
AVs control driving functions with little to no human feedback
and respond to traffic variations in real-time. Thus, improvements
in reliability can be attributed to better flow conditions produced by
tight platoons. Better flow conditions would change drivers’
perceptions of stress, as they would feel more relaxed if they
were confident that they would arrive at their destination on time.

To estimate the reliability value, link flow capacities were
assumed to be independent stochastic variables. This assumption
simplifies the dependence of stochastic travel time on link flow. We
also introduced the average toll cost on the I-66 study section to
represent the cost of travel. Considering the average toll cost of
$20 and the average reliability, the value of travel time reliability was
calculated as a function of cost and average travel time on the links.

R � Average Cost of toll on I66
Average reliability

(18)

FIGURE 6
Average travel time under different flow distributions.
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where R is the reliability value for a single trip, with a value of $5.87.
Considering the total number of trips per day, the conversion to
annual value is given by:

Rt � 365pRpTavg (19)
where Rt is the total cost of the reliability value per year, Tavg is the
average number of trips per day, which has a value of four according
to the National Household Survey (NHTS) (FHWA, 2017b). This
corresponds to a value of $922 per mile.

5.3 Conflicts

Driving safety is another important health determinant and has
a major impact on the perception of driving stress (Rojas-Rueda,
2017; Dean et al., 2019; Rojas-Rueda et al., 2020). Approximately
30% of collisions (Desmond and Matthews, 2009) have been
attributed to driving stress, making it a key contributor to stress.
Thus, travelers who perceive AVs as safe would be relaxed, and their
driving stress would be lower. The improvement in safety while
driving AVs was assessed through a surrogate safety assessment
model (Papadoulis et al., 2019). For the sake of brevity, a 2s TTC
threshold was used. Figure 7 shows the conflicts for both AV driving
and HVs. Conflicts with AVs were negligible compared to conflicts
with HVs. An increase or decrease in the probability of conflicts
indicates dangerous or safe driving, which affects the perception of
driving stress. Travelers who perceived their driving as safe would be
less stressed and more relaxed, and an average 60% decrease in
conflicts was observed with AV driving. This decrease in conflicts
revealed safer driving with AVs and a potential reduction in
perceived driving stress. The improvement was expected due to
less disruption of traffic flow in tight platoons and the real-time
response of AVs to traffic conditions Lane change conflicts were
observed to be lower compared to rear-end conflicts. This indicates
that rear end conflicts are more critical than lane change conflicts.
The conflicts indicate the probability of a collision.

According to the National Highway Traffic Safety
Administration (Blincoe et al., 2015), the economic toll and
societal harm of motor vehicle crashes in 2010 were $242 billion
in economic costs. Since the analysis was conducted in 2020, the

Consumer Price Index (CPI) approximated the total cost of a crash
in 2020 dollars to be $47,021. It should be noted that the cost of
decreased quality of life due to injuries was not included in these
values to be conservative in the estimates. The probability of a
collision occurring is given by Equation 21, which includes the 2s
TTC crashes. This value is utilized in Eq. 22 to estimate the annual
cost of crashes.

Pc � ecrash

ecrash + enocrash
(20)

where Pc indicates the probability of a crash, which is 0.44%. This
value can be used to estimate the annual cost of crashes C) for AVs,
C0 is the cost of a single crash for a trip assigned a value of $47,021
(the cost for a single vehicle would be $23,510), and Tavg represents
the average number of trips from a vehicle having a value of four
according to the NHTS (FHWA, 2017b). The probability of a crash
for HVs was calibrated using real-world crash data obtained from
the I-66 study site in Northern Virginia. For a total mileage of
154 miles and 300 crashes per year, an average annual daily traffic of
7000 veh/hr, and a crash rate of 0.76% was estimated based on the
formula in Equation 22.

Crash rate (crashes/Mmiles � Average crashes per year x 1000000
Length xVolume x 365

(21)
The value is slightly higher than the 0.007% observed in the

simulation environment. The calibrated crash rates were also
compared to the literature data in Table 1. Crash rates for local
and freeway roads in Virginia and other states were collected from
the literature and compared to the current estimates. The literature
revealed estimates of a 0.0069 collision probability with two lane
closures for Virginia freeways estimated from VATraffic (Lan et al.,
2021). Furthermore, local and freeway average crash rates from
Massachusetts (Mass.gov, 2022) were observed to be 0.0078 and
0.0080, respectively. The 3-year average local and freeway road crash
rates for California (Caltrans, 2019) from 2016 to 2019 were
observed to be 0.0089 and 0.0083, while the average freeway
crash rate for Wisconsin (Szymkowski, 2019) from 2016 to
2020 was observed to be 0.81%. Thus, the estimated value was
adjusted accordingly to account for variations in traffic and roadway

FIGURE 7
Conflicts observed for both AVs and HVs. (A) Rear end, (B) Lane change.
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conditions on both freeways and local roads in multiple states. The
difference between the value based on real data and estimates from
multiple states was observed to be approximately 5.1%. Thus, the
simulation value was adjusted by a 5% increase, giving a value of
0.00735 The value of C per mile was approximately $16,605.

C � 365C0PcTavg (22)

5.4 Driving comfort

Driving comfort plays a significant role in the perception of
stressful or calm driving. Thus, volatility was used to analyze
acceleration and deceleration (hard braking) variations. This
concept identifies erratic maneuvers and abrupt variations in
the driving regime, which are indicative of ride comfort and jerks
that are associated with driving stress. These were estimated for
AVs driving along with HVs for the case study scenario Figure 8
shows the driving volatility from the perspective of Bollinger
Bands. The results show the mean volatility with upper and lower
band volatility over time. It was observed that AV driving
provided a more comfortable ride with less variation
compared to HVs. Low or high volatilities in acceleration and
deceleration indicate a smooth or jerky flow of traffic, which
creates an uncomfortable ride with serious safety concerns.
Deceleration variations are more dangerous due to the
consequences of negative jerks. When AV is operating at a
constant speed in a platoon, jerks are minimal or zero with a
constant acceleration-deceleration profile. These measures of
volatility revealed that AV driving is less volatile, with low
variations that are relatively constant compared to HV
driving. Such low variations and jerks led to a comfortable
ride, which is expected to reduce driving stress and make
drivers more relaxed. With a comfortable ride, the traveler’s
blood pressure would be lower, resulting in reduced driving
stress.

Previous research (Wali et al., 2018) has shown that a 1%
increase in volatility led to a 1.25% increase in crash frequency.
Therefore, driving comfort, quantified by volatility in this research,
was related to crashes in order to estimate the monetary value of
driving comfort. An average 15% decrease in volatility was observed
with AVs, corresponding to an 18.75% reduction in crashes.
Considering the 38 crashes in AVs, the 18.75% decrease in
crashes gives a value of 30.87. The value of driving comfort is
given in Equation 24.

Dcom � 365C0PcRcomTavg (23)

where C0 indicates the cost of a single crash, Rcom is the percentage
reduction in crashes having a value of 18.87% as indicated above,
while Tavg represents the average trips per day having a value of four
according to the NHTS. The final monetary value of Dcom translates
to a value of $3056/mile.

5.5 Value of time

Automated vehicles (AVs) will fundamentally change the way
people travel, freeing up time for additional activities as they replace
human control and perform most driving actions. The concept that
time spent in AVs can be used for a range of additional activities
increases the value of time. This additional time provided by AVs
benefits working people, those requiring assistance and those
without license by utilizing time for work, shopping or to satisfy
basic human needs such as sleeping, talking, eating, and drinking.
This additional time granted by AVs reduces the overall workload,
leading to less driving stress. While different AV users may value
time differently, a recent study (Becker et al., 2018) analyzed the
value of time for AV users from three different countries from a
sample of 2500 participants. The study captured a broad spectrum of
demographics, population, and travel time. The researchers
observed a higher level of acceptance of the concept with time
and familiarity with AVs. AV users from Germany were observed to
value time in AVs as $20, Japanese were willing to pay $17 while
Americans were willing to pay $16 for additional hour in AVs. Their
value depended on their use of time in AVs for communication and
entertainment related activities. Since our case study example
consists of 1 h of AV driving, this translates to an average value
of time of $16 for additional activities.

T � 365pValuepTdripTavg (24)
where Tdri is the time of driving, Tavg is the average number of trips,
having a value of four according to the NHTS, while the value of
time is $16, resulting in a value of $2511 per mile

5.6 Value of driving stress in AVs vs. HVs and
impact of traffic flow

The value of driving stress for both AVs and HVs was also
analyzed with individual health determinants. Figure 9 shows lower
values for the health determinants, including travel reliability, safety,
comfort, and value of time, for AVs compared to HVs. This
contributed to an average 35.2% lower value for driving stress in
AVs The findings are intuitive since AVs improve the driving
experience and relieve travelers from exhausting driving tasks. In
addition, the influence of increasing traffic flow ranging from low
flow (1600 veh/hr) to medium flow (2400 veh/hr) and heavy flow
(4500 veh/hr) on the value of driving stress was also analyzed, as
shown in Figure 10. Overall, an increasing trend in the value of
driving stress was observed, moving from lower flow to higher flow.
However, only a marginal increase in driving stress was observed at
higher traffic flows. This finding can be attributed to the ability of
AVs to smooth the traffic flow and maneuver most driving tasks
with automated controls in an efficient manner.

TABLE 1 Crash rate probability from the literature.

State Crash rate References

Virginia 0.0069 (average) Lan et al. (2021)

Massachusetts 0.0078 (local), 0.008 (freeways) Mass.gov (2022)

California 0.0089 (freeways), 0.0083 (local) Caltrans (2019)

Wisconsin 0.008 (average) Szymkowski (2019)
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6 Determining factors for driving stress
to mental health scenarios

This section provides an assessment of driving stress in relation
to the four health determinants of AV driving. A scenario analysis
was conducted with a 20% and 50% increase and decrease in the
value of the health determinants, and the effect of these changes on
driving stress in AVs was observed

6.1 Travel reliability

Travel time reliability indicates how reliable AV travel is and
whether travelers can reach their destination on time. This, however,
depends on the travel route and traffic congestion; AVs can smooth
out traffic waves and improve reliability. The impact of travel
reliability on the value of driving stress was tested with 20% and
50% more or less reliable travel. The improvement in reliability is

FIGURE 8
Volatility in driving regimes for AVs and HVs (“B.B.” stands for Bollinger Bands). (A) Volatility for HVs, (B) Volatility for AVs.
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indicated by lower values, showing less time required for planning
travel. For instance, reducing the reliability values by 50%. Figure 11
shows that as travel time reliability improves, the value of driving
stress decreases, while the value of driving stress increases as the
value of travel time reliability increases. Improved reliability with
AVs indicates lower congestion and improved flow conditions,
resulting in lower driving stress.

6.2 Safety

The perception of safe driving plays a critical role in the
traveler’s perception of driving stress. The improvement in safety

conditions in turn improves vehicle maneuvering and perception
reaction time. Since AVs can respond more efficiently to changing
road and traffic conditions compared to HVs, the risk of
involvement in safety-critical events is lower. This scenario tested
the impact of crash risk involvement on driving stress by varying
crash risks from positive to negative at 20% and 50%. Compared to
the base case, a 50% increase in crash risk resulted in the highest
increase in driving stress, as shown in Figure 12 This indicates that
improved safety perceptions could increase AV adoption and
consumer confidence in using AVs by reducing perceived driving
stress. Furthermore, a 50% reduction in crash risk led to a net
reduction in the value of driving stress of almost 45%. This was
expected due to the direct relationship between stress and safety.

FIGURE 9
Value of driving stress in autonomous vehicles vs. human-driven vehicles.

FIGURE 10
Influence of increasing traffic flow on the value of driving stress per mile.
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6.3 Driving comfort

In this scenario, the driving stress response was tested with respect
to driving comfort by increasing or decreasing its value by 20% and
50%, respectively. A more comfortable drive with fewer jerks and stop-
and-go waves is expected to lower blood pressure and reduce driving
stress (Khattak et al., 2018a). Figure 13 shows that reducing the value of
driving comfort (indicated by higher volatility) increased the value of
driving stress, while improving driving comfort reduced the value of

driving stress. This is due to the fact that AVs offer a comfortable ride
with constant acceleration and deceleration.

6.4 Value of time

This scenario assesses the influence of the value of time on
driving stress. The value of time is related to income level, and
higher-income individuals are expected to have a higher value of

FIGURE 11
Scenario assessing the influence of travel reliability on driving stress.

FIGURE 12
Scenario assessing the influence of safety on driving stress.
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time. Thus, AV users are expected to have a higher value of time, and
increasing the value of time in Figure 14 shows a decrease in the
value of driving stress in AVs. This was expected because travelers
were comfortable performing additional activities in AVs that would
otherwise not have been possible and due to the reduced workload in
AVs. Similarly, a reduction in the value of time increased the value of
driving stress. An average reduction of 6.94% was observed in the
value of driving stress, with an increase in the value of time.

7 Conclusions and recommendations

Driving is a stressful activity due to the mental workload
required to maneuver a vehicle in congested traffic and the
complex interaction with surrounding vehicles. Autonomous
vehicles, on the other hand, can reduce the mental workload by
performing most of the driving tasks and providing a comfortable
ride to users. This study develops a pathway model to relate different

FIGURE 13
Scenario assessing the influence of comfort on driving stress.

FIGURE 14
Scenario assessing the influence of the value of time on driving stress.
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mental health determinants, including travel reliability, safety,
driving comfort, and value of time, to AV driving and
investigates their impact on reducing driving stress. A case study
example of AV simulation is used to determine the impact of these
health determinants. The value of driving stress in AVs is estimated
as a function of these health determinants.

The scenario analysis of driving stress in AVs revealed that safety
and driving comfort are the health determinants that significantly
contributed to the traveler’s perception of driving stress. This is
intuitive since AVs can respond more efficiently to changing road
and traffic conditions compared to HVs, reducing the risk of
involvement in safety-critical events. AVs also operate at a constant
speed in a platoon, with minimal jerks and a constant acceleration-
deceleration profile. Therefore, drivers feel safer and more comfortable
in AVs compared to HVs. As a result, AVs have the potential to reduce
driving stress andmake travel safer andmore comfortable. These results
have the potential to improve AV behavioral models in terms of
accounting for driving stress and to improve AV adoption by
demonstrating the benefits of AVs in terms of relieving commute stress.
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