
Optimizing trajectories for
highway driving with offline
reinforcement learning

Branka Mirchevska1*, Moritz Werling2 and Joschka Boedecker1,3

1Department of Computer Science, University of Freiburg, Freiburg, Germany, 2BMW Group, Munich,
Germany, 3IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany

Achieving feasible, smooth and efficient trajectories for autonomous vehicles which
appropriately take into account the long-term futurewhile planning, has been a long-
standing challenge. Several approaches have been considered, roughly falling under
two categories: rule-based and learning-based approaches. The rule-based
approaches, while guaranteeing safety and feasibility, fall short when it comes to
long-term planning and generalization. The learning-based approaches are able to
account for long-term planning and generalization to unseen situations, but may fail
to achieve smoothness, safety and the feasibility which rule-based approaches
ensure. Hence, combining the two approaches is an evident step towards yielding
the best compromise out of both. We propose a Reinforcement Learning-based
approach, which learns target trajectory parameters for fully autonomous driving on
highways. The trained agent outputs continuous trajectory parameters based on
which a feasible polynomial-based trajectory is generated and executed. We
compare the performance of our agent against four other highway driving agents.
The experiments are conducted in the Sumo simulator, taking into consideration
various realistic, dynamically changing highway scenarios, including surrounding
vehicles with different driver behaviors. We demonstrate that our offline trained
agent, with randomly collected data, learns to drive smoothly, achieving velocities as
close as possible to the desired velocity, while outperforming the other agents.

KEYWORDS

reinforcement learning, trajectory optimization, autonomous driving, offline
reinforcement learning, continuous control

1 Introduction

In the recent past, autonomous driving (AD) on highways has been a very active area of
research (Katrakazas et al., 2015; Schwarting et al., 2018). The autonomous vehicle should be
able to respect traffic rules, yield, merge, change lanes, overtake, anticipate cut-ins in a
comfortable and safe but not overly conservative manner. Numerous approaches have been
proposed that can be broadly divided into two categories: approaches that do not learn from
data such as rule-based or optimal-control based approaches (Claussmann et al., 2019), and
machine learning-based (ML) approaches (Grigorescu et al., 2020). The former rely either on
a set of rules tuned by human experience, or are formulated as an optimization problem
subject to various constraints, aiming for a solution with the lowest cost (Borrelli et al., 2005;
Falcone et al., 2007; Glaser et al., 2010; Werling et al., 2010; Xu et al., 2012). Usually they are
based on mathematically sound safety rules and are able to provide feasible and smooth
driving trajectories (Rao, 2010). However, it is difficult to anticipate all possible behaviors of
other vehicles and objects on the highway and translate them into all-encompassing rules.
Doing so could lead to errors in the rules and false assumptions about the behavior of other

OPEN ACCESS

EDITED BY

Michele Segata,
University of Trento, Italy

REVIEWED BY

Shobha Sundar Ram,
Indraprastha Institute of Information
Technology Delhi, India
Reinis Cmurs,
Robert Bosch (Germany), Germany

*CORRESPONDENCE

Branka Mirchevska,
mirchevb@informatik.uni-freiburg.de

SPECIALTY SECTION

This article was submitted to Connected
Mobility and Automation,
a section of the journal
Frontiers in Future Transportation

RECEIVED 16 November 2022
ACCEPTED 27 March 2023
PUBLISHED 12 May 2023

CITATION

Mirchevska B, Werling M and Boedecker J
(2023), Optimizing trajectories for
highway driving with offline
reinforcement learning.
Front. Future Transp. 4:1076439.
doi: 10.3389/ffutr.2023.1076439

COPYRIGHT

© 2023 Mirchevska, Werling and
Boedecker. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Future Transportation frontiersin.org01

TYPE Original Research
PUBLISHED 12 May 2023
DOI 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/articles/10.3389/ffutr.2023.1076439/full
https://www.frontiersin.org/articles/10.3389/ffutr.2023.1076439/full
https://www.frontiersin.org/articles/10.3389/ffutr.2023.1076439/full
https://crossmark.crossref.org/dialog/?doi=10.3389/ffutr.2023.1076439&domain=pdf&date_stamp=2023-05-12
mailto:mirchevb@informatik.uni-freiburg.de
mailto:mirchevb@informatik.uni-freiburg.de
https://doi.org/10.3389/ffutr.2023.1076439
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://www.frontiersin.org/journals/future-transportation#editorial-board
https://doi.org/10.3389/ffutr.2023.1076439

drivers. Similarly, optimization-based approaches can get
computationally demanding in complex, highly dynamic traffic
settings due to the real-time constraint of the solver.
Additionally, the limited planning horizon in optimization based
approaches results in difficulties when planning long-term, which
may lead to a sub-optimal overall performance. Alternatively,
machine learning-based approaches, learn from data and are able
to generalize to the aforementioned uncertain situations, making the
system more robust and less prone to errors caused by false
assumptions (Kuutti et al., 2021). Since acquiring high-quality
labeled data is cumbersome and expensive, Reinforcement
Learning (RL) in particular offers a good alternative for tackling
the autonomous driving problem (Hoel et al., 2018; Mirchevska
et al., 2018; Wang et al., 2019; Hügle et al., 2019; Nageshrao et al.,
2019; Huegle et al., 2020; Kalweit et al., 2020; 2021; Mirchevska et al.,
2021). Based on the type of the actions the agent learns to perform,
we can categorize RL-based approaches into high-level, low-level,
and approaches that combine both. High-level action approaches
are the ones where the agent may choose from a few discrete
actions defining some high-level maneuver like keep lane or
perform a lane-change (Mirchevska et al., 2017; Mukadam
et al., 2017; Mirchevska et al., 2018; Wang et al., 2019; Hügle
et al., 2019). They are limiting in a sense that the maneuvers
behind the lane-change actions usually are fixed and not well
adjusted to every situation that might occur. For example, the
lane-change maneuver always has the same duration regardless of
the situation and the agent is unable to choose exactly where to
end up after a lane-change (behind or in front of an adjacent
vehicle, etc.). In low-level approaches such as (Wang et al., 2019;
2018; Wang et al., 2019; Kaushik et al., 2018; Kendall et al., 2018;
Saxena et al., 2019) the agent usually outputs actions that directly
influence the lowest level of control such as acceleration and
steering wheel. Since the low-level approaches do not rely on any
underlying structure, everything needs to be learned from scratch,
requiring large amounts of high-quality data and very long
training times. At the same time, high-level approaches may
make it too difficult to obtain smooth and feasible trajectories
that are customized for each given situation. This is because lower
level maneuvers are usually hard-coded and fixed in terms of
duration and shape.

To get the best of both worlds, fast learning and long-term
planning for RL and mathematical stability for the model-based
methods, the combination of the two holds the promise to speed
up and improve the learning process. It enables a trade-off between
high- and low-level actions by allowing flexibility for the RL agent, to
have increased control over the final decision, while avoiding the need
to learn tasks that are efficiently handled by traditional control
methods. Most methods combining trajectory optimization with
RL separate the RL agent from the trajectory decision (Bellegarda
and Byl, 2019; Ota et al., 2019; Bogdanovic et al., 2021; Mirchevska
et al., 2021) or discretize the action space (Hoel et al., 2019; Nageshrao
et al., 2019; Ronecker and Zhu, 2019). This may result in sub-optimal
behavior since the RL agent has limited awareness of the criteria used
to generate the final trajectory. In (Mirchevska et al., 2021) we
developed an RL agent that first chooses the best candidate from a
set of gaps (space between two surrounding vehicles on the same lane)
to fit into (in order to change a lane or stay in the current lane), and
then triggers a trajectory planner to choose the best trajectory to get

there. Even though the agent performed well, this procedure is costly
since it entails defining all gaps and the trajectories reaching them at
run-time, including checks for collisions and assessing velocities
before proposing the available actions to the agent.

To address this, here we are proposing a continuous control
trajectory optimization approach based on RL. Every second, the
agent chooses four continuous actions describing the target
trajectory parameters as shown in Figure 1. This provides the
flexibility to directly choose the parameters for the generation of
the trajectory that it is going to be executed until the next time-step.
Furthermore, instead of learning how to generate the trajectories, we
delegate this task to a well-established polynomial-based trajectory
generation module.

In many applications, the need for learning a good policy using
only a pre-collected set of data1, becomes evident since learning while
interacting with the environment is either too expensive or dangerous.
Autonomous driving is considered to be one of them, where in
production application, the data is usually first collected and then
used offline (Levine et al., 2020). Considering that, we conduct the
training using only data collected with a simple random policy in an
offline fashion. The trained agent is evaluated on realistic2, highly
dynamic highway scenarios that simulate human-like driving
behaviors, using parameters that encompass a range of driving
styles including variations in reaction times, cooperativeness and
aggressiveness, among others. These scenarios involve a varying
number of traffic participants that are randomly positioned on the
road to ensure a comprehensive assessment of the agent’s performance,
taking into account the fact that the surrounding vehicles have also
varying driving goals in terms of target driving speed.We show that the
agent learns to drive smoothly and as close as possible to the desired
velocity, while outperforming the comparison agents. It is also able to
handle unpredictable situations such as sudden cut-ins and scenarios
where more complex maneuvers are required. Additionally, we
perform quantitative analysis to show how the nature of the
training data and the percentage of terminal samples included
influence the learned policy. Our main contributions are the following.

1. A novel offline RL-based approach for AD on highways with
continuous control for separate lateral and longitudinal planning
components resting on an underlying polynomial-based
trajectory generation module.

2. Comparison against other models, on diverse realistic highway
scenarios with surrounding vehicles controlled by different driver
types.

3. Demonstrating that the agent has learned to successfully deal
with critical situations such as sudden cut-ins and scenarios
where more complex maneuvers are required.

4. Analysis of the training data by considering the structure of the
data and the proportion of terminal samples3.

1 Known as offline or fixed-batch RL.

2 In the sense that they are generated with different traffic densities, the
surrounding vehicles are modeled with various behaviors, have different
goals, all of which is unknown to the agent in advance, much like real
highway traffic.

3 Terminal samples refer to instances in which the agent reaches a state
from which it cannot continue, typically due to an undesired behavior.

Frontiers in Future Transportation frontiersin.org02

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

2 Reinforcement learning background

In RL an agent learns to perform specific tasks from interactions
with the environment. RL problems are usually modeled as a
Markov Decision Process (MDP) 〈S,A, T , r, γ〉, where S ∈ Rn is
the set of states,A ∈ Rm the set of actions and T : S × A → S is the
transition model. At each time-step t, the agent finds itself in a state
st and acts by executing an action at, in the environment. As a
consequence of taking action at, the agent transitions to the next
state st+1 and receives a feedback value rt+1 from the environment,
called a reward. The feedback is a measure of success or failure of the
agent’s actions. The agent’s objective is to find a policy π, i.e., a
mapping from states to actions that maximizes the expected
discounted sum of rewards accumulated over time, defined as
Eπ[∑∞

t�0γ
trt+1]. The discount factor γ ∈ [0, 1] regulates the

importance of future rewards. The performance of the agent,
following the policy π, can be measured using the action-value
function Qπ(s, a) � Eπ[∑∞

t�0γtrt+1|s0� s, a0� a]. The agent infers
the optimal policy at a state st from the optimal state-action value
function Q*(st, at) = maxπQ

π(st, at), via maximization. Another way
to learn the parameterized policy is directly by using policy gradient
methods.

The common way of dealing with RL problems with continuous
actions, as the problem discussed in this paper, are the Actor-Critic
methods, which are integrating both value iteration and policy
gradient. The actor represents the policy and is used to select
actions, whereas the critic represents the estimated value function
and evaluates the actions taken by the actor.

In offline RL, instead of learning while interacting with the
environment, the agent is provided with a fixed batch of transition
samples, i.e., interactions with the environment, to learn from. This
data has been previously collected by one or a few policies unknown
to the agent. Offline RL is considered more challenging than online
RL because the agent does not get to explore the environment based
on the current policy, but it is expected to learn only from pre-
collected data. For more details and background on RL refer to
Sutton and Barto (2018).

3 Approach

The trajectory parameters learning framework consists of four
modules: scene understanding, planning/decision making, trajectory

generation and trajectory execution, illustrated in Figure 2. Their
interconnections are explained in the following.

3.1 Scene understanding

The scene understanding module is in charge of collecting
information from the environment and processing it into RL state
features relevant for decision making. It consists of information about
the RL agent, the surrounding vehicles and the road infrastructure.
For this purpose we use the DeepSets implementation adapted from
Hügle et al. (2019), which is allowing for variable number of inputs
from the environment. This is helpful because it alleviates the need to
pre-define which and how many objects from the environment are
relevant for the decision making.

3.2 Decision making

The decision-making module is implemented based on the Twin
Delayed Deep Deterministic policy gradient (TD3) algorithm

FIGURE 1
Our approach combines Reinforcement Learning and a polynomial-based trajectory planner to generate updated trajectories every second. The RL
algorithm sets the desired target values for parameters of the trajectories including lateral position, lateral profile duration, longitudinal velocity and
longitudinal profile duration.

FIGURE 2
From the Sumo simulator, the complete raw environment state
(including information for the RL agent and its surroundings) is sent to
the scene understanding module. There, specific features are
selected, defining the RL state used for learning which is sent to
the decision-making module. Once a decision is made in the form of
trajectory parameters, they are then propagated to the trajectory
generation module. The trajectory generation module generates the
trajectory based on the input parameters and forwards it to the
trajectory execution module. Finally, the trajectory execution module,
sends the corresponding signals to Sumo to move the RL agent to the
next state.

Frontiers in Future Transportation frontiersin.org03

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

(Fujimoto et al., 2018). TD3 is an actor-critic, off-policy algorithm
that is suitable for environments with continuous action spaces.
We randomly initialize an actor (policy) network πθ and three
critic networks4 Qwi, i ∈ {1, 2, 3}. Given a fixed batch of training
samples B, each training iteration we select a mini-batch of
samples M from B. In each sample (s, a, r′, s′, done), s
represents the output of the DeepSets, describing the
environment in terms of the surrounding vehicles,
concatenated with the state-features describing the RL agent.
The complete training algorithm, Offline Trajectory Parameters
Learning (OTPL) is described in Algorithm 1.

Input: Random initial parameters θ for actor policy πθ,

wi for critics Qwi, i ∈ {1, 2, 3},
Fixed replay buffer B, mini-batch size,

Target parameters: θ′ ←θ; wi′ ← wi,

Noise clipping value c, policy delay value d,

Target policy noise: ϵ ~ clip(N (0, σ),−c, c),
for training iteration h = 1, 2, . . . do

get mini-batch M from B
for each ransition sample (s, a, r′, s′, done) in M do

Compute target actions:

�a ← clamp(πθ(s′) + ϵ, amin, amax)
Compute target:

y ← r′ + (1 − done)γmin1,2,3Qwi′(s′, �a)
Update critics by 1 step of gradient descent:

wi ← arg min
wi

1
|M|∑ (y − Qwi(s, a))2

if hmodd = = 0 then

Update actor by the det. policy gradient:

θ ← ∇θ
1

|M|∑s∈MQw1(s, πθ(s))
Update targets:

wi′ ← τwi + (1 − τ)wi′
θ′ ← τθ + (1 − τ)θ′

end if

end for

end for

Algorithm 1. Offline Trajectory Parameters Learning (OTPL).

Once the training is done and we have a well-performing trained
agent, we apply it on unseen scenarios for evaluation. Based on the
current RL state s = (ρ, srl), which is a concatenation of the DeepSets
processed state of the surrounding vehicles, ρ and the RL agent state
srl, the RL agent selects a new action, consisting of four continuous
sub-actions representing the target trajectory parameters described
in Section 4.2. Based on the selected trajectory parameters, a
trajectory is generated and checked for safety. If the trajectory is
safe, the first 1 s of it is executed, after which the RL agent selects a
new action. If it is unsafe, the scenario ends unsuccessfully. The
action execution algorithm for a trained agent is described in
Algorithm 2.

Input: Combined state s = (ρ, srl), where

ρ is the DeepSets output environment state,

srl is RL agent state,

Trained agent πθ

while evaluation scenario not finished do

compute RL action components:

πθ(s) � (atv, alatd , alond , alatp)
generate trajectory t:

t � generate_traj(s, atv, alatd , alond , alatp)
if t is safe then

Execute first second of t

else

fail = True; break

end if

end while

if not fail then return success

end if

Algorithm 2. Trained OTPL agent action selection.

3.3 Trajectory generation

After the RL agent has made a decision, the chosen continuous
actions are forwarded to the trajectory generation module. The actions
are values for the parameters that describe the desired trajectory. Based
on the current environment state and on the parameters coming from
the RL agent’s action, a polynomial trajectory is generated consisting of
longitudinal and lateral movement components. The longitudinal
movement is described using a quartic (fourth order) polynomial,
while for generating the lateral movement, quintic (fifth order)
polynomials are considered more suitable. We describe in detail

FIGURE 3
Example trajectory selection during a lane-change. The
trajectories chosen each second are indicated with different colors.
The complete driven trajectory is shown in red.

4 We found that in contrast to Double Q-learning, using three critics
improves the performance.

Frontiers in Future Transportation frontiersin.org04

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

how the trajectory generation works in the Appendix. For
additional information the reader can also refer to Werling
et al. (2010). Since the RL agent makes a new decision every
second, we set the target longitudinal acceleration, target lateral
acceleration and the target lateral velocity for each chosen
trajectory to zero5, without loss of feasibility or smoothness.
This is because the reward function punishing high longitudinal
and lateral jerk values makes sure the agent avoids choosing
trajectories with short duration and high changes in velocity.
We are setting the target longitudinal and lateral acceleration,
and the target lateral velocity to zero so that we can solve the
Appendix Eqs. 3, 4. needed for generating the trajectory. Given the
4 actions chosen by the agent specified in Section 4.2, by solving the
equations we retrieve the values for target longitudinal and lateral
positions, target velocity and target orientation to be sent and
executed by the RL agent. In Figure 3 we illustrate an example of a
trajectory selection over the course of approximately 8 s, in terms
of the lateral velocity.

3.4 Trajectory execution

After the target trajectory has been generated and checked for
safety, it is sent for execution. Each time-step (0.2 s), values from
the trajectory for target longitudinal and lateral positions, target
velocity and target orientation are sent and executed. Once five
time-steps are done, i.e., after one second, the agent finds itself in
the next RL state, where it makes a new decision. The RL agent re-
calculates the decision every second because one second
corresponds to the standard driving reaction time (Hugemann,
2002). In order for the vehicle to move smoothly, the trajectory
contains values for every 0.2 s, which also corresponds to the
time-step size of the Sumo simulator.

4 MDP formalization

We consider the problem of safe and smooth driving in realistic
highway scenarios, among other traffic participants with varying

driving styles. Additionally, the agent needs to maintain its velocity
as close as possible to a desired one. In this section we describe the
RL components and the data used for training.

4.1 RL state

The RL state consists of two components, one describing the
RL agent and the other referring to the surrounding vehicles in a
certain radius around the RL agent. The RL agent is described by
the features specified in Table 1, whereas the ones describing the
surrounding vehicles of the RL agent are specified in Table 2.

4.2 Actions

The agent learns to perform an action a, consisting of four
continuous sub-actions, detailed in Table 3. These four actions
represent the minimal set of parameters needed for generating a
trajectory, in compliance with the trajectory generation procedure
explained in Figure 3.

4.3 Reward

The reward function r: S × A → R is designed to take into
consideration three driving objectives. First, the RL agent should
not cause collisions and remain within the road boundaries, second,
it should drive as close as possible to a pre-defined desired velocity,
and third, the RL agent should be encouraged to drive in a smooth
manner. Before we assemble the final reward function, we will define
the components needed to describe each of the three objectives. For
the first objective, not causing collisions and remaining within the
road boundaries, we define an indicator f signaling when the agent
has failed in the following way:

f � 1, if the agent has failed
0, otherwise

{ (1)

For the second objective, driving as close as possible to the desired
velocity vdes, we define:

δv � |vlon − vdes| (2)
and an indicator indv signaling whether the agent drives below the
desired velocity:

vs � 1, vlon < vdes
0, otherwise

{ (3)

Where vlon is the current longitudinal velocity of the RL agent.
For the third objective, driving smoothly, we need to control the
longitudinal and lateral jerk values6. Regarding the longitudinal jerk,
we define:

sqjlon a() � 1
n
∑n−1
i�0

jloni()2 (4)

TABLE 1 State features describing the RL agent.

Feature Definition

Longitudinal velocity vlon ∈ R≥0

Left lane valid flag llv ∈ {0, 1}

Right lane valid flag rlv ∈ {0, 1}

Lateral position plat ∈ R

Longitudinal acceleration alon ∈ R

Lateral velocity vlat ∈ R

Lateral acceleration alat ∈ R

5 The lateral and longitudinal acceleration and lateral velocity are equal to 0,
when the vehicle drives straight keeping its current velocity. 6 Rate of change of acceleration wrt. time.

Frontiers in Future Transportation frontiersin.org05

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

which represents the averaged sum of all squared longitudinal
jerk values jlon in the trajectory generated from action a, where n
is the number of time-steps in the trajectory. pjlon is a jerk penalty
value, jmax

lon is the maximum averaged sum of squared jerk value
encountered in the training data and indj is an indicator
denoted by:

indjlon � 1, sqjlon a()< jmax
lon

0, otherwise
{ (5)

Analogously, we define the same for the lateral jerk:

sqjlat a() � 1
n
∑n−1
i�0

jlati()2 (6)

as well as indjlat, pjlat and jmax
lat .

All three objectives are combined in the final reward function as
shown in Eq. 7.

r s, a() � f −0.5() + 1 − f() vs 1 − δv/vdes()[
+ 1 − vs() + indjlon pjlon sqjlon a()/jmax

lon()()
+ 1 − indjlon() pjlon()
+ indjlat pjlat sqjlat a()/jmax

lat()()
+ 1 − indjlat() pjlat()] (7)

We provide details regarding the action boundaries and the choice of
the jerk penalties in the code repository.

5 Data collection and implementation

5.1 Training data

We collected around 5 × 105 data-samples varying the initial position
and the behavior of the surrounding vehicles in dynamic highway
scenarios. Our goal is to train the agent on data collected with the

most simple policy in an offline fashion. For that reason we collected
the data completely randomly with regards to the action selection. For the
data collection, in order to prevent violations of themaximumacceleration
and deceleration, we derived a closed-form solution that given the current
state of the RL agent and the chosen target longitudinal duration, outputs a
feasible target velocity range.During execution, the target velocity the agent
chooses is capped between the two values calculated by the formula,
although a trained agent very rarely chooses a velocity value out of this
range. We provide more details regarding this formula in the Appendix.
For the other trained agents that we use for comparison in Section 6, we
also collected the same amount of data with a random policy.

5.2 Implementation

As already mentioned, we combine DeepSets with the Actor-Critic
based TD3 algorithm for the final implementation of our method. The
complete architecture is depicted in Figure 4. The DeepSets networks on
the left, outlined with the dashed gray line, take care of the dynamic RL
state containing information regarding the surrounding
vehicles {sdyni,1 , sdyni,2 , . . . , sdyni,k }, shown in Table 2, for each surrounding
vehicle k and state i. They are thenpropagated through the fully connected
networks ϕ, and transformed into ϕ(sdyni). Once a pooling operation, in
this case a sum is applied over the outputs of ϕ, the output is finally
processed by the fully connected network ρ, which is the last step of
processing the information concerning the surrounding vehicles. Finally,
the output of ρ is combined with sstatici containing the static information
describing the RL agent. With this, the final RL state is complete and
propagated further to the actor (and critic) network to obtain the action.
For the DeepSets network, we apply the same hyper-parameters as in
Hügle et al. (2019).

The parameters used for the Actor and the Critic networks, as
well as the rest of the training details are shown in Table 4. They
were obtained by random search with a budget of approximately
500 runs. The configurations used for the search are shown in the
last column of Table 4. The rest of the parameters were taken
from the original TD3 implementation (Fujimoto et al., 2018).

6 Experiments and results

To evaluate the performance of our algorithmwe designed a set of
realistic highway scenarios on a straight, 3-lane highway 1,000 m long,
with a varying number of surrounding vehicles,Nveh = {10, 20, . . ., 80},
controlled by a simulator (Krajzewicz et al., 2012) policy unknown to

TABLE 2 State features describing the surrounding vehicles of the RL agent.

Feature Definition

Relative distance rdk = plon,k − plon, where plon and plon,k are the longitudinal positions

of the RL agent and the considered vehicle k respectively

Relative longitudinal velocity rvlon,k = (vlon,k − vlon)/vdes, where vlon,k is the absolute lon

velocity of the vehicle k and vdes is the user-defined desired lon. velocity

Relative lane rlk = lk − l, where l and lk are the lane ids of the RL agent

and the kth surrounding vehicle respectively

TABLE 3 Action space definition.

Sub-action Definition

Target trajectory longitudinal velocity atv ∈ R≥0

Target trajectory longitudinal profile duration alond ∈ R≥0

Target trajectory lateral profile duration alatd ∈ R≥0

Target lateral position alatp ∈ R

Frontiers in Future Transportation frontiersin.org06

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

the RL agent. For each nveh ∈ Nveh there are 10 scenarios leading to a
total of 80 evaluation scenarios, where the surrounding vehicles are
positioned randomly along the three-lane highway. In order to
capture real highway driving settings as closely as possible, the
surrounding vehicles exhibit different driving behaviors within the
boundaries of a realistic human driver, i.e., they have different desired
velocities, different cooperativeness levels, etc. We let a trained agent
navigate through these scenarios and assess its performance in terms
of average velocity achieved per set of scenarios for each number of

surrounding vehicles. Details regarding the road infrastructure can be
found in the code repository in the.xml file named straight.net.xml.

6.1 Comparison to other agents

We compared the performance of our algorithm on the
80 scenarios, against four other driving agents. An IDM-based
(Treiber et al., 2000) Sumo-controlled agent, with the same goals

FIGURE 4
Implementation Architecture. Actor network (A). Critic network (B). Both contain the DeepSets architecture for the scene understanding part of the
task. L1, L2 and L3 are fully connected layers, with the respective activation function depicted after each layer. The Critic network additionally takes the
action as an input.

TABLE 4 Training details.

Hyper-parameter Value Configuration

Actor

Num. neurons per layer (400, 300, 1) [100, 200, 300, 400]

Activation functions (ReLU, ReLU, TanH)

Policy noise ϵ N (0, 0.2)

Noise clip c 0.5

Policy delay value d 2

Critic

Num. neurons per layer (400, 300, 1) [100, 200, 300, 400]

Activation functions (ReLU, ReLU)

Other

γ 0.99

τ 10–4

Batch size 100 [32, 64, 100, 200]

Learning rate 10–4 [10–2, 10–3, 10–4, 10–5]

Max. num. training iterations 100 K [102, . . ., 3*106]

Frontiers in Future Transportation frontiersin.org07

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

as our agent in terms of desired velocity (30 m/s), and parameters
concerning driving comfort and aggressiveness levels fit to correspond
to the reward function of the RL agent. The parameters can be found
in the code repository in the file where the driver behaviors are
specified named rou.xml. The Greedy agent builds on the gap-
selection approach (Mirchevska et al., 2021) outlined above and
simply selects the gap, to which there is a trajectory achieving the
highest velocity. The High-Level RL agent is trained to choose from
three high-level actions: keep-lane, lane-change to the left or lane-
change to the right, and the Gap choosing agent from our previous
work (Mirchevska et al., 2021) trained with RL chooses from a
proposed set of actions navigating to each of the available gaps.
The plot in Figure 5 shows the performance of all agents on the
80 scenarios of varying traffic density. The x-axis represents the
number of vehicles per set of scenarios, whereas the average

velocity achieved among each 10 varying-density scenarios is read
from the y-axis. The shown results for the trained agents are an
average of the performance of 10 trained agents. That allows us to
show the standard deviation of each of these runs, shown with
transparent filled area around the corresponding curve. Low
standard deviation indicates that there is small variance between
models run with different randomly initialized network weights. Note
that after inspection of the scenarios with 50 cars, we determined that
there are a few scenarios where the randomly placed surrounding
vehicles create a traffic jam and make it difficult for the agents to
advance forward. So they are forced to follow the slower leading
vehicles, explaining the lower average velocities in that case. Our RL
agent has learned to maneuver through the randomly generated
realistic highway traffic scenarios without causing collisions and
leaving the road boundaries with an average velocity higher than
the comparison agents in all traffic densities.

6.2 Handling critical scenarios

In order to asses the performance of our agent in critical
situations not seen during training, we created two challenging
evaluation scenarios. The first one is depicted in Figure 6A,
where the vehicle with id 2 suddenly decides to change lane
twice (scenes f2 and f3), ending up both times in front of our RL
agent driving with high velocity. The RL agent manages to quickly
adapt to both situations and avoids collision, finally ending up in the
middle free lane, able to advance forward (scene f5).

In the second scenario in Figure 6B the RL agent finds itself
surrounded by vehicles driving with the same velocity (scene
f1), lower than the RL agent’s desired velocity. This situation
might occur for, e.g., after the RL agent has entered the highway.
In this case, the RL agent has learned to initially slow down
(scene f2) and perform a lane-change maneuver (scene f4)
towards the free left-most lane. This shows that the RL agent
has learned to plan long-term, since slowing down is not
beneficial with respect to the immediate reward. The other
agents, except the gap-choosing agent were not able to deal

FIGURE 5
Comparison of the performance of our agent OTPL (red) against
the Sumo/IDM-based (purple), Greedy (green), High-Level (blue) and
Gap (grey) agents.

FIGURE 6
The RL agent (red) in (A) successfully avoids collision when the vehicle 2 decides to cut-in in front of it. The RL agent (red) in (B) learned to perform
complex maneuvers consisting of initially slowing down in order to reach the free lane and accelerate towards the desired velocity.

Frontiers in Future Transportation frontiersin.org08

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

with this situation, as they remained in the initial gap until
the end. The RL agent’s behavior in these situations can be seen
via the link specified in Supplementary Material.

6.3 Smoothness analysis

In this section we are aiming to show whether the ability of the
RL agent to directly influence the trajectory through its actions
results in smoother driving. We conduct the comparison with
respect to the gap agent from our previous work (Mirchevska
et al., 2021) that was able to choose a gap to fit into but could
not influence the exact trajectory required to reach the gap.

The longitudinal and lateral jerk values are related to the comfort
component in driving (Turner andGriffin, 1999; Svensson and Eriksson,
2015; Diels, 2014). Fewer abrupt accelerations/decelerations and smooth
lane-changing with well adjusted speed, result in lower jerk values and
more comfortable driving experience. In the gap implementation used
for the average velocity analysis in Figure 10, the RL agent does not
have direct control over the jerk of the trajectories via the reward
function. Instead, the underlying trajectory planner chooses the
best trajectory in terms of jerk based on an empirically determined
jerk cost term combining the longitudinal and the lateral sums of
squared jerks. In order to conduct a fair comparison of the
performance in terms of average lateral and longitudinal jerk of
both the OTPL and the Gap agents, we designed a reward function
for the OTPL agent that incorporates the exact jerk cost used for
choosing the trajectory in the Gap agent implementation shown in
Eq. 8.

r s, a() � f −0.5() + 1 − f() vs 1 − δv/vdes() + 1 − vs()[
+js jrw −jcost a()/jubcost()() + 1 − js() −jrw()] (8)

Where jcost = jw (sqjlon(a) + sqjlat(a)) is the total jerk cost of the
trajectory, js is equal to 1 when jcost < jubcost and 0 otherwise, where j

ub
cost

is the empirically determined upper bound value for the total jerk cost
used for assigning the jerk-related reward for the chosen trajectory. jrw

is a weight value used for adjusting the impact of the jerk reward on
the learning and jw is jerk cost weight used to calculate jcost. The rest of
the variables used in Eq. 8 are explained in Section 4.3. Further reward
function details are accessible in the code repository.

Figures 7A,B show results regarding the average sum of absolute
longitudinal and lateral jerk values and the average velocity of the
OTPL agent trained with the reward function given in Section 4.3. The
performance of six OTPL agents trained with the new reward function
from Eq. 8 with different values for jrw, and the gap agent is presented.
Note that we use the sum of absolute values for evaluation since
significant deviations from 0 in both positive and negative direction are
undesired. The results are an average over 5 trained models for each
agent. The error bars indicate the standard deviation.

The results indicate that the best performance in terms of jerk is
yielded when the reward function from Eq. 8 is used and when jrw is
assigned a value around 2. However, is important to note that the
performance is not very sensitive to the value chosen for jrw and
performs similarly well in a range of values. It is interesting to note
that when the value for jrw is too low, e.g., 0.5, the agent deems the
jerk-related reward component less significant which results in higher
jerk values. On the other end of the spectrum, for weight values higher
than 2, the performance slowly becomes more conservative and the
velocity decreases. In this case, the agent assigns more significance to
low jerk values which leads to avoiding lane-changes and acceleration.
The performance of the OTPL agent that was trained with the reward
function from Eq. 7, depicted first with light green, shows that the
reward function is less sensitive to the smoothness component and
hence results in slightly worse performance in terms of jerk. It is
worthy highlighting that this increase in performance in terms of
smoothness of the agents trained with the reward function in Eq. 8,
comes at almost no cost regarding the average velocity as shown in
Figure 7B. The agents that are trained with the reward function that
incorporates the jerk cost of the trajectory, drive smoother than the
gap agent that does not have an influence over this component.

The performance in terms of smoothness of the good agents
trained with the reward function in Eq. 8, according to the research
presented in Turner and Griffin (1999); Svensson and Eriksson

FIGURE 7
Evaluating the performance in terms of smoothness determined by the jerk values of the chosen trajectories. (A) Average sumof squared jerk values.
(B) Average velocity.

Frontiers in Future Transportation frontiersin.org09

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

(2015); Diels (2014), falls into the range of smooth and comfortable
driving. For reference, a value of zero is accomplished only if the
vehicle does not move, or it drives in its own lane with constant
longitudinal and lateral velocities for the whole duration of the
scenarios.

6.4 Lateral and longitudinal trajectory
duration analysis

To ensure that our agent fully utilizes the flexibility of being able to
choose any continuous value between 1 and 6 s for both the duration
of the longitudinal and the lateral trajectory profiles, we have included
a plot in Figure 8 that displays the frequency of occurrence of
longitudinal (A) and lateral (B) trajectories within 5 different
duration ranges. The plots show that the agent learned to combine
the longitudinal and lateral trajectory durations in various ways while
optimizing for velocity and smoothness. This can be seen in Figure 8B
where the agent avoids choosing trajectories that perform lateral
movement in a duration of 1–2 s since this would result in high
lateral jerk in most cases. At the same time, in Figure 8A can be seen
that the agent rarely prefers choosing trajectories with longer
durations, since they are slower in reaching the final velocity.

Once we confirmed that the agent has effectively learned to take
advantage of the continuous range when selecting longitudinal and
lateral trajectory durations, we proceeded to conduct an additional
experiment to evaluate whether the agent indeed gains a benefit
from this capability.

For that purpose, we trained models with fixed, discrete trajectory
durations, same for the lateral and the longitudinal component, ranging
from 2 to 6 s.We show average of 3 trainedmodels for each agent, while
all models were trained with the reward function from Eq. 7. As shown
in Figure 9, none of these models was able to perform as good as the
OTPL agent in terms of velocity and smoothness. Additionally, some of
the models, also experienced failures more often since in certain
situations a specific trajectory with non-equal and non-discrete
longitudinal and lateral profile durations is required to avoid an

accident or to avoid exiting the road boundaries. For too short
trajectory durations, such as 2s, despite the good performance wrt.
velocity, the agent learned to produce high-jerk trajectories and fails in
20/80 scenarios. As the duration goes towards 6 s, smoother trajectories
are learned, but with lower speeds. The number of fails decreases as well.
In these cases, since the performance in terms of velocity is also weaker,
the agent learned to keep the lane most of the time. This indicates that
the flexibility that the OTPL agent is provided with in terms of selecting
the durations of both trajectory profiles, plays an important role in the
overall performance.

7 Training data analysis

Since we are training the agent on a fixed batch of offline data
and it does not get to explore the environment based on the current
policy, the quality of the data is of significant importance. We
performed data analysis to investigate the benefits of the structure
imposed by the trajectory polynomials during data collection for the
learning progress. Additionally, we provide analysis of how the
percentage of negative training samples affects the learning.

7.1 Importance of structured data
generation

A common way of approaching the highway driving task with
online RL is teaching an agent to perform low-level actions over
small time-step intervals. Since we are interested in offline RL, in
order to evaluate its performance, we randomly collected data with
an agent that chooses throttle and steering wheel actions each 0.2 s.
In addition to other tasks, in this case the agent has to learn not to
violate the maximum steering angle, i.e., not to start driving in the
opposite direction, as well as not to violate the acceleration
constraints. As a consequence, the collected data consisted of a
large portion of such samples, whereas the number of non-terminal
and useful samples was negligible. Additionally, the agent was never

FIGURE 8
How often does the trained OTPL agent choose trajectories from the duration ranges shown on the x-axis, longitudinally (A) and laterally (B).

Frontiers in Future Transportation frontiersin.org10

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

able to achieve high velocities since it was interrupted by some of the
more likely negative outcomes (like constraint violations) before
being able to accelerate enough. The agent trained using the
aforementioned data did not learn to avoid the undesired
terminal states while driving. Relying on the structure imposed
by the polynomial trajectory generation, helps to obtain high-quality
data for offline learning.

7.2 Percentage of transitions towards a
terminal state

When it comes to terminal states resulting in negative reward,
in our case the agent needs to learn to avoid collisions with other
vehicles and to stay within the road boundaries. (Terminal state

occurs when the end of the road is reached as well but reaching
that terminal state is not being punished since it does not depend
on the agent’s behavior.) We observed that the frequency of data
sequences that end in such terminal states and the complexity of
the task play a critical role in the performance of the trained
agent. Our results show, for instance, that the agent learns to not
leave the road very quickly and from much more limited data
compared to the more complex collision avoidance task (4% of
data with samples of leaving the road vs. ~ 26% of data with
samples of collisions).

Figures 10A,B show the average performance of 5 agents
trained with different percentages of terminal samples in the
training data. In (A) the y-axis shows the average velocity
achieved in the evaluation scenario (randomly generated,
50 surrounding vehicles), depending on the portion of terminal

FIGURE 9
Performance comparison between the OTPL agent and the agents trained with fixed discrete trajectory durations, same for the longitudinal and the
lateral profiles in terms of average sum of absolute lateral and longitudinal (A) jerks and average velocity (B).

FIGURE 10
Importance of the percentage of negative samples in the training data shown wrt. average speed (A) and driving time (B). The bars are showing the
mean over 5 trained agent for each percentage. The error bars indicate the standard deviation.

Frontiers in Future Transportation frontiersin.org11

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

states in the data (x-axis). Figure 10B represents the driving time of
each of the agents. Note that the agent trained without any terminal
samples never learned to avoid collisions, so it only endures 5 s before
it collides. The rest of the agents, learn not to collide and are able to
complete the scenario. The conclusion is, if there are too few terminal
samples, the agent never learns to avoid collisions (in the 0% case),
since it is not aware of that occurrence. If there are to many, the agent
has problems learning to achieve high velocities, since it has learned to
be more conservative. The best performance is achieved when ~ 30%
of the training samples are terminal.

8 Conclusion

In this study, we address the challenge of training a RL agent to
navigate realistic and dynamic highway scenarios by optimizing
trajectory parameters. Our actor-critic based agent learns to generate
four continuous actions describing a trajectory that is generated by an
underlying polynomial-based trajectory generationmodule. Trained on
a fixed batch of offline data gathered with a basic random collection
policy, our agent successfully navigates randomly generated highway
scenarios with varying traffic densities, outperforming comparison
agents in terms of average speed. In addition to avoiding collisions
and staying within the road boundaries, our agent learns to execute
complex maneuvers in critical situations. Furthermore, we analyze the
effect of training data composition on the performance of the RL policy
learned in the offline case. We propose an alternative reward function
for the OTPL agent that directly maps the cost function used to select
the best trajectories in terms of jerk in the Gap agent implementation,
allowing us to conduct smoothness and comfort analyses. Our findings
show that having direct control through the reward function over
trajectory selection leads to smoother driving.

Finally, we train models with discrete, fixed trajectory durations
and compare their performance to that of the OTPL agent,
demonstrating the importance of the ability to choose from a
continuous range of values for both the longitudinal and lateral
trajectory profiles in achieving superior performance.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://nrgit.informatik.uni-freiburg.de/
branka.mirchevska/off line-rl-tp/-/tree/main/training_data.

Author contributions

As the main author, BM designed the objective to learn target
trajectory values as actions, in a Reinforcement Learning
framework equipped with an underlying trajectory planner.
Additionally, provided the code base, designed the
experimental framework, performed all experiments and wrote
the paper. MW played a significant role in the conceptualization
of the idea and the problem formalization, provided supervision
and feedback for the paper. JB regularly supervised the findings
throughout the course of this work and provided consultation for
refining the paper.

Funding

BM is funded through the State Graduate Funding Program of
Baden-Württemberg. JB’s contribution is supported by BrainLinks-
BrainTools which is funded by the Federal Ministry of Economics,
Science and Arts of Baden-Württemberg within the sustainability
program for projects of the excellence initiative II. For the
publication of this work we acknowledge support by the Open
Access Publication Fund of the University of Freiburg.

Acknowledgments

We would like to thank Maria Kalweit, Gabriel Kalweit and
Daniel Althoff for the fruitful discussions on offline RL and
trajectory planning.

Conflict of interest

Author MW was employed by company BMW Group.
The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/ffutr.2023.1076439/
full#supplementary-material

References

Bellegarda, G., and Byl, K. (2019). Combining benefits from trajectory optimization
and deep reinforcement learning. CoRR abs/1910.09667.

Bogdanovic, M., Khadiv, M., and Righetti, L. (2021).Model-free reinforcement learning for
robust locomotion using trajectory optimization for exploration. CoRR abs/2107.06629.

Borrelli, F., Falcone, P., Keviczky, T., Asgari, J., and Hrovat, D. (2005). Mpc-based
approach to active steering for autonomous vehicle systems. Int. J. Veh. Aut. Syst. 3,
265–291. doi:10.1504/ijvas.2005.008237

Claussmann, L., Revilloud, M., Gruyer, D., and Glaser, S. (2019). A review of motion
planning for highway autonomous driving. IEEE Trans. Intelligent Transp. Syst. 21,
1826–1848. doi:10.1109/tits.2019.2913998

Diels, C. (2014). Will autonomous vehicles make us sick. Contemp. ergonomics Hum.
factors, 301–307.

Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., and Hrovat, D. (2007). Predictive
active steering control for autonomous vehicle systems. IEEE Trans. Control Syst.
Technol. 15, 566–580. doi:10.1109/tcst.2007.894653

Fujimoto, S., van Hoof, H., and Meger, D. (2018). “Addressing function approximation
error in actor-critic methods,” in Proceedings of the 35th international conference on machine
learning, ICML 2018 (Stockholm, Sweden: Stockholmsmässan), 1582–1591.

Glaser, S., Vanholme, B., Mammar, S., Gruyer, D., and Nouvelière, L. (2010).
Maneuver-based trajectory planning for highly autonomous vehicles on real road

Frontiers in Future Transportation frontiersin.org12

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://nrgit.informatik.uni-freiburg.de/branka.mirchevska/offline-rl-tp/-/tree/main/training_data
https://nrgit.informatik.uni-freiburg.de/branka.mirchevska/offline-rl-tp/-/tree/main/training_data
https://nrgit.informatik.uni-freiburg.de/branka.mirchevska/offline-rl-tp/-/tree/main/training_data
https://www.frontiersin.org/articles/10.3389/ffutr.2023.1076439/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/ffutr.2023.1076439/full#supplementary-material
https://doi.org/10.1504/ijvas.2005.008237
https://doi.org/10.1109/tits.2019.2913998
https://doi.org/10.1109/tcst.2007.894653
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

with traffic and driver interaction. IEEE Trans. Intelligent Transp. Syst. 11, 589–606.
doi:10.1109/TITS.2010.2046037

Grigorescu, S., Trasnea, B., Cocias, T., andMacesanu, G. (2020). A survey of deep learning
techniques for autonomous driving. J. Field Robotics 37, 362–386. doi:10.1002/rob.21918

Hoel, C.-J., Wolff, K., and Laine, L. (2018). “Automated speed and lane change decision
making using deep reinforcement learning,” in 2018 21st international conference on
intelligent transportation systems (ITSC), 2148–2155. doi:10.1109/ITSC.2018.8569568

Hoel, C., Driggs-Campbell, K. R., Wolff, K., Laine, L., and Kochenderfer, M. J. (2019).
Combining planning and deep reinforcement learning in tactical decision making for
autonomous driving. CoRR abs/1905.02680.

Huegle, M., Kalweit, G., Werling, M., and Boedecker, J. (2020). “Dynamic interaction-
aware scene understanding for reinforcement learning in autonomous driving,” in
2020 IEEE international conference on robotics and automation (ICRA), 4329–4335.
doi:10.1109/ICRA40945.2020.9197086

Hugemann, W. (2002). Driver reaction times in road traffic.

Hügle, M., Kalweit, G., Mirchevska, B., Werling, M., and Boedecker, J. (2019). “Dynamic
input for deep reinforcement learning in autonomous driving,” in 2019 IEEE/
RSJ international conference on intelligent robots and systems (IROS), 7566–7573.

Kalweit, G., Huegle, M., Werling, M., and Boedecker, J. (2020). “Deep inverse
q-learning with constraints,”. Advances in neural information processing systems.
Editors H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Curran
Associates, Inc.), 14291–14302. Available at: https://nips.cc/virtual/2020/public/
poster_a4c42bfd5f5130ddf96e34a036c75e0a.html.

Kalweit, G., Huegle, M.,Werling, M., and Boedecker, J. (2021). “Q-learning with long-
term action-space shaping to model complex behavior for autonomous lane changes,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Prague, Czech Republic, September 27–October 1, 2021. (IEEE), 5641–5648. doi:10.
1109/IROS51168.2021.9636668

Katrakazas, C., Quddus, M., Chen, W.-H., and Deka, L. (2015). Transportation
research Part C: Emerging technologies.Real-time motion planning methods for
autonomous on-road driving: State-of-the-art and future research directions

Kaushik, M., Prasad, V., Krishna, M., and Ravindran, B. (2018). Overtaking
maneuvers in simulated highway driving using deep reinforcement learning,
1885–1890. doi:10.1109/IVS.2018.8500718

Kendall, A., Hawke, J., Janz, D., andDaniele Reda, P. M., Allen, J., Lam, V., et al.
(2018). Learning to drive in a day. CoRR abs/1807.00412.

Krajzewicz, D., Erdmann, J., Behrisch,M., and Bieker-Walz, L. (2012). Recent development
and applications of sumo - simulation of urban mobility. Int. J. Adv. Syst. Meas. 3and4.

Kuutti, S., Bowden, R., Jin, Y., Barber, P., and Fallah, S. (2021). A survey of deep
learning applications to autonomous vehicle control. IEEE Trans. Intelligent
Transp. Syst. 22, 712–733. doi:10.1109/tits.2019.2962338

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning:
Tutorial, review, and perspectives on open problems.

Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., et al.
(2017). Sympy: Symbolic computing in python. PeerJ Comput. Sci. 3, e103. doi:10.7717/
peerj-cs.103

Mirchevska, B., Blum, M., Louis, L., Boedecker, J., and Werling, M. (2017).
“Reinforcement learning for autonomous maneuvering in highway scenarios,” in
11 Workshop Fahrerassistenzsysteme und automatisiertes Fahren.

Mirchevska, B., Hügle, M., Kalweit, G., Werling, M., and Boedecker, J. (2021).
Amortized q-learning with model-based action proposals for autonomous driving

on highways. In 2021 IEEE international conference on robotics and automation
(ICRA). 1028–1035. doi:10.1109/ICRA48506.2021.9560777

Mirchevska, B., Pek, C., Werling, M., Althoff, M., and Boedecker, J. (2018). “High-
level decision making for safe and reasonable autonomous lane changing using
reinforcement learning,” in 2018 21st international conference on intelligent
transportation systems (ITSC), 2156–2162.

Mukadam, M., Cosgun, A., Nakhaei, A., and Fujimura, K. (2017). “Tactical decision
making for lane changing with deep reinforcement learning,” in NIPS workshop on
machine learning for intelligent transportation systems.

Nageshrao, S., Tseng, H. E., and Filev, D. (2019). “Autonomous highway driving using
deep reinforcement learning,” in 2019 IEEE international conference on systems, man
and cybernetics (SMC), 2326–2331.

Ota, K., Jha, D. K., Oiki, T., Miura, M., Nammoto, T., Nikovski, D., et al. (2019).
“Trajectory optimization for unknown constrained systems using reinforcement
learning,” in 2019 IEEE/RSJ international conference on intelligent robots and
systems (IROS), 3487–3494.

Rao, A. (2010). A survey of numerical methods for optimal control. Adv.
Astronautical Sci. 135.

Ronecker, M. P., and Zhu, Y. (2019). Deep q-network based decision making for
autonomous driving. 2019 3rd international conference on robotics and automation
sciences (ICRAS), 154–160.

Saxena, D. M., Bae, S., Nakhaei, A., Fujimura, K., and Likhachev, M. (2019).Driving in
dense traffic with model-free reinforcement learning. CoRR abs/1909.06710.

Schwarting, W., Alonso-Mora, J., and Rus, D. (2018). Planning and decision-making
for autonomous vehicles.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement learning: An introduction. second
edn. The MIT Press.

Svensson, L., and Eriksson, J. (2015). Tuning for ride quality in autonomous vehicle:
Application to linear quadratic path planning algorithm.

Treiber, M., Hennecke, A., and Helbing, D. (2000). Congested traffic states in
empirical observations and microscopic simulations. Phys. Rev. E 62, 1805–1824.
doi:10.1103/physreve.62.1805

Turner, M., and Griffin, M. J. (1999). Motion sickness in public road transport: The
effect of driver, route and vehicle. Ergonomics 42, 1646–1664. doi:10.1080/
001401399184730

Wang, J., Zhang, Q., Zhao, D., and Chen, Y. (2019a). Lane change decision-
making through deep reinforcement learning with rule-based constraints. CoRR
abs/1904.00231

Wang, P., Chan, C.-Y., and de La Fortelle, A. (2018). A reinforcement learning based
approach for automated lane change maneuvers.

Wang, P., Li, H., and Chan, C.-Y. (2019b). Quadratic q-network for learning
continuous control for autonomous vehicles.

Wang, S., Jia, D., and Weng, X. (2019c). Deep reinforcement learning for autonomous
driving.

Werling, M., Ziegler, J., Kammel, S., and Thrun, S. (2010). “Optimal trajectory
generation for dynamic street scenarios in a frenét frame,” in 2010 IEEE international
conference on robotics and automation.

Xu, W., Wei, J., Dolan, J. M., Zhao, H., and Zha, H. (2012). “A real-time motion
planner with trajectory optimization for autonomous vehicles,” in 2012 IEEE
international conference on robotics and automation.

Frontiers in Future Transportation frontiersin.org13

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://doi.org/10.1109/TITS.2010.2046037
https://doi.org/10.1002/rob.21918
https://doi.org/10.1109/ITSC.2018.8569568
https://doi.org/10.1109/ICRA40945.2020.9197086
https://nips.cc/virtual/2020/public/poster_a4c42bfd5f5130ddf96e34a036c75e0a.html
https://nips.cc/virtual/2020/public/poster_a4c42bfd5f5130ddf96e34a036c75e0a.html
https://doi.org/10.1109/IROS51168.2021.9636668
https://doi.org/10.1109/IROS51168.2021.9636668
https://doi.org/10.1109/IVS.2018.8500718
https://doi.org/10.1109/tits.2019.2962338
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1109/ICRA48506.2021.9560777
https://doi.org/10.1103/physreve.62.1805
https://doi.org/10.1080/001401399184730
https://doi.org/10.1080/001401399184730
https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

Appendix

Trajectory generation details

As mentioned in Section 3.3, we use quartic and quintic
polynomials to describe the longitudinal and the lateral trajectory
components, respectively. Fourth and fifth order polynomials were
chosen for the longitudinal and lateral movement components,
respectively, due to their ability to model complex trajectories
with sufficient accuracy while striking a good balance between
complexity and descriptive power. More precisely, we need to
solve Appendix Eqs. 1, 2 in order to get the positions wrt. time
for the desired trajectory. In order to do that, we need the values for
the coefficients b3, b4, c3, c4 and c5, which considering the parameters
given in Table A1, we can get by solving the systems of equations
shown in Appendix Eqs. 3, 4. Once we have the positions for the
complete duration of the trajectory, we can get the velocities,
accelerations and jerk values, by calculating first, second and
third derivative of the position wrt. the time t. For time-step size
we use dt = 0.2s.

trajlonp � b0 + b1t + b2t
2 + b3t

3 + b4t
4

where t � 0.0, dt, 2dt, . . . , alond{ } (A1)
trajlatp � c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5

where t � 0.0, dt, 2dt, . . . , alatd{ } (A2)
b1 + 2b2alond + 3b3a

2
lond

+ 4b4a
3
lond

− atv � 0
2b2 + 6b3alond + 12b4a

2
lond

− acclon � 0
{ (A3)

c0 + c1alatd + c2a
2
latd

+ c3a
3
latd

+ c4a
4
latd

+ c5a
5
latd

− alatp � 0
c1 + 2c2alatd + 3c3a

2
latd

+ 4c4a
3
latd

+ 5c5a
4
latd

− vellat � 0
2c2 + 6c3alatd + 12c4a

2
latd

+ 20c5a
3
latd

− acclat � 0

⎧⎪⎪⎨⎪⎪⎩
(A4)

For predicting the behavior of the surrounding vehicles we assume
constant velocity trajectories and use them for collision checking
with the trajectory of the RL agent. Deviations from the predictions
of the other vehicles are handled in an on-line fashion.

Action target velocity boundaries

As outlined in Section 5.1, we derive a formula based on
which, given the current state and alond we calculate the

minimum and maximum target velocity values the agent is
able to choose from. This is done so that the generated
trajectory will not violate the minimum/maximum possible
longitudinal acceleration. This contributes for collection of
data that consists of informative samples that enable fast
learning of a good policy, instead of data-samples that are
repetitive and lack useful information.

Additionally, this way we avoid learning the minimum/
maximum acceleration constraint, which simplifies the learning
process. By calculating the second derivative of Appendix Eq. 1,
we get the trajectory acceleration equation.

acclon t() � 12b4t
2 + 6b3t + 2b2 (A5)

By calculating the first derivative of the acceleration equation and
setting it to 0, we get the expression for obtaining its minimum/
maximum.

24b4t + 6b3 � 0 (A6)
After solving for t we get the time-step at which the minimum/
maximum acceleration is achieved. We substitute the expression for
t back to the acceleration in Appendix Eq. 5 and we set it to the
known minimum/maximum acceleration value. After finding the
solutions for b3 and b4 using Appendix Eqs. 5, Eq. 6, we can
substitute them in Appendix Eq. 3 and express the values for the
minimum and maximum atv allowed. We use Simpy (Meurer et al.,
2017) to solve the equation and get the final values for the minimum
and the maximum allowed velocities.

TABLE A1 Polynomial parameters.

Parameter/Coefficient Description

b0 current longitudinal position

b1 current longitudinal velocity

b2 1
2 current longitudinal acceleration

acclon target longitudinal acceleration = 0

c0 current lateral position

c1 current lateral velocity

c2 1
2 current lateral acceleration

vellat target lateral velocity = 0

acclat target lateral acceleration = 0

Frontiers in Future Transportation frontiersin.org14

Mirchevska et al. 10.3389/ffutr.2023.1076439

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2023.1076439

	Optimizing trajectories for highway driving with offline reinforcement learning
	1 Introduction
	2 Reinforcement learning background
	3 Approach
	3.1 Scene understanding
	3.2 Decision making
	3.3 Trajectory generation
	3.4 Trajectory execution

	4 MDP formalization
	4.1 RL state
	4.2 Actions
	4.3 Reward

	5 Data collection and implementation
	5.1 Training data
	5.2 Implementation

	6 Experiments and results
	6.1 Comparison to other agents
	6.2 Handling critical scenarios
	6.3 Smoothness analysis
	6.4 Lateral and longitudinal trajectory duration analysis

	7 Training data analysis
	7.1 Importance of structured data generation
	7.2 Percentage of transitions towards a terminal state

	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Supplementary material
	References
	Appendix
	Trajectory generation details
	Action target velocity boundaries

