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Due to the upward trend in the aviation industry, the existing approaches for air

traffic control need to be improved to achieve efficient schedules. This paper

deals with the aircraft landing problem, which consists of determining a landing

time for each aircraft within the radar range of an airport and allocating it to a

runway. We propose an exact solution approach that involves mixed-integer

linear programming. The objective is hereby to minimize the sum of weighted

deviations from the target landing times under consideration of different safety,

efficiency and fairness constraints. Despite of the problem’s NP-hardness, our

method exhibits low execution times thanks to a modified modeling strategy

and provides near-optimal results. Numerical experiments prove efficiency of

the approach for different large airports.
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1 Introduction

The aviation industry is of crucial importance for transportation of passengers,

logistics and commerce in our globalized world. Although travel numbers have

considerably declined in the past two years due to the COVID-19 pandemic, the

International Air Transport Association (IATA) expects these numbers to constantly

grow in the near future. According to its most likely scenario, the industry will fully

recover from the negative pandemic effects by 2024 (IATA, 2022). EUROCONTROL’s

recent aviation outlook published in 2022 expects an average increase in flights across

Europe by 1.2% per annum. This forecast implies that the number of flights will have

increased by 44% by 2050 compared to 2019 (EUROCONTROL, 2022). In view of these

trends, busy hub airports need to urgently address the congestion problem in order to

guarantee smooth air traffic. One possibility is to expand the existing capacities through

building new runways. However, this solution might be inappropriate or even infeasible

because of economic, environmental, political or other issues. Another more promising

approach is improvement of air traffic management (ATM) based on more efficient

aircraft sequencing and scheduling (ASS).

While the ASS problem aims at simultaneous management of all in- and outbound

flights, the aircraft take-off problem (ATP) and the aircraft landing problem (ALP)

consider only departing or arriving aircraft, respectively. Since this paper places particular
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emphasis on the ALP, it is hereinafter considered in a detailed

manner. To solve this problem for all aircraft entering the radar

range of an airport (approximately 45–60 min from the

destination), it is necessary to sequence all flights, to

determine the landing time of each aircraft and to assign it to

a runway if there are multiple ones.

To date, most air traffic controllers rely on the First-Come-

First-Served (FCFS) strategy for dealing with the ALP. This

concept provides a landing sequence based on the estimated

time of arrival (ETA) of each aircraft, which is normally

computed by a decision support tool. However, sequencing

based on the FCFS concept has not proven to be the best one

with respect to different criteria as, for example, maximum

runway throughput or minimum average delay (Bennell et al.,

2011).

In literature, different solution approaches have been

extensively investigated. They can be mainly divided into

exact and heuristic/metaheuristic methods. Exact solution

techniques comprise:

• Dynamic Programming, which was first proposed by

(Dear, 1976) and (Psaraftis, 1978) followed by

(Chandran and Balakrishnan, 2007; Lee and

Balakrishnan, 2008; Balakrishnan and Chandran, 2010;

Briskorn and Stolletz, 2013; Lieder et al., 2015)

• Mixed-Integer Programming (MIP) preferred by (Beasley

et al., 2000; Wen et al., 2005; Furini et al., 2012; Briskorn

and Stolletz, 2013; Kim et al., 2014; Pohl et al., 2021)

Heuristic and metaheuristic approaches represent other

powerful methods for solving the ALP. While authors of

(Bianco et al., 2006; Faye, 2015; Shi et al., 2019; Ikli et al.,

2021b) make use of heuristics, others decide in favor of

metaheuristic methods. Some of them are listed below with

the corresponding references:

• Genetic algorithms – (Beasley et al., 2001; Hu and Chen,

2005; Hu and Di Paolo, 2009; Yu et al., 2011)

• Tabu search – (Furini et al., 2015)

• Ant colony optimization – (Bencheikh et al., 2011; Xu,

2017)

• Variable Neighborhood Descent – (Salehipour et al., 2009)

In addition, see (Pinol and Beasley, 2006) for integrated

scatter search and bionomic algorithms or (Bencheikh et al.,

2009) for combination of both genetic and ant colony

optimization algorithms.

Since the ALP is known to be NP-hard, most of the recent

works concentrate on heuristic/metaheuristic approaches, which

provide high-quality results in reasonable time (Ikli et al., 2021a).

However, this paper proposes an exact and highly efficient

solution technique for the ALP formulated as a Mixed-Integer

Linear Program (MILP). In contrast to many other works, our

method delivers almost optimal solutions also for large datasets

(up to 90 aircraft and 4 runways) in low computational time

thanks to improved modeling.

The remainder of this paper is structured as follows. It starts

with the exact problem formulation and its mathematical

modeling. In Section 3, numerical results obtained for four

different airports are presented and analyzed. A summary and

an outlook are given in the end.

2 Problem formulation

This section is devoted to the formulation of the ALP as an

MILP. The first part highlights the setting of the problem

including the exploited objective function and constraints. In

the second part, the mathematical model used within the

framework of this paper is presented. Its advantages are

discussed in detail in the last part of this section.

2.1 Setting

Throughout this work, we denote by N the total number of

aircraft approaching an airport, which can be tracked by an

airport’s radar, and the corresponding index set by

N � {1, . . . , N}. The total number of runways is denoted by K

with the corresponding index set K � {1, . . . , K}. When dealing

with the ALP, the aim is to assign a landing time ti, i ∈ N , and a

runway k ∈ K to each aircraft i ∈ N taking into account

corresponding penalty terms such that the total cost for all

aircraft is minimal, and all necessary constraints are satisfied.

For the sake of a better overview, all quantities and variables

used in this paper are given in Table 1.

2.1.1 Objective function
As indicated in (Bennell et al., 2011), there are many different

objectives depending on the fact whose preferences are taken into

consideration. From the airline’s perspective, it might be

desirable to minimize total fuel costs or overall passenger

delays, while air traffic controllers might be more interested in

maximizing the runway throughput or minimizing their

workload. Some objectives may be contradictory, wherefore

decision makers need to find good trade-offs. The interested

reader is referred to (Lee and Balakrishnan, 2008; Bennell et al.,

2011; Ikli et al., 2021a) for more details.

This work makes use of a common objective function that

prioritizes interests of air controllers by minimizing the sum of

weighted deviations from the target (planned) landing times Ti,

i ∈ N .

2.1.2 Constraints
For reasons of safety and fairness, the following essential

constraints are incorporated into our model:
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• Arrival time windows: After having reached the radar range

of an airport, an aircraft can accelerate to a certain extent

and therefore arrive earlier at the destination than

estimated. On the other hand, an aircraft might slow

down before landing to its minimum speed (e.g. because

of some unforeseen difficulties or events), which might

result in a delay. Note that every landing aircraft is assumed

to fly directly to the runway assigned to it, which implies

that there are no go-rounds. Thus, the actual time of arrival

is bounded from below and above by the earliest and latest

landing times Ei and Li, respectively.

• Separation requirements: Each aircraft causes chaotic wake

turbulence flows, which can heavily influence other aircraft

on the same runway. Therefore, certain separation times

between two successive aircraft have to be included into the

model. The International Civil Aviation Organisation

(ICAO) has divided all aircraft in three main categories

depending on their maximum take-off mass: heavy (H),

medium (M) and light (L). The minimum separation time

depends on the category of both the leading and the trailing

aircraft. The exact times are indicated in Table 2.

• Constrained-Position Shifting (CPS): This constraint

defines the maximum possible deviation from the FCFS

or another nominal order. The maximum position shifting

is denoted by m and is typically less or equal to four in

many applications (Chandran and Balakrishnan, 2007;

Balakrishnan and Chandran, 2010; Ikli et al., 2021b).

CPS is included to guarantee equity between aircraft

and to reduce the problem complexity and thus the

workload of air traffic controllers in the terminal area,

which is in general a very dynamic environment.

2.2 Mixed-integer program formulation

Before we formulate the ALP as an MILP and explain the

choice of constraints, let us first introduce two sets of binary

(decision) variables needed for our model. In order to formulate a

problem, which can be solved in reasonable time, it is essential to

keep the number of binary variables as small as possible. In

contrast to (Kim et al., 2014; Lieder et al., 2015; Ikli et al., 2021b),

we have considerably less decision variables, namely the

scheduling variables

wij � 1 if aircraft i lands before aircraft j,
0 otherwise,

{
and the allocation variables

xik � 1 if aircraft i is allocated to runway k,
0 otherwise.

{
Note that a detailed discussion on the advantages of our

formulation is given in Section 2.3. The MIP reads as follows

min∑N
i�1

c−i max 0, Ti − ti( )︸������︷︷������︸
t−i

+c+i max 0, ti − Ti( )︸������︷︷������︸
t+i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

subject to

TABLE 1 Quantities and variables introduced in this paper.

Notation Description

N Number of aircraft

K Number of runways

c−i , c+i Earliness and tardiness penalty cost for aircraft i

Ti Target landing time of aircraft i

ti Landing time of aircraft i

Ei, Li Lower and upper bound for the landing time of aircraft i

t−i , t+i Auxiliary variable for aircraft i arriving too early or too late

Sij Minimum separation time between aircraft i (lands first) and aircraft j

M Large constant

wij Binary decision variable, equals to 1 if aircraft i lands before aircraft j

xik Binary decision variable, equals to 1 if aircraft i lands on runway k

m Constrained-Position Shifting number

TABLE 2 Separation matrix indicating separation time in seconds
between different aircraft categories.

Category of the Following Aircraft

Category of the
Preceding Aircraft

Heavy (H) Medium (M) Light (L)

Heavy (H) 96 157 196

Medium (M) 60 69 131

Light (L) 60 69 82
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ti � Ti − t−i + t+i i ∈ N , (2)
ti + Sij − tj ≤M 1 − wij( ) +M 1 − xik( )
+M 1 − xjk( ) i< j, i, j ∈ N , k ∈ K, (3)

tj + Sji − ti ≤Mwij +M 1 − xik( )
+M 1 − xjk( ) i< j, i, j ∈ N , k ∈ K, (4)

∑K
k�1

xik � 1 i ∈ N , (5)

Ei ≤ ti ≤Li i ∈ N , (6)
ti ≤ tj i +m< j, (7)

i ∈ N \ N −m, . . . , N{ },
t−i ≥ 0 i ∈ N , (8)
t+i ≥ 0 i ∈ N , (9)
wij ∈ 0, 1{ } i< j, i, j ∈ N , (10)
xik ∈ 0, 1{ } i ∈ N , k ∈ K. (11)

The most important constraints in the problem above are

constraints (3) and (4), which cover both scheduling of aircraft

and their allocation to runways. Note that inequality (3)

becomes active only if binary variables wij, xik and xjk are

equal to one meaning that aircraft i lands before aircraft j,

and both aircraft land on the same runway. In this case, the

inequality reads as

ti + Sij ≤ tj

indicating that minimum separation time Sij has to be ensured

between two landing aircraft i and j. In case when at least one of

those binary variables is not equal to one, the inequality is not

active due to the large constantM. An analogous argument holds

for constraint (4).

Let us also briefly comment on the other constraints.

Equalities (2) are auxiliary expressions that linearize the

objective function. Constraints (5) guarantee that each

aircraft lands only on one runway. Inequalities (6)

correspond to time-window constraints, while inequalities

(7) represent the CPS constraints (see an example below).

Inequalities (8) and (9) ensure that auxiliary variables are

non-negative, whereas (10) and (11) represent integrality

conditions.

Next, let us give a detailed explanation of the CPS-

constraints (7) to clarify their formulation. Note that

these constraints are incorporated into the model to

guarantee that the landing order of an aircraft deviates

from the FCFS or another nominal order at most by m.

Suppose that N = 6, N � {1, . . . , 6} and m = 2 and that i ∈ N
already indicates a specific landing order of an aircraft (e.g.

FCFS). For this setting, it holds N ∖{N − m, . . . , N} = {1, 2, 3}.

For i = 1, condition i + m < j then yields index pairs (i, j) =

(1, 4), (i, j) = (1, 5) and (i, j) = (1, 6). A similar argument

holds for i = 2 and i = 3. Hence, the folowing conditions have

to be satisfied:

• i = 1: t1 ≤ t4, t1 ≤ t5 and t1 ≤ t6
• i = 2: t2 ≤ t5 and t2 ≤ t6
• i = 3: t3 ≤ t6

To be more precise, these constraints ensure that in the case

withN = 6 andm = 2 aircraft 1 does not overtake aircraft 4, 5 and

6 before landing. Similarly, aircraft 2 has to land before aircraft

5 and 6, while aircraft 3 is not allowed to overtake aircraft 6 in the

terminal area.

2.3 Complexity reduction compared to
other formulations

Number of binary (integer in general case) variables in an

MILP is a bottleneck for finding an optimal solution in

reasonable time (which can be any time less than a minute in

our application example). Even obtaining a solution within some

given tolerance, e.g. 5%, might be very challenging if the number

of binary variables is large. For instance, if one uses the branch-

and-bound algorithm for solving an MILP, the number of linear

problems that have to be solved in the worst case is

2#all binary variables.

For that reason, binary variables have to be carefully chosen when

modeling the ALP.

So far, many works as, e.g. (Kim et al., 2014; Lieder et al.,

2015; Ikli et al., 2021b), have exploited an MIP-model with three

sets of integer variables. For comparison, the exact model used by

(Ikli et al., 2021b) can be found in Supplementary Appendix A.

Compared to this modeling approach, our model contains

only two sets of binary variables, namely the scheduling variables

wij and the allocation variables xik. The difference in this number

is linear inK (number of runways) and quadratic inN (number of

aircraft). This important modification does not only simplify the

implementation process, but also reduces computational time

significantly, see next section.

3 Numerical results

In order to validate the proposed model, we performed a

large number of numerical tests with different input data. All

computations were performed on an Intel quad-core i5 1.0 GHz

processor using GUROBI MIP-solver (Gurobi Optimization

LLC, 2020), which exploits the branch-and-bound algorithm,

see, e.g. (Winston and Goldberg, 2004).

For numerical experiments, data provided in (Rachelson,

2019) were used for Paris-Orly airport, whereas mock schedules

were created for three other airports, namely Munich, Frankfurt

and Atlanta. These schedules include planned time of arrival for

each aircraft, its category and penalty cost (here it is assumed that
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c−i � c+i , i ∈ N ). For Munich airport, see Table 3, these values can

be found in columns “planned”, “category” and “cost”, respectively.

Note that our experiments were performed during the COVID-19

pandemic that is why the input data for the experiments are not

real. However, the landing aircraft density corresponds to its real

density in the pre- and post-pandemic times.

Before the numerical results are discussed, let us briefly take a look

at real-world data generation, namely ETA and landing time bounds.

To generate an ETA, a random number generated fromN (0, 300)s
is added to a planned time of arrival. The earliest landing time Ei is

calculated by subtracting 120 s from the corresponding ETA. The

latest landing time Li is linearly dependent on the distance to the

TABLE 3 Optimal schedule for Munich airport with N = 40 aircraft landing between 07:00:00 and 08:00:00 on K = 2 runways.

Planned ETA Arrival Number Category Cost Shift Runway

7:00:00 06:49:19 06:51:19 1 H 8 0 2

7:05:00 06:56:01 06:58:01 2 M 1 0 1

7:00:00 06:57:54 06:59:54 3 H 22 0 1

7:00:00 06:59:43 07:00:00 4 L 6 0 2

7:10:00 07:05:47 07:08:56 5 H 5 0 1

7:15:00 07:08:46 07:12:31 8 L 21 2 1

7:15:00 07:09:42 07:13:39 6 H 7 1 1

7:10:00 07:12:30 07:11:30 9 M 2 1 2

7:05:00 07:13:12 07:12:39 7 M 19 2 2

7:20:00 07:15:27 07:20:00 10 M 5 0 1

7:25:00 07:19:24 07:25:00 12 M 5 1 2

7:20:00 07:22:45 07:21:45 11 M 22 1 2

7:25:00 07:25:12 07:25:00 13 M 7 0 1

7:30:00 07:26:15 07:29:00 16 L 3 2 1

7:30:00 07:27:01 07:30:00 14 H 9 1 1

7:25:00 07:27:41 07:26:41 17 M 18 1 1

7:30:00 07:29:54 07:29:27 15 M 5 2 2

7:35:00 07:30:36 07:33:51 19 M 7 1 2

7:20:00 07:31:27 07:30:27 20 H 2 1 2

7:35:00 07:34:13 07:33:43 18 M 7 2 1

7:35:00 07:35:02 07:35:00 23 M 5 2 2

7:40:00 07:35:03 07:38:51 21 M 5 1 1

7:30:00 07:35:52 07:34:52 24 M 2 1 1

7:35:00 07:36:16 07:37:03 22 L 5 2 1

7:40:00 07:36:48 07:40:00 26 M 22 1 1

7:50:00 07:37:49 07:39:00 25 L 9 1 2

7:45:00 07:37:53 07:45:00 28 H 7 1 1

7:40:00 07:38:18 07:40:00 29 H 5 1 2

7:40:00 07:38:49 07:41:09 27 M 22 2 1

7:45:00 07:39:03 07:45:00 30 L 2 0 2

7:45:00 07:43:39 07:46:09 31 M 5 0 2

7:45:00 07:44:13 07:48:16 32 L 22 0 1

7:50:00 07:50:33 07:50:00 33 M 1 0 1

7:55:00 07:50:46 07:55:00 34 L 4 0 2

7:55:00 07:56:51 07:55:51 35 L 1 0 1

7:55:00 07:57:30 07:56:30 36 M 8 0 2

8:00:00 08:00:00 07:59:38 37 M 3 0 2

7:50:00 08:01:09 08:00:09 38 H 2 0 1

7:55:00 08:01:47 08:00:47 39 M 4 0 2

8:00:00 08:02:42 08:01:56 40 M 4 0 2
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destination airport. Note that enlarging the bounds does not

significantly affect the solver runtime.

For each of four airports introduced above, 10 experiments

were run with and without a minimum branch-and-bound gap

limit of 5%, see Tables 4 and 5, respectively. This gap essentially

shows the relation between the worst and the best possible

solution in terms of the objective function value. If this gap

gets less than a given minimum, the algorithm terminates, see

(Winston and Goldberg, 2004) for more information. Note that

the branch-and-bound gap is not equal to the actual relative

error. For instance, if the gap is equal to 5%, the relative error in

this case can be less than 2%. The time limit in both cases was

60 seconds. For all airports, the maximum position shifting m

was set to two, and different numbers of approaching aircraft and

runways (less or equal to the actual one) were chosen, namely

40 and 2, 40 and 2, 60 and 3, and 90 and 4 for Paris-Orly, Munich,

Frankfurt and Atlanta airports, respectively. An example of an

optimal schedule for Munich airport is given in Table 3. Figure 1

visualizes these results for both runways. Note that optimal

schedules for three other airports can be found in

Supplementary Appendix B.

The experiments justify the fact that a reasonable solution can be

found using ourmethodwithin aminute even for bigger airports. Only

in two simulations, the solver did notfind a solutionwithin the branch-

and-bound gap of 5%, but a very close one. Moreover, by comparing

Tables 4 and 5, it can be seen that seeking for a solution with a

corresponding branch-and-bound gap less than 5%might significantly

increase the computation time, but not the solution quality.

In order to investigate advantages of optimal scheduling

over the FCFS order, the average values of the corresponding

TABLE 4 Solver runtimes in seconds and corresponding branch-and-bound gaps with a predefined 5% gap and time budget of 60 s.

Paris-Orly Munich Frankfurt Atlanta

# Runtime
[s]

Gap
[%]

Runtime
[s]

Gap
[%]

Runtime
[s]

Gap
[%]

Runtime
[s]

Gap
[%]

1 0.05 5 0.22 5 0.88 4 60.00 7

2 0.07 4 0.30 5 0.38 5 1.32 5

3 0.26 5 0.89 5 0.13 4 3.10 5

4 0.94 5 2.22 5 60.00 6 14.71 5

5 0.05 4 0.05 2 0.11 3 0.90 4

6 0.07 4 0.05 4 0.18 4 21.64 5

7 0.27 5 0.98 5 0.17 4 1.31 4

8 0.04 4 0.68 5 0.69 4 2.39 5

9 0.05 4 2.68 5 2.11 5 1.08 5

10 0.08 5 0.07 4 2.81 5 15.26 5

TABLE 5 Solver runtimes in seconds and corresponding branch-and-bound gaps with no predefined gap and time budget of 60 s.

Paris-Orly Munich Frankfurt Atlanta

# Runtime
[s]

Gap
[%]

Runtime
[s]

Gap
[%]

Runtime
[s]

Gap
[%]

Runtime
[s]

Gap
[%]

1 3.41 0 60.00 0 60.00 2 60.00 7

2 5.69 0 2.97 0 60.00 3 60.00 3

3 49.07 0 23.99 0 60.00 1 60.00 3

4 26.12 0 31.07 0 60.00 6 60.00 4

5 0.30 0 1.31 0 60.00 2 60.00 2

6 3.12 0 9.33 0 60.00 3 60.00 4

7 7.38 0 60.00 2 60.00 2 60.00 2

8 8.86 0 14.48 0 60.00 2 60.00 3

9 56.57 0 60.00 2 60.00 4 60.00 3

10 1.42 0 11.78 0 60.00 3 60.00 5
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objective functions were computed after 100 optimization

experiments. The exact results are given in Table 6. It is

remarkable that even for such big airports as Atlanta the

optimal schedule provided by the solver can improve the

values of the objective function by nearly 40% compared to

the FCFS heuristics.

As to results achieved in other works, (Faye, 2015)

reported that the ALP with 44 planes and 2 runways was

TABLE 7 Performance of the solver for Paris-Orly airport with N = 30 aircraft landing on one runway for different CPS-numbers.

2-CPS 3-CPS 4-CPS 5-CPS 6-CPS

Average runtime [s] 0.09 0.23 0.27 0.29 0.31

Average improvement compared to FCFS [%] 43.94 47.19 48.64 49.35 49.65

TABLE 6 Comparison of optimal schedules with the FCFS heuristics for different airports.

Airport # Aircraft # Runways FCFS Obj. MIP Obj. % Improvement

Paris-Orly 40 2 78301.14 34879.62 55.45

Munich 40 2 79034.90 39015.77 50.63

Frankfurt 60 3 106154.11 54680.73 48.49

Atlanta 90 4 186593.57 113699.38 39.07

FIGURE 1
Optimal schedule for Munich airport for all aircraft landing on runway 1 (A) and runway 2 (B) between 07:00:00 and 08:00:00. In green:
category of the aircarft, in blue: number of the aircraft, in orange: minimum separation time, in white: runway idle time.
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solved by the exact approach in 20,7 s, while the heuristic

method needed between 132,7 and 166,7 s for finding a

solution of a large-sized problem with 100 aircraft and 4

runways (see Table 3, S7 and Table 5, L1 in that reference).

Results indicated by (Ikli et al., 2021b) show that their

optimistic planning approach handles well small- to

medium-sized aircraft landing problems with a single

runway. However, computational time increases drastically

when it comes, e.g. to 2-CPS problems with 30 aircraft. In

this particular case, an exact solution can be found within

approximately 750 s. To compare our approach with that

presented in (Ikli et al., 2021b), experiments for Paris-Orly

airport were run for the same setting with N = 30, K = 1 and

m ∈ {2, . . . , 6}. The obtained results are presented in Table 7.

4 Conclusion

In this paper, an exact method was proposed to obtain an

optimal landing sequence by determining landing times for each

aircraft within the radar range of an airport and by allocating them

to some available runway. The problem was modeled as a mixed-

integer linear programwith a reduced number of integer variables in

contrast to many other previous works. The objective function was

chosen such that the total deviation from the target landing times is

minimized, and the required constraints as, for example, minimum

separation time and CPS are satisfied. For simulations, we exploited

the GUROBI MIP-solver based on the branch-and-bound

algorithm. Numerical computations performed for four different

airports (Paris-Orly, Munich, Frankfurt and Atlanta) demonstrate

that the presented problem’s formulation is a suitable approach for

achieving near-optimal results in reasonable time.

Possible extensions of our method include integration of a

multi-objective function with the aim of finding a good

compromise for different stakeholders or incorporation of

uncertainties encountered in the terminal area into the

model.
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