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The complexity of crash scenarios in the context of vehicle safety is steadily

increasing. This is especially the case on theway tomixed traffic challenges with

non-automated and automated driving vehicles. The number of simulations

required to design a robust restraint system is thus also increasing. The vast

range of possible scenarios here is causing a huge parameter space.

Simultaneously biofidelic simulation models are resulting in very high

computational costs and therefore the number of simulations should be

limited to a feasible operational range. In this study, a machine-learning

based design of experiments algorithm is developed, which specifically

addresses the issues when designing a safety system with a limited number

of simulation samples taking diversity of the occupant and accident scenario

into account. In contrast to an optimization task, where the aim is to meet a

target function, our job has been to find the critical load case combinations to

make sure that these are addressed and not missed. A combination of a space-

filling approach and a metamodel has been established to find the critical

scenarios in order to improve the system for those cases. It focuses specifically

on the areas that are difficult to predict by the metamodel. The developed

method was applied to iteratively generate a simulation matrix of a total of

208 simulations with a generic interior model and a detailed FE human body

model. Kinematic and strain-based injury metrics were used as simulation

output. These were used to train the metamodels after each iteration and

derive the simulation matrix for the next iteration. In this paper we present a

method that allows the training of a robust metamodel for the prediction of

injury criteria, considering both varying load cases and varying restraint system

parameters for individual anthropometries and seating postures. Based on that,

restraint systems or metamodels can be optimized to achieve the best overall

performance for a huge variety of possible scenarios with a specific focus on

critical scenarios.
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1 Introduction

By means of virtual testing, the assessment of real-world

safety instead of the protection in standard load cases is enabled

(Freienstein et al., 2019; Luttenberger et al., 2020). The number of

scenarios occurring in the real world however, is resulting an

enormous parameter space. Furthermore, autonomous driving

will enable new seating postures (Poulard et al., 2020) and as a

result will therefore increase the overall complexity and the

efforts required to safeguard occupant protection even more

effectively. At the same time, biofidelic simulation models

cause high computational costs and therefore the number of

simulations should be limited to a feasible range. To control this

increasing number of influencing variables and load cases,

methods are needed to understand and scan the complex

parameter space in an efficient way.

Adequate design of experiments is playing an increasingly

important role in this. If no metamodel is chosen in advance,

model-free designs are applied. So-called space-filling

experimental designs are model-free designs that are very

common for computer simulation. In such approaches, the

whole parameter space is covered as uniformly as possible. An

important aspect here is that the design is not only space-filling

for the entire parameter space but also for subspaces (e.g., when

only one parameter or a subset of parameters is being examined).

When this is the case, the design is said to have good projection

properties. Another point to consider is that the input parameters

of the computer simulation can be of different types such as

continuous, discrete or categorical and these need to be handled

by a DoE algorithm. The points of a design can be chosen all at

once, which is termed a one-shot strategy, such as in Joodaki et al.

(2021) where a Latin Hypercube sampling was used. If results of

experiments are intended to have an influence on the selection of

new design points, a sequential strategy can be applied (Gan and

Gu, 2019). (Provost et al., 1999; Crombecq et al., 2009; Draguljić

et al., 2012; Pronzato and Müller, 2012).

Metamodels, sometimes also referred to as “surrogate

models”, are often used to describe the relationship between

the input parameters and simulation outputs of interest. They

can be used to find correlations between physical inputs and

outputs of a given system. Many different metamodels are

available for regression such as LASSO, k-nearest neighbors

(k-NN), neural nets, support vector machines (Xia et al.,

2018), decision trees, random forest (RF), gradient boosting

and Gaussian process regression (GPR). It is usually not

known in advance which model will be the best for a specific

task so different models have to be tested. To evaluate the

performance of a metamodel the available data set is split in

training and test data. The model is trained with the training data

and the performance is measured on the test data. Usually the

split is done by randomizing the data and then using a certain

percentage as training and the rest as test data. In an iterative

approach, a further split into training and test data can also be

used. The results of the last iteration of the sequential design can

be used as test data and the rest as training data. Metamodels

usually have several input parameters, so called hyperparameters,

which have to be chosen by the user. In order to find the best set

of hyperparameters cross-validation is generally used. Tuning of

the machine learning hyperparameters was shown to be essential

to achieve a metamodel with high accuracy (Williams, 2006;

Watt et al., 2020; Joodaki et al., 2020).

In previous studies in the context of occupant safety and

crashworthiness, the aim was to use a combination of

metamodels and design of experiments mainly for

optimization tasks. For such problems, different types of

metamodels are used ranging from support vector regression

(Xia et al., 2018) to even combinations of metamodels (Gan and

Gu, 2019; Joodaki et al., 2020). Another approach was proposed

in Adam and Untaroiu (2011) and Untaroiu and Adam (2013)

where first a classification of pre-crash occupant postures was

performed and a genetic algorithm was then used to optimize the

restraint system for the different classes. In Perez-Rapela et al.

(2020) neural networks in combination with Monte Carlo

simulations are used to account for occupant response

variability in the assessment of safety systems. An overview of

design optimization for structural crashworthiness can be found

in Fang et al. (2017). Other studies in the field of vehicle safety

have tried to use metamodels for on-board prediction. In Bance

et al. (2021) a lumped parameter model together with polynomial

chaos expansion uncertainty quantification is used for on-board

occupant injury risk prediction. Another example is the

prediction of an occupant model’s response to time-varying

accelerations for applications inside the vehicle for restraint

system control units with a metamodel aiming to work in

real-time (Kneifl et al., 2022). For this task, a non-intrusive

model order reduction with long short-term memory is used

(Kneifl et al., 2022).

In summary, metamodels are trained to predict the response

for different combinations of input parameters. The accuracy of

the metamodel prediction for specific combinations of input-

parameters depends to a great extent on the parameter-space

covered by the training dataset and testing is only done within the

parameter-space covered by the test dataset. Therefore, an

appropriate design of experiments for deriving the test and

training datasets plays an essential role.

For the development of restraint systems the parameters are

usually varied in a defined scenario catalogue. This scenario

catalogue tends to be the load cases tested in regulations or

consumer information testing. However, ideally these scenario

catalogues should cover a wide range of scenarios to finally design

a robust restraint system and not to miss potentially critical

scenarios, likely to happen in the field (Perez-Rapela et al., 2020).

Since we cannot apply a full factorial design of experiments

due to the high computational costs, a smarter method is needed

to select the simulation cases. For safety-relevant simulations, it is

important to cover especially the critical areas within our
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parameter space for the development of metamodels or for

optimizing the restraint systems. The question arises in this

context, of how we can, with a limited number of simulations,

focus on the critical areas of the design space if these are

unknown when starting the simulation study. This is

particularly challenging, as the criticality is determined by a

combination of intrinsic and extrinsic factors as well as the

applied safety system (Perez-Rapela et al., 2020).

In our study, we have addressed this question and investigated

how to select data points in the parameter space that are most useful

for training a metamodel and learning about the restraint system

performance. Our aim was to gather the maximum quantity of

information relevant for occupant protection from a given number of

simulations. An intelligent design of experiments for occupant

simulation was developed for this purpose, which aims to

automatically select simulations in areas that are difficult to

control. To demonstrate the methodology, the effect of different

loading directions, anthropometries and seating postures for the

design of a generic restraint system and the resulting occupant loads

was analysed.

2 Materials and methods

2.1 Data generation

2.1.1 Simulation environment
For development and testing of the methodology, an

exemplary simulation study was performed. A finite element

simulation model was set up, consisting of a generic seat with

belt, a simplified airbag load chain representation (SALCR) and

the human body model (HBM) THUMS v4.02. The SALCR

includes three foam panels, which are attached to a rigid plate,

see Figure 1. The characteristics of the generic airbag can be

adjusted by changing the stiffness of the beams connected to the

head and thorax panels to simulate different stiffnesses (mass

flows). Furthermore, by changing the factor of distribution of

stiffness between the two panels different loading paths

corresponding to different shapes of airbags are simulated.

After a maximal deflection of 300 mm, the stiffness of the

beams is increased significantly to simulate a contact of the

HBM with the vehicle interior. The femur panel consists of a

fabric sheet which enables the support of the SALCR on the

HBM thighs. This generic setup was chosen in order to

represent the same initial conditions for each simulation run

by a seat bounded restraint system. Thereby influences of an

eventual deviation in airbag deployment are eliminated and the

same initial distance between the HBM and the SALCR is

provided. In order to check the plausibility of the effects of

the SALCR, a comparison of the forces was made with a

simulation model based on the vehicle of the oblique THOR

Accord model (downloaded on 11.03.2020), that is equipped

with a serial driver and passenger airbag model (Singh et al.,

2018). A table with adjusted parameters of the airbag model

compared to the downloaded version can be found in the

Supplementary Material. Since no steering wheel is present

in the simulation setup, the comparison is made with the

passenger airbag model of the Honda Accord. The plots for

the comparison of the forces can be found in the Supplementary

Material. Amplitude and shape are comparable for the belt

forces as well as the SALCR/airbag contact forces, but a time

shift in force between the serial airbag and the conceptual

system used in this study is observed, which is caused by the

difference in support and deployment. The ISO 18571 (ISO,

2014) scores for the comparison of belt force and airbag forces

can be found in the Supplementary Material. Anyhow, no exact

replication of one restraint system was targeted. Instead the aim

was to enable easy parameter variation over a wide range.

Therefore, the developed conceptual SALCR was found to be

an appropriate simplification.

Two different occupant anthropometries were chosen for the

investigations. The THUMS v4.02 50th percentile male (AM50)

model was utilized as basis. For analysis of anthropometric

differences, THUMS was used in its baseline size (height:

1.78 m, mass: 77 kg). Since a consistent THUMS v4.02 model

version was not available for the fifth percentile anthropometry, a

scaled version of the baseline was used (height: 1.53 m, mass:

46 kg). The model was scaled only, to keep everything else

consistent.

An upright and a lounge positioned model were generated

for both anthropometries. The upright model equals the

available THUMS v4.02 occupant model and the lounge

FIGURE 1
Assembly of the simplified airbag load chain representation.
Each foam panel contacts only the corresponding body region e.g.
head (green), thorax (orange) and femur (yellow). Each panel is
connected to a rigid plate (red) via beams (blue). The head
and thorax panel are connected to the femur panel via support
beams (light blue). The entire construction is connected to the seat
structure via linking beams (grey) to keep the generic airbag in
place.
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model was generated by positioning the THUMS

v4.02 pedestrian model. Figure 2 illustrates the final

simulation models. The lounge model basically represents

a reclined seating position that allows a relaxed occupant

posture. The generic airbag was positioned with the bottom

edge aligning with the lap belt. The footrest was transformed

to provide adequate foot support for both models in upright

position.

2.1.2 Crash pulses
To investigate occupant behaviour for different loading

conditions, acceleration-time pulses were generated by finite

element simulations (Höschele et al., 2022) with a simulation

model based on the vehicle of the oblique THOR Accord model

(Singh et al., 2018) (downloaded on 11.03.2020). The description

of the crash configuration is based on the “Volvo parametric

crash configuration” (Wagström et al., 2019). Table 1 lists the

configuration of the simulations by which the four pulses were

generated. The values, such as velocity (v), mass (m) and

acceleration (acc), of the host vehicle are indicated with HO

and the values of the oncoming vehicle or wall encountered are

indicated with OPP.

FIGURE 2
AM50 and AF05 THUMS models in upright and lounge seating position.

TABLE 1 Simulation configurations for crash pulse generation.

Pulse
name

Crash
configuration

v HO
[km/h]

v OPP
[km/h]

α
[°]

m HO
[-]

m OPP
[-]

acc HO
max in
x [g]

acc HO
max in
y [g]

FF56 Wall, frontal 56 0 - Heavy Rigid wall 44.4 2.9

Center_0 Centre, centre 40 50 0 Heavy Heavy 31.8 11.7

Center_45 Centre, centre 40 50 45 Heavy Heavy 27.5 26.9

Center_m45 Centre, centre 40 50 -45 Heavy Heavy 23.6 26.9

FIGURE 3
Sketch of the Center_45 oblique impact scenario.
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The full-frontal load case FF56 was generated by a vehicle

impact on a rigid wall with 56 km/h. The other pulses were

generated by vehicle-to-vehicle impact scenarios with both

Honda Accord models of equal mass and vehicle velocities of

40 and 50 km/h respectively. The two oblique impact scenarios

Center_m45 and Center_45 were simulated with ±45° impact

angle. Figure 3 shows a sketch of the configuration of the

Center_45 oblique impact.

For each simulation, the acceleration was recorded in the

centre console of the host vehicle, whereby the accelerations in x-

and y-direction as well as the rotational acceleration about the

z-axis were output. Plots of the pulses for each axis can be found

in the Supplementary Material. These data were used as input for

the HBM simulation environment, whereby the acceleration was

applied only on the seated HBMmodel. The load was not applied

to the generic airbag model in order to isolate the HBM airbag

interaction behaviour and avoid overlaid loadings on the SALCR

due to HBM contact and global acceleration.

2.1.3 Simulation and evaluation
The simulation models were parameterised and boundary

conditions for the individual parameters were defined. Table 2

summarizes all varied parameters and the corresponding values

or thresholds of the baseline occupant simulation model. It

contains a combination of categorical and continuous

parameters.

The parameters chosen by the developed DoE method, were

automatically inserted in the simulation decks. Simulations were

performed on a HPC cluster using LS-Dyna R9.2.1. A single

simulation took about 24 h on 80 cores and produced an output

of about 5 GB.

The evaluation of the simulation results was conducted with the

in-house developed tool “dynasaur”1 (Klug et al., 2018) from the LS-

Dyna binout files. The injury criteria HIC15, Brain 95th percentile

strain (Brain 95p), NIC and Rib fracture 1 + risk (Forman et al.,

2012) were implemented in the “dynasaur” calculation procedure

and evaluated automatically. For the kinematic injury criteria HIC

and NIC, accelerometers were positioned in the THUMS model at

the head center of gravity, center of C1 and T1 and connected to the

bony structure with an interpolation constrained

(*CONSTRAINED_INTERPOLATION). Accelerations were

filtered with CFC 1000 before further processed. The 95th

percentile strain for the brain was calculated from the element

time histories. For the rib fracture assessment, the procedure from

Forman et al. (2012) and the smoothed risk curve (Larsson et al.,

2021) from Forman et al. (2012) for a 45 year old person were

applied using the maximum principle strain at the mid-surface per

rib to calculate the fracture risk per rib, combined with the

probabilistic function to the overall risk of 1 + rib fractures.

2.2 Feedback loop

The basic idea of the feedback loop is a combination of a DoE

algorithm, which can select a number of points from a set of

candidate points, and a metamodel. Any type or combination of

metamodels that has good predictive quality can be trained and

applied based on the specific problem. Based on the predictions of the

metamodel a subset of the set of candidate points is selected.How this

subset is chosen can vary, depending on the specific task and goal.

This procedure of the feedback loop is illustrated in Figure 4.

The start and end of the feedback loop are colored blue. The

boxes colored black indicate algorithms and boxes related to

candidate points are colored green. To start the feedback loop,

64 simulations are selected using a Latin hypercube design

(LHD). Finite element simulations are carried out with these

input parameters to obtain the simulation results. For further

designs, the existing design is augmented with candidate points

which are randomly selected points in the design space. The

selection of a subset of candidate points is done with the help of

metamodels. The goal is to achieve good prediction of themetamodel

on the whole parameter space. The following procedure was used:

TABLE 2 Parameters to be varied with corresponding values and ranges.

Parameter Value Quantity

Anthropometry • THUMS v4.02 a.m.50 (AM50)
• THUMS v4.02 a.m.50 scaled (AF05)

2

Seating position • Upright
• Lounge

2

Pulse • FF56
• Center_45
• Center_0
• Center_m45

4

Stiffness of the SALCR beams • 750 kN–3,000 kN continuous

Distribution of the stiffness of SALCR beams • 33%–66% (100% corresponds to 100% stiffness on the head panel) continuous

Belt load limiter • 60%–100% (100% corresponds to 1.95 kN) continuous

1 https://gitlab.com/VSI-TUGraz/Dynasaur.
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• For each injury criterion of interest, a metamodel is trained

and the performance is measured on the test set.

• The range of predicted values for the whole set (training

and testing) is split in ten bins with equal spacing.

• For each of the bins the mean of the absolute error of values

from the test set is calculated. However, based on the

previous simulations, not all bins contain data points.

There can be bins in which there are no predictions for

the test set and therefore no error can be calculated. The

mean error for such bins is considered zero.

• The bin with the highest mean error is selected as a region

of interest.

• The metamodel is retrained with the full data set and

predictions are made for the one million candidate points.

The subset of these points where the prediction falls into

the interval with the highest mean error is used for the

augmentation of the design.

• This is done for all the injury criteria of interest.

This method was termed the “highest mean criterion”. A

visualization of the steps can be found in the Supplementary

Material. From these subsets of candidate points the load cases

are selected by a space-filling algorithm. The same number of

load cases are selected for each injury criteria (i.e., 8 for iteration

4, which consisted of a total of 32 simulations, considering four

injury criteria). The selected parameters are used as input

parameters for the simulations of the next iteration.

As space-filling DoE algorithm the MaxPro approach (Joseph

et al., 2020) was chosen. It can be seen as an extension to themaximin

Latin hypercube design. The maximum projection (MaxPro)

criterion ensures that the design is not only space-filling for the

entire parameter space but also for subspaces. The MaxPro criterion

can also be extended for multiple types of factors. It can create

sequential designs and is available as implementation in R.

The selection of a subset of candidate points is done with the

help of metamodels. Cross-validation is used for the selection of

the metamodel and the hyperparameters of the metamodel. For

this the Python machine learning module scikit-learn2 (Pedregosa

et al., 2011) was used. No scaling of the input parameters was

performed since it did not improve the prediction accuracy. Since

the k-NN algorithm performed best for the first iterations of data,

it was used throughout the study unless stated otherwise.

To show the behaviour of the algorithm using known functions

the Styblinski-Tang function as well as Mishra’s bird function

(Mishra, 2006) (not constrained) were chosen. These functions

are also used in the context of optimization which is not the goal

in this work. A Latin hypercube design was used to create the first

design. Additional design points were created by augmenting the

initial design with candidate points using MaxPro. For the

Styblinski-Tang function 32 points were created with LHD and

32 points by augmentation whereas for Mishra’s bird function

16 points were created with LHD and 16 points by

augmentation. For the “highest mean criterion” the first design

points created by the LHDwere used for training a GPRmetamodel

FIGURE 4
Basic principle of feedback loop combining DoE algorithm and metamodel.

2 https://scikit-learn.org/stable/.
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und the remaining design points were used for testing in the first

step. In each iteration 32 new points were created for the Styblinski-

Tang function and 16 new points for Mishra’s bird function. For the

“highest mean criterion” one-fourth of the points were chosen using

the described approach and the remaining points were chosen using

the space filling MaxPro algorithm. Choosing the remaining points

withMaxPro was done to prevent the “highest mean criterion” from

getting stuck in one area. For theMaxPro approach all points in one

iterationwere createdwithMaxPro. To compare the two approaches

a GPR metamodel was trained using the created design points. The

difference of the two functions and the trained metamodels was

evaluated on a grid with 1,001 points in x and y direction

respectively.

2.3 Sensitivity study

A sensitivity study was performed to investigate if the

metamodel is able to learn from the results of different

configurations, such as different pulses, anthropometry and

seating position. The available data is split into two sets S1 and

S2. For the pulses the set S1 comprises all the data with pulse FF56,

the second set S2 comprises the rest of the data. For the

anthropometry the set S1 comprises the data with the

AF05 HBM and for the seating position S1 comprises the data

with theHBM in upright position. The first set is randomly split into

a set S1part that contains 80% of the set S1 and a test set S1test that

contains the remaining 20% of the set S1. To investigate different

sizes of training data from the set S1, 25%, 50%, 75%, and 100% of

the set S1part are used as training data S1train. Ametamodel is trained,

firstly with only the set S1train and secondly with the union of set

S1train and S2. The test set is both times S1test. As a metamodel GPR

is used since for k-NN the split into the sets is already done

inherently.

To quantify the importance of the different input parameters for

the metamodel, a score is calculated for each parameter using

“permutation feature importance” according to (Breiman, 2001).

For this, a trainedmetamodel with good prediction quality is needed.

The values for each feature are permuted one after the other. If the

feature is important, the prediction quality decreases. The

permutation feature importance is calculated as the prediction

score of the metamodel for the original data, minus the

prediction score for the permutated data. A mean permutation

feature importance can be calculated by repeating the procedure

for different permutations. (Breiman, 2001).

3 Results

3.1 Design of experiments

The comparison of the maximum error of the “highest mean

criterion” andMaxPro for the Styblinski-Tang function as well as

Mishra’s bird function can be seen in Figure 5. For the Styblinski-

Tang function the maximum absolute error decreases faster with

the exception of the second iteration. After eight iterations the

errors for both approaches are approximately the same. The

points chosen by the “highest mean criterion” focus on the

boundary where there is a steep increase of the Styblinki-Tang

function. For Mishra’s bird function again the maximum

absolute error decreases faster until the sixth iteration. For the

last two iterations the MaxPro approach shows the lower

maximum absolute error.

For the finite element simulations the first design was created

with Latin Hypercube sampling. Then three iterations were made

with no restrictions to the candidate points. Following on from

this three iterations were made with the “highest mean criterion”.

A summary of all iterations and the applied approach is shown in

Table 3.

Figure 6 shows boxplots of the absolute error in the

predictions from the test data of the four different injury

criteria. The first three iterations are with no restrictions on

the set of candidate points, iterations four to six were designed

with the “highest mean criterion”. It can be seen that the error

increases when switching to the “highest mean criterion” in

iteration 4. Only in the case of Brain 95p does it stay roughly

the same. This behaviour is intended since the new cases are

chosen in areas where the prediction error is highest. The error

declines for Brain 95p and NIC in the last iteration but more

iterations would be necessary to confirm this trend.

3.2 Prediction quality of the metamodels

The prediction quality of the two metamodels k-NN and

GPR is tested with two different splits into training and test data.

For the first split the results of the iterations 0 to 5 of the data set

are used as training data and the results of iteration six are used as

test data. For the second split, the whole data set with all

208 simulations was utilized to also take the data points of

the last iteration into account. The k-NN and the GPR

metamodels were thus trained with 80% of the randomized

whole data set (iteration 0–6). The prediction is then tested

on the remaining 20% of the data set. The resulting R2 values are

summarized in Table 4. Plots with a comparison of simulation

results and prediction can be found in the Supplementary

Material.

The predictions for the kinematic-based criteria HIC15 and

NIC are very good (R2 > 0.9), with the exception of k-NN for the

iteration based split. It can be seen, that the prediction is more

challenging for strain-based criteria like Brain 95p and especially

the rib fracture risk. For HIC15, Brain 95p and NIC GPR shows

almost equal or better results compared to k-NN, whereas for Rib

fracture 1+ k-NN is more stable. Using 80% of the entire

randomized data set as training data increases the accuracy of

the metamodels as expected.
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3.3 Sensitivity study

One split into two sets S1 and S2 was carried out for the

anthropometry. The set S1 comprises all the simulations with the

AF05 HBMmodel and the set S2 comprises the simulations with

the AM50 HBM model. The results can be seen in Table 5. As

expected, the calculated R2 score decreases with a reduced size of

the training set. No clear trend emerges for the comparison of the

results with and without added data from the set S2. But in most

cases adding data from set S2 leads to similar or worse R2 values.

Similar results can be observed for the split of the data based on

pulses and seating position which can be found in the

Supplementary Material. This leads to the conclusion that

combining simulations with different anthropometries, pulses

or seating positions does not help to reduce the necessary number

of simulations at least if they are not described by continuous

parameters which is the case in this study.

To see the influence of the different input parameters on the

metamodel the permutation feature importance (Breiman, 2001)

for the HIC15 was determined. The GPR metamodel was trained

with 80% of the whole data set for this purpose. The permutation

feature importance calculation for the test set was repeated ten

times, so mean and standard deviation are stated in Table 6. The

pulse has the highest feature importance followed by seating

position and anthropometry. The feature importance of the

parameter stiffness, distribution and belt load limiter are

significantly lower.

4 Discussion

4.1 Limitations

The focus of this study was the development of a method for

a fully automatic design of experiments, enabling to learn as

much as possible from a limited number of simulations. The

focus was not set on the metamodel and therefore using the

metamodel for designing a system, additional simulations would

FIGURE 5
Maximum absolute error of the GPR metamodel trainined with the design points created by the MaxPro algorithm and the “highest mean
criterion” respectively.

TABLE 3 Iterations of simulations with corresponding selection
approach.

Iteration Simulations Quantity DoE approach

0 1–64 64 Latin Hypercube

1 65–80 16 MaxPro

2 81–112 32 MaxPro

3 113–144 32 MaxPro

4 145–176 32 “Highest mean criterion”

5 177–192 16 “Highest mean criterion”

6 193–208 16 “Highest mean criterion”
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be needed. This becomes evident when looking at the prediction

of the rib fracture risk.

The description of the loading scenario was very

discontinuous and not described with parameters. In future

studies, the pulses should be described in an improved way,

using parameters characterising the shape and amplitude.

Furthermore, when using more than two anthropometries and

more than two seating postures, it might be better to derive a

metamodel, which can learn from the different scenarios.

A simplified seat-mounted restraint system was used in order

to represent the same initial conditions for each simulation run.

Although the comparison with a conventional vehicle shows a

FIGURE 6
Boxplots with absolute error of the predictions on the test data for all iterations.

TABLE 4 R2 values for predictions with k-NN and GPR metamodels for two different splits into training data and test data.

Training data iteration 0-5, test data
iteration 6

Training data 80% of all iterations,
test data 20% of all iterations

R2 k-NN R2 GPR R2 k-NN R2 GPR

HIC15 0.66 0.91 0.97 0.99

Brain 95p 0.89 0.89 0.95 0.93

NIC 0.86 0.98 0.98 0.98

Rib fracture 1+ 0.33 0.22 0.78 0.59
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similar magnitude and duration of the contact forces, the timing

of the applied restraint system is shifted, as it was not deploying.

The advantage of the comparable distance is related with a higher

distance compared to an airbag which is deploying. Therefore,

the results of this study cannot be directly transferred to a real

restraint systems.

Two functions were used to show the differences of the

proposed “highest mean error” approach and the space-filling

MaxPro algorithm. Since the differences depend on the chosen

function as well as parameters such as number of design points

per iteration a more thorough examination of the proposed

algorithm should be conducted in the future. This could lead

to a better understanding of the behaviour and to further

improvement of the “highest mean error” approach.

The goal of the proposed approach is to achieve good

prediction of the metamodel on the whole parameter space

and not missing any important regions. The prediction error

was increasing for the data from the finite element simulations

with our applied procedure. This is an indication that we would

have not seen these problems in our metamodel if we would have

continued with the space-filling approach. But it is difficult to

show that no important regions have been overlooked without

being able to simulate every point.

The proposed approach is intended for cases where the

number of simulations is limited, e.g., because of limited time

or computational resources. If a very large number of simulations

can be performed the whole design space could be scanned

instead.

TABLE 5 Results of sensitivity study for splitting the anthropometry.

Number of test data: 20 Only AF05 data used for
training (S1)

AM50 data set added for
training (S2)

Number
of training data

R2 Number
of training data

R2

HIC15 78 0.97 188 0.97

58 0.96 168 0.96

39 0.94 149 0.95

19 0.84 129 0.91

NIC 78 0.75 188 0.7

58 0.72 168 0.57

39 0.52 149 -0.11

19 −0.01 129 -1.51

Brain 95p 78 0.98 188 0.98

58 0.97 168 0.98

39 0.97 149 0.99

19 0.87 129 0.97

Rib fracture risk 1+ 78 0.64 188 0.67

58 0.62 168 0.61

39 0.75 149 0.56

19 0.55 129 0.36

TABLE 6 Permutation feature importance for HIC15.

Features Stiffness Distribution Belt load
limiter

Anthropometry Seating position Pulse

Mean 0.043 0.048 0.06 0.128 0.149 2.128

Standard deviation 0.027 0.022 0.013 0.032 0.034 0.281
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4.2 Simulation setup

A parameterised, robust simulation model is needed to train

the metamodels. Before starting the parameter variation, the

simulation of all extreme load cases should prove the model’s

stability. Outliers of simulation results should be always checked

manually, as they affect the design of the next iteration. The

Human Body Model applied in the current simulations was very

robust, but issues in the belt and restraint system interactions

(sticky nodes) were observed in single simulations, which

required changes of the contact settings such as contact

stiffness and search frequency.

It should be checked in advance if the variance in the input

parameters leads to significant changes in the results. Originally,

it was planned to vary only the angle, but not the collision speed.

However, this led to a spread in some of the injury criteria that

was too small and therefore did not fulfil the purpose of the study.

To achieve a higher range in injury criteria values, the pulse

FF56 was added.

4.3 Design of experiments

With the DoE approach of the current study it was not

intended to perform a classic optimization approach as in Xia

et al. (2018), Gan and Gu (2019) or Joodaki et al. (2021), but to

learn as much as possible from a limited number of

simulations. Defining the aim of a design of experiments

approach is essential. In the concept phase, there was some

discussion on whether certain areas of a predicted outcome

could be excluded, since the output values were either too high

or too low. This was inspired by the approach of Gan and Gu

(2019), who developed an algorithm, in which an important

region was defined and points that lie within that region were

chosen by preference for the next iteration. Ultimately,

however, an approach of this kind appeared to be too

subjective for our application, since it was found to be

difficult to draw a line objectively without running the risk

ever and again of missing something essential. Instead of this,

the areas of the metamodel with the highest insecurities were

defined as the areas, which we should examine more closely as

a means of avoiding misleading conclusions. Rooting out the

causes of non-stable behaviour is of great importance,

especially for safety applications.

On examining the average errors per iteration, it is

apparent that the errors in iteration four and five were

much higher than those in the previous iterations, but with

a decreasing trend for the last iteration. This trend should

ideally proceed further. Applying the developed method helps

to reveal critical areas. When errors do not increase, even

when focusing on those areas with the biggest errors, we

were confident that missing important regions would be

unlikely.

Metamodels of an entirely acceptable quality within a large

parameter space were derived, despite only 208 simulations

having been performed. To estimate the number of

simulations that would be needed for a full factorial analysis,

a discretization of the continuous variable in the current study

has to be assumed. A discretization with ten data points each for

beam stiffness, distribution of stiffness as well as the belt load

limiter would lead to a total of 16,000 simulations for the full

parameter space.

4.4 Metamodel

Within the DoE, the metamodel was trained with the k-NN

method, although for the final results GPR showed better

accuracy. For the first set of iterations, however, k-NN is

much more stable and the risk of misleading interpretations is

lower. The reason for this might be the small number of data sets

at the beginning together with the aforementioned inability to

learn from different configurations. For the first training data set

with 64 simulations, only eight simulations are with the same

pulse, anthropometry and seating position. In the future also

combinations of different metamodels could be tested.

Surprisingly the prediction of the metamodel did not seem to

improve with data from other configurations. This might be

caused by non-continuous and too different configurations.

Training the metamodel and performing the DoE for each

configuration separately meant that a significantly greater

number of simulations would needed. Anthropometry, posture

and pulse should be varied in the future more continuous to

achieve better learning effects in between the scenarios.

Metamodels were trained to predict four different injury criteria,

which were each of a different type. The highest prediction accuracy

was achieved for the kinematics-based criteria HIC and NIC, which

are mainly applied for dummies and have limited meaningfulness

for HBMs. The prediction of the strain-based criteria seemed to be

more challenging for the metamodel. The most complex injury

criteria applied in this study, the probabilistic rib fracture risk

assessment, was the most difficult to predict. To calculate the

probabilistic rib fracture risk assessment, the maximum strain of

each rib is derived and used as input for the risk calculation per rib

which is finally combined to an overall rib fracture risk using a

binomial function. In contrast to the brain 95th percentile strain,

more complexity layers are thus added, which the metamodel must

learn. In future an attempt could be made to predict the strains

within the individual rib using metamodels and then to perform the

remaining evaluation steps manually.

Ultimately, of course more data is always better. The level of

needed accuracy of the metamodel strongly depends on where it

should be applied. The metamodel developed in this study can be

used to distinguish between critical and non-critical areas for the

generic restraint system that was used and prioritize input-

parameters for future studies.
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5 Conclusion

A DoE approach has been established focusing on those

metamodel areas, which are more difficult to predict than others.

An approach of this kind is recommended for safety-relevant

problems with expensive generation of training data. Instead of

optimizing the restraint system to run more and more simulations

in “non-critical” areas, the developed algorithm specifically focuses on

the more challenging areas to avoid misjudgement in these for the

metamodel. This can help engineers to reveal the most critical areas,

which should be prioritized to improve the robustness of the study

using the individually feasible number of simulations that can be

generated as effectively as possible.

Further research is needed in order to also be able to predict

more complex injury criteria and further understand the learning

effects from the categorical parameters describing the scenarios,

such as anthropometry and posture.
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