AUTHOR=Bakach Iurii , Campbell Ann Melissa , Ehmke Jan Fabian TITLE=Robot-Based Last-Mile Deliveries With Pedestrian Zones JOURNAL=Frontiers in Future Transportation VOLUME=2 YEAR=2022 URL=https://www.frontiersin.org/journals/future-transportation/articles/10.3389/ffutr.2021.773240 DOI=10.3389/ffutr.2021.773240 ISSN=2673-5210 ABSTRACT=

Since delivery robots share sidewalks with pedestrians, it may be beneficial to choose paths for them that avoid zones with high pedestrian density. In this paper, we investigate a robot-based last-mile delivery problem considering path flexibility given the presence of zones with varying pedestrian level of service (LOS). Pedestrian LOS is a measure of pedestrian flow density. We model this new problem with stochastic travel times and soft customer time windows. The model includes an objective that reflects customer service quality based on early and late arrivals. The heuristic solution approach uses the minimum travel time paths from different LOS zones (path flexibility). We demonstrate that the presence of pedestrian zones leads to alternative path choices in 30% of all cases. In addition, we find that extended time windows may help increase service quality in zones with high pedestrian density by up to 40%.