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The unprecedented volume of urban sensing data has allowed the tracking of individuals

at remarkably high resolution. As an example, Telecommunication Service Providers

(TSPs) cannot provide their service unless they continuously collect information regarding

the location of their customers. In conjunction with appropriate post-processing

methodologies, these traces can be augmented with additional dimensions such as

the activity of the user or the transport mode used for the completion of journeys.

However, justified privacy concerns have led to the enforcement of legal regulations

aiming to hinder, if not entirely forbid, the use of such private information even for purely

scientific purposes. One of the most widely applied methods for the communication of

mobility information without raising anonymity concerns is the aggregation of trips in

origin–destination (OD) matrices. Previous work has showcased the possibility to exploit

multi-period and purpose-segmented ODs for the synthesis of realistic disaggregate

tours. The current study extends this framework by incorporating the multimodality

dimension into the framework. In particular, the study evaluates the potential of

synthesizing multimodal, diurnal tours for the case where the available ODs are also

segmented by the transport mode. In addition, the study proves the scalability of

the method by evaluating its performance on a set of time period-, trip purpose-,

and transport mode-segmented, large-scale ODs describing the mobility patterns for

millions of citizens of the megacity of Tokyo, Japan. The resulting modeled tours

utilized over 96% of the inputted trips and recreated the observed mobility traces

with an accuracy exceeding 80%. The high accuracy of the framework establishes the

potential to utilize privacy-safe, aggregate urban mobility data for the synthesis of highly

informative and contextual disaggregate mobility information. Implications are significant

since the creation of such granular mobility information fromwidely available data sources

like aggregate ODs can prove particularly useful for deep explanatory analysis or for

advanced transport modeling purposes (e.g., agent-based, microsimulation modeling).

Keywords: origin-destination matrices, multimodal tours, mobility traces, disaggregation, urban sensing data,

large-scale dataset, mega-cities
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INTRODUCTION

Prior to the introduction of smart mobility sensors (e.g.,
smartphones, smartwatches, GPS trackers, etc.), the study of
mobility had mainly relied on costly and time-consuming
transport surveys. However, improvements in the field of urban
sensing technology have allowed the deeper understanding of
mobility at an unprecedented resolution and with a significantly
lower cost compared to traditional methods (Ghahramani et al.,
2020). Although travel surveys are still an integral part of
transport-related studies, passively collected urban sensing data
are gradually substituting them for various reasons (Calabrese
et al., 2014; Kadhim et al., 2016). Firstly, passively collected
data can be collected for considerably larger portions of the
population and in notably more frequent intervals compared to
traditional surveys. Secondly, passively collected data are usually
not expensive since they can derive as by-products of other
processes (e.g., telecommunications call detail records). Thirdly,
the recording of relevant information places no burden on the
tracked user. Although this attribute initially limits the depth
of detail that can be obtained from passively collected data,
various post-processing data augmentation methodologies have
managed to accurately restore significant parts of the missing
information, such as the transport mode used by the user
(Prelipcean et al., 2017; Huang et al., 2019; Liu et al., 2020), and
therefore have reduced the effects of this limitation.

The increasing availability of mobility-related data has led

researchers to the development of models able to identify
patterns and connections between the system’s state variables

(i.e., inputs and outputs) without explicit knowledge of the
analyzed system. These so-called data-driven models promise

to minimize uncertainty and improve accuracy by fusing and
integrating multiple sources of (dynamic) data into the core of
(transport) modeling (Jha, 2015; Angria et al., 2018; Antoniou
et al., 2019). The applications of data-driven methodologies
in the field of transport and travel behavior modeling have
been strongly supported by the introduction of the previously
discussed automated, continuous data collection technologies
that are able to compliment or even improve the statistical
representativeness of traditional surveys (Cottrill et al., 2013).
The significant role of these modern urban sensing data sources
(e.g., mobile phone data, GPS traces, transit smart cards, etc.)
in the study of travel behavior has been explored by numerous
researchers (Caceres et al., 2013; Calabrese et al., 2013; Yue et al.,
2014; Çolak et al., 2015; Vlahogianni et al., 2015; Bassolas et al.,
2019).

One of the most widely used technologies utilized in urban
mobility sensing is arguably the mobile phone. According
to a recent GSMA intelligence data report (GSMA, 2017),
there are almost 5.13 billion mobile phone users around
the globe, accounting for 66.5% of the world’s population.
Telecommunication service providers (TSPs) are unable to
provide their services without monitoring the position of the
devices registered to the communications network; therefore, the
location of each mobile phone is continuously queried. Mobility
researchers have been leveraging this type of information
for almost a decade already, and a considerable number of

relevant methodologies have expanded the understanding of
mobility using mobile phone data (MPD). For example, a
data-driven modeling framework enabling the estimation of
human mobility trajectories has been presented by Pappalardo
and Simini (2018), where observed MPD data were utilized
to construct individual diaries based on an exploration and
preferential return methodology. The comparison of their
results against observed data showcased the capability of the
methodology to accurately reproduce the statistical properties
of the observed trajectories. Finally, a prominent methodology
providing anonymized and fully detailed activity schedules from
MPD is presented by Lin et al. (2017). The authors first utilize
an input–output hidden Markov model (IO-HMM) to infer
activity sequences and subsequently apply a long short-term
memory (LSTM) deep neural network for the assignment of exact
locations to the previously identified activities. The framework
presented reasonable performance when 465,000 synthetic
activity schedules were assigned in a multimodal, micro-
simulator model and the observed traffic and transit counts were
compared against the corresponding modeled figures.

TSPs are able to record the mobility traces of their users
with great accuracy; however, justified privacy concerns raised by
the distinctiveness of personal mobility footprints (De Montjoye
et al., 2013) are forbidding the use of such data (Batty et al., 2012),
unless an appropriate anonymization technique is firstly applied.
Various methodologies have been suggested for the achievement
of what is often referred to as differential privacy of the tracked
population. Differential privacy requires that the probability
distribution on the published results of an analysis is “essentially
the same,” independently of whether any individual opts into
or opts out of the data set (Dwork et al., 2010). Despite the
widespread research in relation to ensuring differential privacy
and the obfuscation of mobility traces (You et al., 2007; Krumm,
2009; Suzuki et al., 2010; Kato et al., 2012; Shokri et al., 2012;
Bindschaedler and Shokri, 2016), no standard procedure has
been established so far. One of the most common approaches
to guarantee intractability is the aggregation of mobility traces
with similar characteristics (e.g., similar origin). For example,
the study of Balzotti et al. (2018) conducted a travel behavioral
analysis using only aggregated cellular network data (in the form
of hourly counts of mobile phones in spatial zones) without
subjecting the tracked users to privacy risk. Another frequently
deployed methodology for the construction of privacy-safe traces
is based on generative models (Chow and Golle, 2009; Krumm,
2009; Kato et al., 2012; Shokri et al., 2012; Bindschaedler and
Shokri, 2016). These models utilize observed traces to create
realistic trajectories with similar semantics while at the same
time ensuring intractability through location privacy protection
mechanisms (LPPMs). LPPMs rely on a wide range of techniques
including data perturbation (Andrés et al., 2013), data encryption
(Mascetti et al., 2011), and fake data generation (Pelekis
et al., 2011). For example, Isaacman et al. (2012) introduced
a probabilistic modeling framework (coined as WHERE) to
produce synthetic call detail records (CDRs), while Mir et al.
(2013) enhanced the framework by adding a differential privacy
mechanism (DP-WHERE) to guarantee privacy preservation.
The interested reader can find an extensive review of relevant
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data anonymization techniques by Primault et al. (2019). Despite
the wide range of available data anonymization techniques, the
standard approach for the presentation of MPD is through
aggregate origin–destination (ODs)matrices (Caceres et al., 2007;
Bonnel et al., 2015; Tolouei and Alvarez, 2015). ODs ensure
anonymity through the segmentation of the mobility traces into
individual trips and the aggregation of these trips into groups
with similar characteristics (e.g., trip purpose, time period of
departure, mode of transport, etc.).

The increasing requirements for high-precision disaggregate
mobility information, in conjunction with the data privacy
regulations (i.e., GDPR-EU, APPI-Japan, etc.) that promote the
aggregated publishing of information, have led researchers to
experiment with data disaggregation methodologies. Recently,
Huber and Lißner (2019) utilized aggregate cycling data obtained
from the Strava app to synthesize disaggregate mobility data.
Their approach applies a double-constrained routing algorithm
on aggregate OD cycling demand to derive single bicycle routes.
However, their model does not aim at the reproduction of the
cycling travel demand through individual cycling traces but
rather on the development of a bicycle route choice model
based on the OD information. The possibility of synthesizing
travel demand based on aggregated data from TSPs has been
recently evaluated by Anda et al. (2020). Their Markovian-
based approach allows the synthesis of realistic daily tours using
aggregate joint distributions (histograms) that can be provided
by TSPs since they are considerably less likely to raise data
privacy concerns. Multiple different model architectures were
evaluated over a large dataset of 1 million synthetic travelers
and resulted in a remarkably high accuracy (≥95%) in terms of
replicating the observed travel patterns. A potential drawback
of the methodology is its reliance on multiple and very detailed
hourly distributions at the zonal level (e.g., duration of stay time
in a zone by hour, number of people transitioning to a previously
unvisited zone by zone and departure hour, etc.).

To the best knowledge of the authors, except from the above-
mentioned studies and the relevant work supporting this paper
(Ballis and Dimitriou, 2020a,b,c), no other study has attempted
the exploitation of ODs for the synthesis of mobility data at
the person level. The contribution of this study is two-fold. In
particular, the study:

• Showcases the extendibility of the framework to incorporate
and exploit all the available dimensions of the inputted
ODs. In this implementation, the focus has been placed on
multimodality and, in particular, on the typical scenario where
the available ODs are segmented by time period, trip purpose,
as well as by the transport mode used to complete each trip.

• Assesses the scalability of the framework by applying the
methodology on ODs describing the mobility patterns for the
whole metropolitan area of Tokyo, Japan (11.6 million trips
in total).

The next section (section Materials and Methods) presents the
methodology, while section Large-Scale Experiment presents the
large-scale scenario used to evaluate the framework. Finally, \∗

MERGEFORMAT section Discussion discusses the results and
concludes the study.

MATERIALS AND METHODS

Overview
Mobility is a phenomenon that unravels continuously both in
space and time, but often, its analysis requires the discretization
of the spatiotemporal domain. The most common approach
entails the division of space into smaller areas (usually referred to
as zones) and the division of time into consecutive time windows,
referred to as time periods. Using this definition enables the
grouping of trips based on their origin, destination, and time of
departure. Depending on the purposes of each application, ODs
can be further segmented based on additional dimensions such
as the transport mode or the purpose of each trip. Nonetheless,
the capturing of mobility in multiple ODs does not negate the
continuity of the phenomenon, and this study strengthens the
argument that it is indeed possible to unveil continuous mobility
patterns based on discretized snapshots of mobility.

A key observation supporting the here presentedmethodology
is the fact that the vast majority of the population begins
and ends their daily activity schedules at home (Bowman,
1998; Schoenfelder and Axhausen, 2001; Schneider et al., 2020).
Consequently, the trips included in ODs should belong to longer
home-based trip chains (often referred to as tours). This attribute
holds particularly true for ODs deriving from urban sensing
data sources (e.g., mobile phone data, GPS, etc.) since they are
built by continuously tracking the movements of mobile phone
holders. This study exploits this observation and attempts to
synthesize continuous mobility traces, in the form of tours, based
on aggregate ODs.

The identification of continuous mobility traces within ODs is
accomplished in a modular fashion following the methodology
having been previously presented by the authors (Ballis
and Dimitriou, 2020a,b). Nonetheless, for the completeness
of presentation, the outline of that methodology is also
presented here. Firstly, the graph generation module exploits
the connectivity matrices of the input OD matrices for the
conversion of the latter into a single directed graph. This
conversion allows the expression of trip chains as sequences
of nodes (i.e., paths), where each edge of the path is directly
associated with a trip from the inputted ODs. More importantly,
the conversion of ODs into a graph allows the analysis of mobility
through the prism of the well-established discipline of graph
theory. The second step, referred to as the identification module,
exploits this concept and applies a sophisticated graph theory-
based process for the efficient enumeration of all the possible
tours within the graph. The output of this step is a set of all
the possible tours that can take place using the trips of the
input ODs. For ODs of realistic scale (e.g., hundreds of OD
pairs), the enumeration of tours in a graph can prove particularly
challenging (mainly due to the combinatorial explosion issue),
but the predictability of travel behavior patterns (Schneider et al.,
2013) can significantly simplify the process. For example, tours
with unrealistic durations or with an excessive number of visited
locations (e.g., above six) can be excluded from the search space
and, as a result, support the tackling of combinatorial explosion.
The completion of the second step produces a set of plausible
tours that are referred to as the candidate tours. At the third step,
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FIGURE 1 | Flowchart of the suggested methodology.

the optimization module deploys a combinatorial optimization
method (either an exact method or a metaheuristic) in order to
identify the combination of the candidate tours that reproduces
the travel demand patterns as captured in the inputted ODs.
More precisely, the optimizer attempts to identify the non-
negative frequency of usage for each of the candidate tours so that
the difference between the total number of trips in the inputted
ODs and the total number of trips required for the completion of
the tours in the solution is minimized.

In the case that additional information describing the
characteristics of the expected output is available, that calibration
data can be translated into constraints, forcing the optimizer
to identify a solution that adheres to that calibration data.

The provision of a calibration dataset, although not mandatory,
increases the likelihood of identifying the most realistic solution
out of all the possible ones. The above-described process is
presented in the flowchart of Figure 1.

Problem Formulation
Formulation

Let R be a set of multi-period (k ∈ K) and transport mode-
segmented (m ∈ M) ODs which describe the mobility patterns
of a certain population. Given this set R, one can deduct the
connectivity matrix of the corresponding graph and then express
all the home-based multimodal tours as sequences of nodes (i.e.,
paths). The objective of the optimization problem (1) is the
identification of the frequency of each candidate tour (Nc ∀ c ∈

C) so that the difference between the total number of trips in the
inputted ODs and the trips required to form the candidate tours
in the solution is minimized.

The calculation of the optimum frequency for each tour (Nc)
must take place while respecting the travel demand information
included in the input ODs. This is achieved by the hard
constraint (2), which guarantees that the required trips to form
the solution will not exceed the available trips in the inputted
ODs. In addition, constraint (3) assures that Nc does not
turn negative, though without precluding the optimizer from
excluding candidate tours from the final solution (i.e., Nc can
be 0). The objective function takes the minimum value of 0 when
the number of trips in R and those required to complete the tours
in the solution are the same.

Due to the combinatorial nature of the problem, it is possible
that multiple global optima can exist (Redondo et al., 2011) and
that, consequently, more than one combinations of tours can
result to optimal solutions. For this reason, a mechanism to guide
the optimization routine toward the identification of a solution
that closely reflects reality is required. Under the presence of a
(joint) calibration distribution describing the characteristics of
the expected tours (e.g., total travel time, number of legs, modes
of transport used, etc.), the output can be shaped accordingly.
To achieve so, each tour in C is assigned to the class of the
distribution (d) that best describes it. The adherence of the
output to the calibration information is achieved by constraint
(4), which guarantees that the output will follow that distribution.
The introduction of the term δd allows for tolerance between
the observed and the modeled distributions and supports the
feasibility of the solution in cases where an exact match between
the two distributions cannot be achieved. The optimization
problem is mathematically formulated as:

Z :minNc

∑

pmk∈Pmk

(
∣

∣

∣

∑

c∈C

(

NcB
pmk
c

)

− Tpmk

∣

∣

∣

)

(1)

subject to:

∑

c∈C

(

NcB
pmk
c

)

− Tpmk
≤ 0 ∀ pmk ∈ Pmk (2)

Nc ≥ 0 ∀ c ∈ C (3)
∣

∣

∣
sdc −

NcE
d
c

∑

c∈C Nc

∣

∣

∣
≤ δd ∀ c ∈ C, d ∈ D (4)
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FIGURE 2 | The multimodal transport network of megacity Tokyo.

The next section presents the results obtained by the application
of the methodology on an excessively large-scale experiment
based on 5 million multi-modal tours.

LARGE-SCALE EXPERIMENT

The Open PFLOW Dataset
As has been already discussed, the acquisition of disaggregate
information regarding mobility (e.g., trip chains, tours, activity
schedules, etc.) can prove a difficult and/or costly task.
Fortunately, a large-scale, accurate, and open dataset describing
mobility at the person level has been published by Kashiyama
et al. (2017). The Open PFLOW1 dataset reports the minute-
by-minute locations as well as the currently used mode of
transport (bicycle, car, or train) for thousands of individuals
around the wider area of Tokyo, Japan (Figure 2). The dataset
is fully compliant with privacy regulations since the data are
synthetic and therefore can be used for any purpose without
raising anonymity concerns. A sample of the dataset can be found

1Available at: https://github.com/sekilab/OpenPFLOW.

in Table 1. The Open PFLOW dataset constitutes the basis over
which the suggested methodology was evaluated. The stationary
points presented in the dataset were converted into complete
tours, a sample of which is presented in Table 2. Since the trip
purpose information is missing from the dataset, the first and
the last trip of each trace are classified as Home-Based while all
the rest as Non-Home-Based. For the purposes of this analysis,
incomplete tours (i.e., trip chains not returning to the origin
location) were excluded from the analysis. In order to increase the
size of the problem, the total 617,000 mobility traces present in
Open PFLOW were sampled with replacement in order to create
an upscaled population of 5 million tours. These observed tours
form the ground truth against which the suggested methodology
was evaluated.

Aggregation to ODs
Tours are, by definition, trip chains consisting of at least two
legs (a Home-Based outbound and a Home-Based inbound trip),
while they can also include intermediate Non-Home-Based trips.
For the case of the observed tours, the number of individual trips
required for their completion is 11,636,471. These trips were able
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TABLE 1 | Extract from the Open PFLOW dataset.

Time User ID Longitude Latitude Transport

12/01/2017 08:59 35000040 139.721811 35.5791132 Stay

12/01/2017 09:00 35000040 139.721811 35.5791132 Stay

12/01/2017 09:01 35000040 139.721814 35.5791141 Bicycle

12/01/2017 09:02 35000040 139.721911 35.5801351 Bicycle

TABLE 2 | Sample of the observed tours from the Open PFLOW dataset.

Tour Locations Purpose Departure time profile Transport modes

1 (Z1, Z2, Z1) HB, NHB, HB (08:00, 16:00) (Car, car)

2 (Z3, Z4, Z5, Z6, Z3) HB, NHB, NHB, HB (10:00, 12:00, 14:00, 18:00) (Bicycle, train, train, bicycle)

TABLE 3 | Total number of trips in observed origins–destinations (ODs) by time period, purpose, and transport mode.

Time period Home-Based Non-Home-Based Total

Bicycle Car Train Bicycle Car Train

02:00–04:00 0 0 3,111 0 0 0 3,111

04:00–06:00 110,512 238,379 157,550 6,640 1,817 36,565 551,463

06:00–08:00 914,037 995,842 1,372,021 88,349 22,497 343,741 3,736,487

08:00–10:00 342,265 217,463 595,257 65,138 16,489 163,005 1,399,617

10:00–12:00 84,855 81,124 114,435 9,477 4,221 39,352 333,464

12:00–14:00 82,094 73,917 97,807 6,733 3,153 37,964 301,668

14:00–16:00 115,036 174,782 166,113 9,358 3,953 67,291 536,533

16:00–18:00 367,794 472,946 534,464 22,199 8,183 207,338 1,612,924

18:00–20:00 519,951 401,114 586,901 21,644 6,705 240,051 1,776,366

20:00–22:00 317,358 238,458 348,782 12,212 4,013 145,119 1,065,942

22:00–23:59 105,373 58,675 111,584 5,032 1,250 36,982 318,896

Total 2,959,275 2,952,700 4,088,025 246,782 72,281 1,317,408 11,636,471

to be aggregated into a set of multi-period-, purpose-, and mode-
segmented ODs since the (a) origin, (b) destination, (c) purpose
(Home-Based and Non-Home-Based), (d) departure time, and
(e) the transport mode for each trip are known. The preparation
of the above-mentioned ODs requires the definition of a zoning
as well as a temporal classification system. For that purpose, the
wider area of Tokyo was divided into a grid of 1 km2 (12,138
zones in total), while the temporal domain was discretized into
12 groups of 2 h duration each. Following this classification, the
trips required for the completion of the observed tours were
classified into 66 observed ODs, whose totals are summarized
in Table 3. In addition, Figure 3 visualizes this information by
depicting the total number of trips originating from each of the
12,138 zones of the network, segmented by mode of transport.

The Calibration Distribution
As already discussed, the combinatorial nature of the problem
allows for the manifestation of multiple optimal solutions.
Nonetheless, the realness of the output can be enhanced by
the provision of a high-level calibration (joint) distribution
describing various dimensions of the expected output. In
principle, the calibration distribution can be supplied by

the data provider itself (e.g., the TSP) since the data are
high level, aggregate, and anonymous. In the case that
this is not possible, traditional travel surveys can be used
instead, although the accuracy of the methodology is likely
to decrease.

For the purposes of this study, the characteristics of the
observed tours have been utilized to categorize the tours
into classes based on (a) the total distance, (b) the time
departure profile, and (c) the transport modes used for the
completion of the tours (Figure 4). The distance band has
been set at 5 km, the time departure profile follows the
temporal classification of the inputted ODs (i.e., 2-h periods),
while the available modes are bicycle, car, and train. A
statistical analysis based on this classification enabled the
calculation of the share of each class in the sample and
subsequently allowed the creation of the calibration distribution.
For reasons of visual clarity, the distributions of the unimodal
and multimodal (Figure 4, top and bottom, respectively) tours
are presented separately. In addition, Figure 5 presents the
pairwise marginals of the three dimensions defining the
calibration distribution.

Apart from the beneficial role of the calibration distribution in

the identification of the most realistic solution, the distribution
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FIGURE 3 | Map of total daily trip origins per transport mode by (A) all transport modes, (B) car, (C) bicycle, and (D) train.

is also exploited to counter the combinatorial explosion issue.
In particular, tours belonging into classes with particularly low
or even zero likelihood can be excluded from the candidate
tours set and therefore reduce the size of the problem. As an
example, the analysis of the calibration distribution indicated
that only 2% of the observed tours are completed in more
than four legs; therefore, the effect of their exclusion, for the
sake of simplification, can be well-justified. Additionally, the
calibration distribution revealed that no observed tour exceeds a
total distance of 95 km; therefore, the identification of candidate
tours was also limited by that threshold. More importantly, out of
the 347,776 plausible classes which can be defined for multimodal
tours of up to four legs, the 95-km distance binned in the 5-km
groups and three available transport modes, only 8,306 present
a share in the calibration distribution; as such, all candidate
tours not belonging in those non-zero classes were excluded. A

significant benefit of this approach is that impossible or very

infrequent travel behaviors (e.g., tours not respecting vehicle

availability) will not be present in the calibration distribution;

therefore, no additional mechanism is required for the preclusion
of unrealistic tours.

Configuration Parameters
This section provides information useful for the replication of
the suggested methodology. The required parameters for the
execution of the process are grouped based on the process step
(i.e., module) they relate to.

Parameters for the Identification Module

The most crucial parameter for this module is the maximum
number of legs and the maximum distance of the candidate tours
that will be identified. In order to render the problem solvable
in tractable time, the identification module was constrained to
enumerate all tours whose total traveled distance did not exceed
95 km and the number of visited zones (i.e., legs) that did not
exceed four. Numerous studies have showcased that the majority
of tours do not include more than four legs (Wallner et al., 2018;
Schneider et al., 2020). In addition, a brief analysis of the UK
National Travel Survey 2016 (Department for Transport, 2017)
indicated that only 0.5% of the recorded tours exhibited more
than five legs, supporting the argument to limit the maximum
number of legs in tours at this level. Finally, the open PFLOW
dataset includes roughly 2% of tours with more than four legs,
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FIGURE 4 | Presentation of the three-dimensional calibration distribution for the multimodal (Top) and unimodal (Bottom) tours.

which were excluded from the analysis in order to simplify
the problem.

Parameters for the Optimization Module

The optimization module is implemented via the commercial
branch-and-bound optimizer CPLEX (IBM, 2020), with the only
parameter being the maximum time of the optimization set at
6 h. In terms of constraints, the maximum deviation between the
classes of the calibration and the modeled distribution (i.e., δd)
was set at±1.0%.

The preparation of the input ODs and the calibration
distribution allows the execution and, subsequently, the
evaluation of the methodology on a realistic, very large-scale
scenario. The results of this evaluation are presented below.

RESULTS

The execution of the previously presented methodology
resulted in a set of 1,097,117 unique candidate tours that
were used to form a solution of 4,807,364 tours in the
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FIGURE 5 | Pairwise marginals of the three dimensions defining the calibration distribution. Each plot presents the 100 classes with the highest share.
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final solution. These modeled tours require 11,161,651
trips for their completion compared to the 11,636,471 trips
required by the observed tours (96% of trips included in the
modeled solution).

In terms of performance, the whole process was executed
in approximately 30 h (108,452 s) on a 12-core Intel R©

Xeon CPU powered computer with 32 Gb of available
RAM. The majority of the execution time (24 h) was
devoted to the enumeration of all the possible paths in
the OD-derived graph (identification module), while the
last 6 h were devoted to the optimization part of the
methodology. The processing time requirements, although
not negligible, can be significantly reduced by additional

processing cores due to the parallel processing implementation
of the approach.

Despite the beneficial role of the calibration distribution
in the optimization process, the sheer size, and complexity of
the problem render the identification of the optimum solution
a demanding task. Figure 6 presents the distribution of the
number of candidate tours in the distribution classes. As can
be observed, the majority of the distribution classes include
more than 10 candidate tours, while a significant portion of
the distribution classes include more than 100 or even 2,000
candidates. As a consequence, the task of identifying the optimal
combination between millions of alternatives based solely on
high-level calibration data is evidently a very complex procedure.

FIGURE 6 | Distribution of the number of candidate tours in the distribution classes.

TABLE 4 | Difference in the total number of trips between the observed and the modeled origins–destinations (ODs).

Time period Home-Based Non-Home-Based Total

Bicycle Car Train Bicycle Car Train

02:00–04:00 0 0 89 0 0 0 89

04:00–06:00 4,147 9,480 5,704 192 51 2,450 22,024

06:00–08:00 33,333 40,406 51,289 2,705 735 21,325 149,793

08:00–10:00 12,803 10,007 23,263 2,792 758 10,334 59,957

10:00–12:00 3,130 3,412 4,227 343 213 2,176 13,501

12:00–14:00 2,865 2,969 3,555 303 100 2,026 11,818

14:00–16:00 4,183 6,954 6,472 338 163 4,055 22,165

16:00–18:00 13,394 18,545 20,048 807 378 11,790 64,962

18:00–20:00 19,808 16,992 22,273 730 413 14,116 74,332

20:00–22:00 11,799 10,516 13,427 464 117 7,924 44,247

22:00–23:59 3,927 2,604 3,651 149 36 1,565 11,932

Total 109,389 121,885 153,998 8,823 2,964 77,761 474,820
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FIGURE 7 | Total trip origin difference between the observed and modeled origins–destinations (ODs).

The next section delves into the evaluation of themethodology
in terms of the quality of the outputted ODs, the fidelity of
the modeled tours, as well as in terms of the adherence to the
provided calibration distribution.

Comparison Against the Observed ODs
The first level of analysis evaluates the performance of the
methodology in utilizing the available trips in the observed ODs
for the production of disaggregate mobility traces (i.e., tours).
Based on the obtained results (Table 4), the methodology did
not manage to include only 474,870 trips out of the 11,636,471
observed trips (i.e., 4% difference). This calculation can also
be visually verified in Figure 7, where it is showcased that the
number of missing trips by zone of origin is considerably smaller
than the total observed trips.

The accuracy of the methodology is also verified via the
following scatter plot (Figure 8). The plot depicts the number
of trips within each of the 66 observed ODs and the respective
number in the modeled ODs. As can be seen, the methodology

has managed to identify a set of tours resulting very similar to the
observed travel demand patterns. This argument is supported by
the particularly high R2 value and the close to 1 slope of the curve.

Comparison Against the Observed Tours
Based on the previous results, it can be argued that the
methodology produces ODs that closely resemble their
corresponding observed ODs. However, the quality of the
modeled tours must also be evaluated in terms of their
resemblance to the observed input at the disaggregate level.
As has been already mentioned, the identification of a solution
as similar as possible to the observed tours is supported by
the provision of the calibration distribution. Based on the
obtained results, 81.7% of the observed tours were perfectly
replicated across all the defining dimensions (i.e., locations,
departure time profile, and transport modes). The distribution
of error between the combinations of the defining dimensions
is presented in Figure 9. As can be observed, the main element
driving the misalignment between the observed and the modeled
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FIGURE 8 | Scatter plot comparing the observed and the modeled origin–destination (OD) matrices.

FIGURE 9 | Assessment of mismatched tours based on the defining dimensions.

tours is the sequence of the visited locations (explaining
7.4% of the discrepancy). However, this figure is arguably
justified considering the tremendously high number of possible
sequences of zones in the observed ODs (12,000+) and the
very aggregate information used for the calibration of this
dimension (i.e., distribution of tours’ total distance). The

contributions of the departure profile and the transport mode
sequence are significantly lower and attribute to around 3.1 and
4.7%, respectively.

Figure 10 presents the evaluation regarding the matching
between the observed and the modeled tours’ characteristics in
the form of a scatter plot where each point on the diagrams
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FIGURE 10 | Scatter plot comparison of the calibration distribution by number of legs.

represents one out of the 8,362 calibration distribution classes.
For reasons of visual clarity, the results are segmented by the
number of legs in each tour. As can be observed, the projection
of the calibration data on the output is very accurate, with an R2

of around 0.98 and the slope from 0.858 to 0.947. In addition,
the Jensen and Shannon distance (Endres and Schindelin, 2003),
a metric used for the comparison between two distributions,
was calculated at 9%, indicating strong resemblance between the
modeled and the calibration distribution.

Explanatory Analysis
After having established the validity of the modeled tours, the
analysis proceeds with the exploitation of the disaggregate output
for explanatory purposes. Although not exhaustive, the following
analysis showcases the additional explanatory depth which can
be achieved by the conversion of aggregate ODs to disaggregate
mobility traces. It should also be emphasized that the rest of
the analysis could not have taken place based only on the initial
input (i.e., aggregate ODs and the calibration distribution). For
example, the diverse patterns characterizing the various types of
multimodal chains presented in Figure 11 would have remained
unhidden without the disaggregation of the input. As can be
observed, the spatial profile of the tours varies significantly in
terms of the zone of origin. Residents outside the city center
are more likely to use their car (Figure 11B), while people living
in the center are more likely to utilize a bicycle (Figure 11A)
or train (Figure 11C) for the completion of their diurnal tours.
Interestingly, Figures 11D–F indicate that multimodal tours are
more evident for people residing nearby (but not inside) the
city center.

Finally, the effect of the temporal dimension on multimodal
tours is assessed in Figure 12, where the departures from and
the arrivals to home by the most frequent types of multimodal
tour are presented. As can be observed, all tour origins, and
regardless of their transport mode composition, reach their peak
around 06:00 h. However, the departure time to home seems to
be strongly influenced by the type of multimodal chain since the

departure profiles vary considerably across the different types
(e.g., tours including the use of bicycle seem to reach their
departure peak later than unimodal car and train tours).

DISCUSSION

The ubiquity of urban sensing devices (e.g., smartphones,
GPS trackers, etc.) has allowed the monitoring of personal
mobility at unprecedented levels of accuracy. However, justified
privacy concerns demand the anonymization of such personal
information prior to their usage. Furthermore, the increasing
adoption of data protections acts (e.g., GDPR-EU, APPI-Japan,
etc.) is expected to render the acquisition of personal information
(even for purely scientific purposes) a particularly difficult task.
To overcome this issue, mobility data providers (e.g., TSPs,
smartphone applications, etc.) often publish mobility traces in
the form of aggregate origin–destination (OD) matrices instead
of individual traces. The aggregate representation of mobility
in the form of ODs can indeed bolster privacy and eliminate
privacy concerns.

Despite the long-proven value of ODs at describing the
mobility patterns at a high level, their aggregate nature deprives
them of the ability to retain significant dimensions of mobility
such as trip interdependency and trip chaining. From the
standpoint of modern transportation requirements, the inability
to utilize granular mobility information poses a considerable
barrier for the application of sophisticated modeling paradigms
(e.g., agent- and activity-based modeling). Recently completed
studies by the authors (Ballis and Dimitriou, 2020a,b,c) have
showcased the potential to create disaggregate mobility traces
from privacy-safe data sources, namely, aggregate ODs and
calibration information (in the form of a joint distribution)
describing the high-level characteristics of the expected output.
The suggested methodology employs advanced graph theory and
combinatorial optimization concepts for the identification of a
plausible set of disaggregate mobility traces that result in the
same travel demand patterns as described in the inputted ODs.
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FIGURE 11 | |Tours’ origins by zone and transport mode sequence. (A) Transport modes: bicycle; bicycle, (B) transport modes: car; car, (C) transport modes: train;

train, (D) transport modes: car; train; train; car, (E) transport modes: bicycle; train; train; bicycle, and (F) transport modes: train; bicycle; bicycle; train.

Since both the ODs as well as the calibrating distribution are
aggregate, and therefore can be acquired without raising privacy
concerns, the methodology proves as a viable alternative for the

exploitation of urban sensing data toward the preparation of
disaggregate, but privacy-safe, mobility information. This study
expands and bolsters in a two-fold manner. Firstly, the study

Frontiers in Future Transportation | www.frontiersin.org 14 April 2021 | Volume 2 | Article 647852

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://www.frontiersin.org/journals/future-transportation#articles


Ballis and Dimitriou Aggregate Mobility Data to Multimodal Tours

FIGURE 12 | Diurnal distribution of departures from (Top) and to (Bottom) home by transport mode sequence.

evaluates the scalability of the methodology by applying it on a
particularly large-scale scenario where the inputted ODs cover
the whole area ofmetropolitan Tokyo and includemore than 11.6
million trips. Secondly, the study showcases the extendibility and
the flexibility of the framework in incorporating and exploiting
all the available dimensions of the input ODs, with the focus
on this implementation being shifted to transport modes and
multimodality. The proof that the methodology can accurately
incorporate the dimension of multimodality into the process
significantly enhances its explanatory capability since transport
mode constitutes an integral component of travel behavior.

The spatiotemporal information available in the large-scale
multi-period and transport mode-segmented ODs coupled
with a calibrating distribution describing the characteristics
of the observed traces in terms of distance, departure
profile, and transport modes are utilized for the synthesis
of disaggregate multimodal mobility traces. The application
of the methodology on large-scale ODs deriving from the
aggregation of 5 million observed tours (obtained from the
open-source dataset “Open PFLOW”) converted 96% of the
inputted demand (11,636,471 trips) into a set of 4,807,364
modeled multimodal tours (instead of the 5,000,000 observed),
which match their observed counterparts by 80%. The accuracy
of the methodology proves that aggregate and private-secure
data sources such as ODs can be indeed used for the
creation of disaggregate information suitable for in-depth
mobility analysis. In addition, the complementary analysis on
the modeled output highlighted the considerably improved
granularity of the analysis, which can be conducted when
the input consists of disaggregate mobility traces instead of
aggregate ODs.

As a final remark, the authors want to emphasize that,
despite the remarkable accuracy of the methodology and the
considerable additional value which it brings to the analysis of
mobility, some elements require further attention. Firstly, the
effect of incorporating in the input ODs of trips not belonging
to tours must be quantified since most of the available ODs
are bound to include such trips. Secondly, the case where little,
inaccurate, or even no calibration information is available should
also be evaluated. Nonetheless, the above-presented study makes
a clear argument in favor of the potential of the suggested
methodology to exploit aggregate mobility information for the
preparation of individual traces which can fuel in-depth and very
sophisticated mobility analysis and modeling processes.
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NOMENCLATURE

Notation Description

R The set of the multi-period and transport mode-segmented

OD matrices

M Available transport modes (m ∈ M)

K Available time periods (k ∈ K)

Pmk All zone pairs in M (pmk ∈ Pmk ∀ k ∈ K, m ∈ M)

Tpmk The number of trips between each pmk , as captured in M

C Candidate tours (c ∈ C)

D Classes of the calibration distribution (d ∈ D)

B
pmk
c Binary variable indicating whether pmk is part of c

Edc Binary variable indicating whether c belongs to d

sdc The probability of c to belong in d

δd Maximum percentage error between the input and the

modeled probability for each d

Nc The frequency of usage for each c
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