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Research on enhancing the production of lipids, particularly polyunsaturated

fatty acids that are considered important for health, has focused on improvement

of metabolism as well as heterologous expression of biosynthetic genes in the

oleaginous fungus Aspergillus oryzae. To date, the productivity and production

yield of free fatty acids have been enhanced by 10-fold to 90-fold via

improvements in metabolism and optimization of culture conditions.

Moreover, the productivity of ester-type fatty acids present in triacylglycerols

could be enhanced via metabolic improvement. Culturing A. oryzae in a liquid

medium supplemented with non-ionic surfactants could also lead to the

effective release of free fatty acids from the cells. The current review highlights

the advancements made in this field so far and discusses the future outlook for

research on lipid production using A. oryzae. I hope the contents are useful for

researchers in this field to consider the strategy of increasing production of

various valuable metabolites as well as lipids in A. oryzae.
KEYWORDS

Aspergillus oryzae, filamentous fungus, lipid production, free fatty acid, ester-type fatty
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1 Introduction

Aspergillus oryzae is a filamentous fungus used in the manufacturing of numerous

fermented foods. One of the superior characteristics of A. oryzae is its high capacity to

produce biomolecules including hydrolytic enzymes. Utilizing this characteristic, amylases

that degrade the starch in rice are used to manufacture rice wine (sake), whereas proteases

that degrade the protein in soybeans are used to manufacture soy sauce (shoyu) and

soybean paste (miso). Moreover, A. oryzae has been scientifically certified as safe for food

fermentation because it does not produce bioactive compounds that interfere with human

health (Machida et al., 2005; Payne et al., 2006). Therefore, A. oryzae is generally recognized
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as safe (GRAS) by the United States Department of Agriculture and

is internationally regarded as edible.

The whole genome of A. oryzae wild-type strain RIB40 was first

sequenced in 2005 (Machida et al., 2005), enabling research based on

genomic information (Abe et al., 2006). Also, various genetic

engineering techniques and genetic tools have been developed,

including gene targeting (Takahashi et al., 2006; Mizutani et al., 2008;

Zhang et al., 2017a), selectable markers (Jin et al., 2021), expression

promoters (Jin et al., 2021), and genome editing (Maruyama, 2021; Jin

et al., 2022; Tamano, 2022). These advancements now allow for the

knockout or overexpression of target genes (Jin et al., 2021) and the

introduction of long DNA fragments from other species into specific

genomic loci (Yoshimi et al., 2018).

A. oryzae is also an oleaginous fungus, characterized by having

over 20% lipids in its dry cell weight (Hassane et al., 2024). Other

oleaginous fungi include Mortierella spp., Mucor spp., and

Aspergillus spp. Notably, Mortierella spp. and Mucor spp. possess

high lipid content and produce polyunsaturated fatty acids

(PUFAs), making them valuable for industrial PUFA production

and beneficial to human health (Mohamed et al., 2020; Fazili et al.,

2022; Zhang et al., 2022). While A. oryzae has lower lipid levels than

Mortierella spp., it still contains a relatively high amount of lipids

(Meng et al., 2009). Additionally, due to its low secondary metabolic

activity, A. oryzae produces few secondary metabolites (Frisvad

et al., 2018; Tamano et al., 2019), making it an ideal host for the

heterologous expression of valuable secondary metabolites

(Nagamine et al., 2019; Qi et al., 2022; Han et al., 2023).

If oleaginous fungi used in lipid production produce valuable

lipids, they can be used in the wild-type form. For instance,

Mortierella alpina produces arachidonic acid as PUFA, which is

beneficial for health; therefore, the wild-type strain can be

industrially used (Bajpai et al., 1991). Also, a spontaneous mutant

ofM. alpina lacking the D5-desaturase gene accumulates dihomo-g-
linolenic acid as the final product (Jareonkitmongkol et al., 1993).

Given that dihomo-g-linolenic acid is a precursor of prostaglandin

E1 that is used as a pharmaceutical agent, the mutant is deemed

useful as the supplier of feedstock for biosynthesis. Additionally,

Mucor circinelloides and Mucor plumbeus originally produce g-
linolenic acid, which serves as a nutritional supplement, enhancing

its industrial utility (Fazili et al., 2022; Mohamed et al., 2022a, b).

In contrast, A. oryzae produces four fatty acids (FAs): palmitic

acid, stearic acid, oleic acid, and linoleic acid (Tamano et al., 2015).

They are different from PUFA, and thus, the wild-type A. oryzae

seems inappropriate for lipid production. In such cases, introducing

functional genes involved in FA polyunsaturation derived from other

organisms into A. oryzae is necessary to make it produce PUFA.

In this mini review, I focus on A. oryzae in oleaginous fungi,

summarize the lipid production research using A. oryzae performed

so far, and consider future possibilities for lipid production.

2 Research on lipid production using
A. oryzae

Research on lipid production using A. oryzae is mainly

categorized into two types: one that focuses on free fatty acid
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(FFA) production, and the other that focuses on ester-type fatty

acid (EFA) production. EFAs correspond to FAs present in

acylglycerols, such as triacylglycerol, in which FAs are fused to

glycerol via an ester bond. Herein, I summarize research on FFA

and EFA production using A. oryzae. In particular, I will explain

FFA production that we have primarily studied in detail.
2.1 FFA production

Tamano et al. conducted a study on FFA production in A.

oryzae. The results were categorized into three parts: FFA

productivity enhancement, FFA secretory production, and FFA

polyunsaturation. The details of this process are described below.

2.1.1 Enhancement of FFA productivity
A. oryzae’s FFA productivity was enhanced by improving the

metabolic pathways involved in the FFA biosynthesis. It is

considered that FFA biosynthesis is performed via the metabolic

reactions illustrated in Figure 1. When A. oryzae is cultured in a

liquid medium containing sufficient glucose (10%), citrate

accumulates in the mitochondria via the catabolism of glucose

during glycolysis and the TCA cycle. Consequently, citrate

accumulated in the mitochondria is released into the cytosol and

then converted to palmitic acid, a saturated C16 FFA, by a four-step

enzyme reaction. Subsequently, palmitic acid is added to the CoA

residue by an acyl-CoA synthetase and concomitantly transferred to

the endoplasmic reticulum, where palmitic acid, as the CoA

derivative, is modified by elongation and desaturation of the

carbon chain. After modification, different fatty acyl-CoA

molecules are fused to glycerol, leading to the generation of

triacylglycerol. Triacylglycerol is released from the endoplasmic

reticulum into the cytosol in the form of lipid droplets. When lipase

interacts with triacylglycerol present in cytosol under conditions

such as carbon-source starvation, triacylglycerol is degraded to FFA,

followed by further degradation to acetyl-CoA via beta-oxidation.

Firstly, FFA productivity was increased by FFA accumulation,

which interrupted its degradation. For this purpose, we attempted

to remove acyl-CoA synthetase that converts FFA to fatty acyl-CoA

(Figure 2A). Six genes in A. oryzae RIB40 strain’s genome were

highly homologous to the acyl-CoA synthetase genes identified in

the budding yeast Saccharomyces cerevisiae by a BLASTP homology

search. These six genes were individually knocked out in A. oryzae

by genetic engineering, followed by an evaluation of FFA

productivity, which is the amount of FFAs produced per gram of

dried hyphae. Each strain was cultured in 50 mL Czapek–Dox

minimal medium at 30°C and 200 rpm for 120 h, followed by

extraction of FFAs in chloroform after disrupting cells and the

subsequent application to the FFA enzyme assay. Among the six

knockout mutants tested, only the mutant of the acyl-CoA

synthetase gene faaA (AO090011000642), which has high

homology to the acyl-CoA synthetase gene FAA1 of S. cerevisiae,

demonstrated a 9.2-fold increase in FFA productivity compared to

the parental strain (Tamano et al., 2015).

Secondly, FFA productivity was further increased by

strengthening FFA biosynthesis via metabolic improvement.
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FIGURE 2

Metabolic modifications in each Aspergillus oryzae mutant constructed for increasing fatty acid productivities. Thick arrows indicate the metabolic
reactions where the enzyme genes were overexpressed. Thick crosses indicate knockouts of the metabolic reactions. DGLA: dihomo-g-linolenic
acid. (A) Increase of free fatty acid productivity by faaA knockout and tkt overexpression. (B) Increase in free fatty acid secretory productivity by
either overexpression of the dgat gene or the lipase gene with the faaA knockout in the presence of 1% Triton X-100. (C) Increased productivity of
dihomo-g-linolenic acid as a free fatty acid in the DGLA3 strain via the overexpression of endogenous genes involved in elongation or desaturation
and by heterologous overexpression of the genes involved in the biosynthesis derived from Mortierella alpina. (D) Increased productivity of dihomo-
g-linolenic acid as an ester-type fatty acid in triacylglycerol via overexpression of the dgat gene and knockout of the lipase gene.
FIGURE 1

Presumable metabolic map of free fatty acid and triacylglycerol production in Aspergillus oryzae. FFA, free fatty acid; PA, palmitic acid; SA, stearic
acid; OA, oleic acid; LA, linoleic acid.
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NADPH is required as a cofactor for FFA biosynthesis by supplying

a reducing force. Thus, more NADPH was considered necessary for

A. oryzae to produce additional FFAs. Therefore, we focused on the

pentose phosphate pathway in this study, which diverges from and

merges to glycolysis like the bypass and consists of eight enzymatic

reactions. This pathway provides pentose molecules as substrates

for nucleic acids and generates NADPH. The genes responsible for

the pentose phosphate pathway in A. oryzae were selected by

referring to a study on the metabolic modeling of A. oryzae

(Vongsangnak et al., 2008) and homology search results against

the genes of pathways identified in other organisms. Ten genes were

selected in total. Individual overexpression mutants of the selected

genes were constructed using the A. oryzae faaA knockout mutant.

Evaluation of the FFA productivity revealed that overexpression of

the transketolase gene tkt (AO090023000345) in the faaA mutant

increased FFA productivity 1.4-fold (Figure 2A) (Tamano and

Miura, 2016). Taken together, combining faaA knockout and tkt

overexpression increased FFA productivity 13-fold compared to the

parental wild-type strain. Furthermore, the FFA production yield

was attained at 2.7 g/L for a 5-day culture by complementing

auxotrophy in the constructed mutant and enhancing nitrogen

source concentration in the culture medium. This yield

corresponded to a 90-fold increase from the original condition

when the wild-type strain was cultured in a regular culture medium.

Therefore, FFA yield was substantially increased via metabolic and

culture improvements.
2.1.2 FFA secretory production
Under regular culture conditions, A. oryzae accumulates FFAs

within the cells, requiring cell disruption for extraction of FFAs with

the aim of their industrial utilization. However, disrupting cells is

labor-intensive, not eco-friendly, and requires mechanical cell

treatment such as bead beating or chemical cell treatment using

organic solvents such as acetone. Cell disruption may become

unnecessary if FFAs are released from the cells. Therefore, FFA

extracellular release, namely FFA secretory production, was

attempted in A. oryzae.

To induce FFA extracellular release from A. oryzae, it was

hypothesized that FFAs would be released if the cell surfaces were

injured by chemicals or materials. Under these assumptions,

different culture conditions were tested for the A. oryzae faaA

knockout mutant. When Triton X-100, a non-ionic surfactant, was

added to the liquid medium at a final concentration of 1%, the faaA

mutant grew healthily and sufficiently, and FFAs were released to

culture supernatant (Tamano et al., 2017). The amount of released

FFAs corresponded to over 80% of the total FFAs produced.

Moreover, extracellular release was limited to FFA and the alkyl

ester. Another major lipid, triacylglycerol, which is mainly

contained in lipid droplets, was not released. Furthermore, release

was confirmed in the wild-type parental strain of A. oryzae. Taken

together, FFA extracellular release was likely due to the increased

permeability of cell membranes and protection of cells from

bursting with endogenous rigid cell wall structures. Moreover,

triacylglycerol was not released possibly because its large
Frontiers in Fungal Biology 04
macromolecular lipid droplets cannot pass through the pores of

the membranes created by Triton X-100.

Additionally, the enhancement of the productivities of released

FFAs was studied under the culture condition with 1% Triton X-100

supplementation. Herein, genes that demonstrated positive

correlations between expression levels and released FFA amounts

in the time-course shifts, and the identified or predicted functions

relative to lipid metabolism were selected. Subsequently, the selected

genes were comprehensively overexpressed in the faaA knockout

mutant. Overexpression of a lipase gene (AO090701000644) involved

in generating FFAs and overexpression of a diacylglycerol O-

acyltransferase gene dgat (AO090011000863) involved in

generating triacylglycerol, which is a lipase substrate, had almost

the same effect on enhancing FFA secretory productivity (Figure 2B)

(Wong et al., 2021). The faaA mutant, which individually

overexpressed these genes, demonstrated an approximately 3-fold

increase in FFA secretory productivity in the presence of 1% Triton

X-100.

2.1.3 FFA polyunsaturation
Polyunsaturation of FFAs was also attempted. The wild-type

RIB40 strain of A. oryzae originally biosynthesizes four FFAs

(palmitic acid, stearic acid, oleic acid, and linoleic acid). However,

FFAs expected to be used as feedstock for pharmaceutical agents,

and supplements are more polyunsaturated. Such polyunsaturated

FFAs include docosahexaenoic, eicosapentaenoic, and arachidonic

acids. Thus, FFA polyunsaturation produced in the A. oryzae faaA

knockout mutant was attempted. For this purpose, D6-desaturase
and D6-elongase genes derived fromM. alpina were introduced into

the A. oryzae faaA mutant in a heterologous expression manner

(Figure 2C). The introduced strain successfully biosynthesized free

dihomo-g-linolenic acid. That is, D6-desaturase and D6-elongase
functioned to convert linoleic acid to dihomo-g-linolenic acid in A.

oryzae (Tamano et al., 2019). The constructed strain was

named DGLA1.

Subsequently, overexpression of the three enzyme genes

encoding endogenous elongase (AO090003000572), D9-desaturase
(AO090011000488), and D12-desaturase (AO090001000224) were

applied to the DGLA1 strain for facilitating the conversion of

palmitic acid to linoleic acid. The multiple overexpression mutant

of these three genes was named DGLA3 (Figure 2C). The DGLA3

strain produced 1.8-fold higher levels of free dihomo-g-linolenic
acid than the DGLA1 strain. The production yield reached 284 mg/

L in the liquid culture (Tamano et al., 2020).

Furthermore, the tkt gene overexpression as described in

section 2.1.1 was introduced to the DGLA3 strain, which

increased free dihomo-g-linolenic acid productivity by 1.2-fold

according to the increase in the total FFA productivity.

Subsequently, knocking out the a-1,3-glucan synthase gene agsB

(AO090003001500) involved in pellet formation of A. oryzae

(Zhang et al., 2017b) further enhanced free dihomo-g-linolenic
acid productivity by 1.1-fold. This finally constructed strain called

DGLA3_tktOE_DagsB produced 533 mg of free dihomo-g-linolenic
acid per liter of liquid culture (Tamano et al., 2023). Overexpression

of tkt and knockout of agsB led to dispersed hyphae in the liquid
frontiersin.org

https://doi.org/10.3389/ffunb.2024.1526568
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Tamano 10.3389/ffunb.2024.1526568
culture. This improved efficiencies of glucose and oxygen uptakes

compared to the original pellet form, thus enhancing productivity.

Additionally, the production yield of free dihomo-g-linolenic acid

increased more than the productivity. This was attributed to the

increase in biomass owing to the shift from pellet to dispersed

hyphae. In other words, hyphal density increased by dispersion,

contributing to an increase in production yield.
2.2 EFA production

EFA incorporated into triacylglycerol has also been studied for

their production in A. oryzae. Research on the production of

valuable FAs in the EFA form and on increasing the production

yield by metabolic improvement was performed by Laoteng et al.

using the A. oryzae wild-type strain BCC7051 found in Thailand as

a parental host. They first introduced the D6-desaturase and D6-
elongase genes from Pythium sp. into BCC7051 in a heterologous

manner. Consequently, dihomo-g-linolenic acid was produced in an
EFA form from linoleic acid (Chutrakul et al., 2016). Subsequently,

they sequenced the BCC7051 genome, referred to the genomic

information, and overexpressed the endogenous diacylglycerol O-

acyltransferase gene dgat in the mutant (Figure 2D). Thus, the

production yield of the ester-type dihomo-g-linolenic acid could be

enhanced. Moreover, in the BCC7051 strain, two endogenous lipase

genes were found to be involved in acylglycerol degradation. They

subsequently knocked them out and constructed single- and

duplicate-knockout mutants via recombination (Figure 2D). Both

single and duplicate mutants demonstrated increased triacylglycerol

production (Anantayanon et al., 2021).
3 Discussion

I concisely summarized the advancements of lipid production

research performed so far using A. oryzae as abovementioned. The

productivity of FAs could successfully be increased by metabolic

improvement based on the metabolic map and/or transcription

profile. There, a metabolic reaction considered unnecessary for target

metabolite’s biosynthesis was knocked out, whereas metabolic reaction

considered as a bottleneck for the biosynthesis was overexpressed.

To further enhance the production of valuable target

metabolites, such as FAs, using A. oryzae, utilizing flux balance

analysis with the metabolic model to optimize the metabolism for

target metabolite production will be meaningful. Additionally,

metabolomics can be used to comprehensively measure

precursors of a target metabolite via mass spectrometry,

identifying a bottleneck reaction in biosynthesis. Genetic

engineering can then be employed to overexpress the enzyme

gene responsible for the bottleneck. Currently, these analyses and

measurements are limited to specialized research groups with

expertise in bioinformatics and access to expensive mass

spectrometry equipment. However, as mass spectrometry devices

prevail with the development of user-friendly software for flux

balance analysis, it is expected that these techniques will be used

more frequently to boost production yields.
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Compared to model microorganisms such as Escherichia coli

and S. cerevisiae, A. oryzae has some disadvantages: i) slower colony

growth rate, ii) unavailability of breeding via mating, and iii) the

necessity of single-spore isolation to construct mutants because of

the cell’s multinuclear characteristics. However, A. oryzae is

advantageous in that it has high metabolic activity and produces

large amounts of secretory hydrolases such as amylase and protease.

Moreover, A. oryzae has a DNA splicing function specific to

eukaryotic cells; therefore, it is deemed more suitable as a host for

producing metabolites derived from eukaryotes, such as plants,

mushrooms, and fungi, than prokaryotic microorganisms.

Furthermore, A. oryzae does not produce endogenous secondary

metabolites, except kojic acid (Terabayashi et al., 2010), which is

considered advantageous for purifying valuable metabolites

produced in a heterologous manner because of low quantities of

endogenous secondary metabolites. While challenges remain, there

is hope that A. oryzae will see increased industrial use for producing

valuable metabolites, including FAs, in the future.
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