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Opportunities for optimizing
fungal biological control agents
for long-term and effective
management of insect pests of
orchards and vineyards: a review
Christopher M. Wallis* and Mark S. Sisterson

Crop Diseases, Pest and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, U.S.
Department of Agriculture – Agricultural Research Service, Parlier, CA, United States
Novel tactics for controlling insect pests in perennial fruit and nut crops are

needed because target pests often display decreased susceptibility to chemical

controls due to overreliance on a handful of active ingredients and regulatory

issues. As an alternative to chemical controls, entomopathogenic fungi could be

utilized as biological control agents to manage insect pest populations. However,

development of field ready products is hampered by a lack of basic knowledge.

Development of field ready products requires collecting, screening, and

characterizing a greater variety of potential entomopathogenic fungal species

and strains. Creation of a standardized research framework to study

entomopathogenic fungi will aid in identifying the potential mechanisms of

biological control activity that fungi could possess, including antibiotic

metabolite production; strains and species best suited to survive in different

c l imates and agroecosystems; and opt imized combinat ions of

entomopathogenic fungi and novel formulations. This mini review therefore

discusses strategies to collect and characterize new entomopathogenic strains,

test different potential mechanisms of biocontrol activity, examine ability of

different species and strains to tolerate different climates, and lastly how to

utilize this information to develop strains into products for growers.
KEYWORDS

biological control, entomopathogenic fungi, Beauveria spp., Metarhizium spp.,
grapevine, citrus, Prunus spp.
1 Introduction

Acreage of perennial crops, including grapevines, fruit trees, and nut crops is increasing

because perennial fruit and nut crops provide greater returns than field and forage crops.

However, preventing pests and diseases from reducing yields in monocultures held for a

decade or longer is challenging. Abundance of insect pests, and the pathogens they may
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transmit, may increase each season leading to a gradual decline in

yields, eventually resulting in complete vineyard or orchard removal

(Mustu et al., 2015). Most pest management programs rely on

synthetic chemical controls. However, overreliance on a handful of

active ingredients has resulted in decreased susceptibility in target

pests, particularly when active ingredients are utilized repeatedly

(Mustu et al., 2015; Sharma et al., 2018). In addition, regulatory

agencies have called for the reduction or limitation of synthetic

chemical-based pesticides due to environmental and human health

concerns, and, coupled with the increased cost of developing new,

safer synthetic pesticides (up to $250 million), there is an

increasingly smaller variety of such products on the market

(Glare et al., 2012). As a result, an increasing number of growers

are turning to non-synthetic pesticides and other organic practices

to serve a burgeoning market (Glare et al., 2012; Lacey et al., 2015).

Therefore, there is a need to develop alternative methods to

decrease pest insect populations that reduce fruit and nut

crop yields.

One tactic to manage insect pests that has demonstrated some

success is the use of biopesticides developed from entomopathogenic

fungi (Lacey et al., 2001; Da Silva Santos et al., 2022; Irsad et al., 2023).

Several entomopathogenic products are available on the market

targeting a range of pests in perennial fruit and nut crops (Faria

and Wraight, 2007; Da Silva Santos et al., 2022). Most currently

available products involve one of four fungal genera: Beauveria (e.g.

De La Rosa et al., 2000; Wraight et al., 2007a, 2007b; Keller et al.,

2003; Brownbridge et al., 2006; Townsend et al., 2010), Isaria (e.g.

Wraight et al., 2007b; Zimmermann, 2008; Lacey et al., 2011),

Akanthomyces (formerly Lecanicillium) (e.g. Goettel et al., 2008;

Kim et al., 2009), or Metarhizium (e.g. De La Rosa et al., 2000;

Lomer et al., 2001; Chandler et al., 2005; Lacey et al., 2011; Jaronski

and Jackson, 2012). However, formulations involving other species

also have been developed such as Aschersonia aleyrodis, Conidiobolus

thromboides, Hirsutella thompsonii and Nomuraea rileyi (Faria and

Wraight, 2007; Lacey et al., 2015).

While commercial formulations for entomopathogenic fungi

are available, including those using species in the genera Beauveria

sp., Isaria sp., and Metarhizium sp., additional screening and

testing is needed to identify novel virulent isolates and expand the

overall diversity of described strains. Further research is

warranted to clarify entomopathogenic fungi-host-microbiota

interactions using modern molecular biology techniques such

next-generation sequencing. Recent progress on understanding

the role of environment on the effectiveness of entomopathogenic

fungi, as review by Lacey et al. (2015), should continue as it will be

needed to ensure overall effectiveness of products. Similarly,

testing of mixtures of isolates is needed to identify synergistic

effects as only a handful of studies have reported on research

utilizing this approach (e.g. Spescha et al., 2023a, 2023b).

Furthermore, once virulent isolates are identified, considerable

testing is required to optimize formulations, application rates and

methods using up-to-date research approaches. Here in this mini-

review, the current state of entomopathogenic fungi research is

examined, with the ultimate focus on improvement of the use of

fungal biological control agents to limit abundance of insect pests

in perennial crops.
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2 Improving collection strategies to
obtain a greater diversity of
entomopathogenic fungi

Entomopathogenic fungi are typically collected from a single

location at a single point in time. The procedure involves collecting

the target pest, surface sterilizing bodies, and holding surface sterilized

bodies on isolation medium (Da Silva Santos et al., 2022). This

approach has been used to identify numerous entomopathogenic

fungi that have been tested as pure strains, with studies targeting

piercing-sucking insects (Brownbridge et al., 2001; Meekers et al., 2002;

Cuthbertson and Walters, 2005; Nielsen and Hajek, 2005; Labbe et al.,

2009; Lacey et al., 2011), chewing insects (Zimmermann, 1992; Lomer

et al., 1999, 2001; De La Rosa et al., 2000; Thomas, 2000; Wraight and

Ramos, 2002; Chandler and Davidson, 2005; Brownbridge et al., 2006;

Dolci et al., 2006; Hajek, 2007; Moscardi and Sosa-Gomez, 2007;

Townsend et al., 2010; Thakre et al., 2011), and other arthropods

such as mites (Chandler et al., 2000, 2005; Wekesa et al., 2005; Abolins

et al., 2007). Despite these efforts, most strains have been isolated from

insect pests of non-woody host plants. However, there are a limited

number of studies conducted on pests of woody plants such as those

conducted by Hajek (2007) that targeted the spongy moth, Lymantria

dispar. Further, many studies focus on optimizing use of

entomopathogenic fungi to control pests in a contained environment

such as a greenhouse, with research often on whiteflies (Aleyrodidae)

and mites (Chandler et al., 2005; Labbe et al., 2009).

Recently, some entomopathogenic fungal strains have been isolated

from insect pests of woody crops and tested for virulence. For instance,

Beauveria bassiana, Isaria fumosorosea,Metarhizium anisopliae and/or

Metarhizium robertsii strains have been identified that kill pests of

grapevine including the European grapevine moth (Lobesia botrana)

(Aguilera Sammaritano et al., 2018; Aguilera Sammaritano et al., 2021;

Lopez Plantey et al., 2019; Beris et al., 2024), planthoppers (Moussa

et al., 2021), vine mealybug (Rondot and Reineke, 2018), and grapevine

aphid (Sayed et al., 2020). For orchard pests, Beauveria bassiana, Isaria

fumosorosea, Metarhizium anisopliae and/or Podonectria sp. strains

have been isolated from fruit flies (Goble et al., 2011), moths (Coombes

et al., 2016), psyllids (Gandarilla-Pacheco et al., 2013), scale insects

(Dao et al., 2016), and others (Shapiro-Ilan et al., 2003; Pereault

et al., 2009).

Despite recent progress, considerable advancement is needed to

realize the full potential of using entomopathogenic fungi to control

pests in perennial fruit and nut crops. A concerted effort to obtain and

evaluate a greater number of entomopathogenic fungi from woody

perennial plants would aid in developing a more diverse collection and

associated data that could be used to improve understanding about

entomopathogenic fungi in many ways (Figure 1A). While studies

should continue to isolate fungi directly from target pests, additional

sampling to isolate fungi directly from plant tissue or the environment

should also be conducted. Indeed, recent attempts to discover strains

that may manage vineyard and orchard pest populations have used

isolates collected from plants or the environment (often soil) (Goble

et al., 2011; Lopez Plantey et al., 2019). For the former, plant tissues

could be pulverized after surface sterilization, and then mixed into

sterile media (Ownley et al., 2008; Da Silva Santos et al., 2022). For the
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latter, soil could serially diluted and plated on selective media

(containing specific compounds or antibiotics) (Luz et al., 2007;

Rocha and Luz, 2009). Insect baits could also be used to acquire

entomopathogenic fungi from soil (Goble et al., 2010; Vega et al., 2012;

Lopez Plantey et al., 2019).

Isolates are typically collected from a single growing region and

climate. However, strains that can be marketed to a wider consumer

base, for instance in multiple regions and climates, are more likely

to be viewed as economically viable because mass production of

entomopathogenic fungi can be expensive (de Faria and Wraight,

2007; Jaronski and Mascarin, 2017; Marrone, 2019). Thus, it would

be useful to identify strains that could be applied across wide

geographic areas, and this requires collaboration across countries

and continents (Kabaluk et al., 2010).

While identifying strains that can be applied across a large

geographic scale is important, optimizing control requires

understanding effects of microclimate on performance of

entomopathogens (Marrone, 2014; Maina et al., 2018). Because

sampling at the microenvironmental scale is key to understanding

interactions between strains of entomopathogenic fungi and the

environment, this topic will be discussed in more detail later in

this review.
3 Entomopathogenic fungi-host-
microbiota interactions

Often, entomopathogenic fungi that show promise in controlled

laboratory settings fail to be successful in the field or nature settings
Frontiers in Fungal Biology 03
(Vega et al., 2012). Poor performance of entomopathogenic fungi could

be due to environmental effects (discussed later) or due to intricate

insect-fungal interactions. To better understand fungal-insect

interactions, studies have been conducted to identify how fungi

colonize the host insect and mechanisms of insect resistance (Da

Silva Santos et al., 2022). The mechanisms that entomopathogenic

fungi utilized have been well reviewed (e.g. Inglis et al., 2001; Charnley,

2003; Charnley and Collins, 2007; Ortiz-Urquiza and Keyhani, 2013;

Singh et al., 2017; Ma et al., 2024). Likewise, research on insect immune

response to infection has been conducted (Qu and Wang, 2018; Da

Silva Sanots et al., 2022). Mechanisms that entomopathogenic fungi use

to overcome insect immune response include masking colonization

(Wang and Leger, 2006), possessing resistance to antifungal

compounds (Lu et al., 2015), production of enzymes that better

penetrate insect cuticles and tissues (Ali et al., 2010), and production

of secondary metabolites that weaken host immune responses (Pal

et al., 2007; Xu et al., 2017). Additional screening of metabolites for

inclusion in novel formulations of biopesticides is needed as such

compounds could affect insect behavior, development, or survival.

In addition to studies on how entomopathogenic fungi may act as

direct predators or produce toxicmetabolites that kill insects, research on

the interaction of entomopathogenic fungi with the microbial

community in and around the insect is needed (Figure 1B). Wei et al.

(2017) observed how Beauveria bassiana interacted with insect gut

microbiota in mosquito hosts to ultimately result in death. Accordingly,

research to identify and describe interactions among fungal community

members found in vineyard and orchard settings is warranted. Studies

should focus on determining whethermicrobial endophytes or epiphytes

of insects interact with entomopathogenic fungi to have synergistic
A

B DC

FIGURE 1

Research needed to robustly develop entomopathogenic fungi as biopesticides: (A) collection of new strains, (B) characterizing how certain fungal
strains limit insect populations, (C) examining fungal-environmental interactions, and (D) screening of strains. Colors indicate areas that are well-
researched, involve emerging interest, or where research is still lacking. Note that other research efforts beyond these are needed, and overlap exists
between these types of research.
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effects. Utilizing next-generation sequencing technologies to examine

insect microbiomes could greatly increase understanding of accessory

microbes that work with entomopathogenic fungi to infect hosts

(Gurung et al., 2019; Gupta and Nair, 2020).
4 Research to clarify environmental
adaptations of fungi

Key to commercially producing and deploying entomopathogenic

fungi as biopesticides is understanding how entomopathogenic fungi

survive and thrive in different environments. Several studies have

examined effects of environmental conditions on entomopathogenic

fungi such as effects of soil composition (Milner et al., 2003; Bruck,

2005; Quesada-Moraga et al., 2007; Roy et al., 2010a, 2010b),

agricultural practices (Hummel et al., 2002; Townsend et al., 2003),

and the capacity of entomopathogenic fungi to grow on or in the

plants that the targeted pests feed upon (Inyang et al., 1998; Ownley

et al., 2004, 2010; Ugine et al., 2007a, 2007b; Olleka et al., 2009; Cory

and Ericsson, 2010). The ability of entomopathogenic fungi to

colonize plants is of particular interest because it may provide the

opportunity to kill target pests and prevent colonization of the plant by

bacterial, fungal, nematode, or viral pathogens (Cherry et al., 2005;

Ownley et al., 2004; Ownley et al., 2010; Brownbridge, 2006; Quesada-

Moraga et al., 2009; Kim et al., 2009; Koike et al., 2011).

Despite a collection of research focused on understanding

microclimatic effects on entomopathogenic fungi and the capacity of

some fungal strains to adopt different lifestyles (i.e. as an endophyte in

crop plants or ability to dwell in the soil as a saprophyte), little is known

about the temporal dynamics on entomopathogenic fungal populations,

especially whether they peak with targeted pest populations, what the

fate of the entomopathogenic fungi is during the dormant season, and

how populations may flux over multiple years (Figure 1C). Most

applications of entomopathogenic fungi are made in response to

observations of high pest abundance (Lacey et al., 2015). Yet, with

perennial crops it would be advantageous to develop entomopathogenic

fungi that could colonize the vineyard or orchard for multiple years,

avoiding the need for re-applications and providing a baseline level of

control (Meyling and Eilenberg, 2007; Pell, 2007). Some research has

been conducted on approaches to conserve entomopathogenic fungi in

the environment, thereby facilitating natural epizootics (Steinkraus,

2007a, 2007b; Pell et al., 2010). Sampling throughout the year for

entomopathogenic fungi in different areas of the orchard could reveal

where entomopathogenic fungi dwell when their insect hosts are not

present (Lacey et al., 2015). Likewise, monitoring the dynamics of

applied or natural entomopathogenic fungi over years in a vineyard or

orchard environment may reveal which fungi are best suited for long-

term, baseline control for insect pests (Lacey et al., 2015).
5 Improving entomopathogenic fungi-
based product formulations

Selecting the best entomopathogenic fungi and determining the

optimal formulation to make and disperse inoculum is key for their

use as biopesticides (Santoro et al., 2005; Da Silva Santos et al.,
Frontiers in Fungal Biology 04
2022). Selection generally involves the following: observing fungal

virulence, quantifying reproductive capacity, assessing ability to

mass produce, evaluating viability during storage and application,

and rating effectiveness and survival after application (Ambethgar,

2009; Lopes et al., 2011).

Methods to perform the screening described above are well

established (Da Silva Santos et al., 2022). However, the advent of

modern genomic approaches and next-generation sequencing

presents new opportunities to not only improve selections via

traditional screenings but also by providing new tools to conduct

novel experiments to advance our understanding of fungal

genetic diversity and assessing entire microbial communities

(Figure 1D). For instance, examination of effective and less-

effective strains of the same or different entomopathogenic fungi

species could identify genes and quantitative trait loci that are

linked to improved virulence, reproduction, and survival in

vineyards or orchards. Once these genes are discovered, newly

collected strains could be quickly screened to observe if desired

traits are present.

A combination of entomopathogenic fungi, or other non-fungal

insect pathogens may be incorporated into products, providing

synergistic effects (Malusa et al., 2021; Spescha et al., 2023a, 2023b).

Knowledge about which microorganisms naturally co-occur in the

environment is key to determining which microorganisms may

need to be included together in a final product designed to have

persistent, long-term control. Indeed, this has been attempted on

several occasions with studies targeting soil pests (Bueno-Pallero

et al., 2018; Spescha et al., 2023a), greenhouse pests (Shapiro-Ilan

et al., 2004), and moths (Wang et al., 2021). Using next-generation

sequencing of genomic DNA extracted from insect pests, crop

plants, and the environment may reveal species that naturally co-

occur, suggesting consideration for inclusion in a multiple-

microorganism biopesticide formulation (Spescha et al., 2023b).

In addition to combinations of microorganisms, formulations

of biopesticides could also contain biorational or other compounds,

produced naturally by fungal isolates, to improve pest control. Such

compounds could be identified via metabolomics studies of the

different entomopathogenic fungi or associated fungi/

microorganisms, and then added to the formulations for

improved control (Berestetskiy and Hu, 2021). Accordingly,

research should aim to isolate and identify metabolites from

entomopathogenic fungi that possess insecticidal activity, via

chromatography-based techniques such as those described by

Elbanhawy et al. (2019) that analyzed methanolic extracts and

quantified specific fatty acids. Follow-up research to then mass-

produce and incorporate metabolites into biopesticide formulations

would then need to occur.
6 Conclusions

Decreased effectiveness of overused insecticides and regulatory

issues make controlling many insect pests in perennial crops

challenging. Entomopathogenic fungal products provide an

alternative strategy that could be integrated into management

programs. Recent advances in genomics, proteomics, and
frontiersin.org
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metabolomics provide important tools that can be leveraged to

identify useful strains and synergistic interactions.
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Bueno-Pallero, F. A., Blanco-Pérez, R., Dionisio, L., and Campos-Herrera, R. (2018).
Simultaneous exposure of nematophagous fungi, entomopathogenic nematodes and
entomopathogenic fungi can modulate belowground insect pest control. J. Invertebr.
Pathol. 154, 85–94. doi: 10.1016/j.jip.2018.04.004

Chandler, D., and Davidson, G. (2005). Evaluation of entomopathogenic fungus
Metarhizium anisopliae against soil-dwelling stages of cabbage maggot (Diptera:
Anthomyiidae) in glasshouse and field experiments and effect of fungicides on fungal
activity. J. Econ. Entomol. 98, 1856–1186. doi: 10.1093/jee/98.6.1856

Chandler, D., Davidson, G., and Jacobson, R. J. (2005). Laboratory and glasshouse
evaluation of entomopathogenic fungi against the two-spotted spider mite, Tetranychus
urticae (Acari: Tetranychidae), on tomato, Lycopersicon esculentum. Biocontrol Sci.
Technol. 15, 37–54. doi: 10.1080/09583150410001720617

Chandler, D., Davidson, G., Pell, J. K., Ball, B. V., Shaw, K., and Sunderland, K. D.
(2000). Fungal biocontrol of acari. Biocontrol Sci. Technol. 10, 357–384. doi: 10.1080/
09583150050114972

Charnley, A. K. (2003). Fungal pathogens of insects: cuticle degrading enzymes and
toxins. Adv. Bot. Res. 40, 241–321. doi: 10.1016/S0065-2296(05)40006-3

Charnley, A. K., and Collins, S. A. (2007). ““Entomopathogenic fungi and their role
in pest control,”,” in Environmental and Microbial Relationships: The Mycota IV,
2nd ed. Eds. C. P. Kubicek and I. S. Druzhinina (Springer-Verlag, Berlin), 159–187.

Cherry, A. J., Abalo, P., and Hell, K. (2005). A laboratory assessment of the potential
of different strains of the entomopathogenic fungi Beuveria bassiana (Balsamo)
Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus
maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. J. Stored Prod. Res. 41,
295–309. doi: 10.1016/j.jspr.2004.04.002

Coombes, C. A., Hill, M. P., Moore, S. D., and Dames, J. F. (2016).
Entomopathogenic fungi as control agents of Thaumatotibia leucotreta in citrus
orchards: field efficacy and persistence. BioControl 61, 729–739. doi: 10.1007/s10526-
016-9756-x

Cory, J. S., and Ericsson, J. D. (2010). Fungal entomopathogens in a tritrophic
context. BioControl 55, 75–88. doi: 10.1007/s10526-009-9247-4

Cuthbertson, A. G. S., and Walters, K. F. A. (2005). Pathogenicity of the
entomopathogenic fungus, Lecanicillium muscarium, against the sweet potato
whitefly Bemisia tabaci under laboratory and glasshouse conditions. Mycopathologia
160, 315–319. doi: 10.1007/s11046-005-0122-2

Dao, H. T., Beattie, G. A. C., Rossman, A. Y., Burgess, L. W., and Holford, P. (2016).
Four putative entomopathogenic fungi of armoured scale insects on Citrus in Australia.
Mycol. Prog. 15, 47. doi: 10.1007/s11557-016-1188-6

Da Silva Santos, A. C., Da Silva Lopes, R., Goncalves de Oliveira, L., Goncalves Diniz, A.,
Shakeel, M., de Lina Alves Lima, E. A., et al. (2022). ““Entomopathogenic fungi: current
status and prospects,”,” in New and Future Development in Biopesticide Research:
frontiersin.org

https://doi.org/10.1016/j.vetpar.2007.06.008
https://doi.org/10.1186/s40659-021-00367-x
https://doi.org/10.1186/s41938-018-0086-4
https://doi.org/10.1007/s10340-010-0305-6
https://doi.org/10.57182/jbiopestic
https://doi.org/10.3390/microorganisms9071379
https://doi.org/10.3390/microorganisms9071379
https://doi.org/10.1016/j.cropro.2023.106542
https://doi.org/10.1016/j.cropro.2023.106542
https://doi.org/10.1006/jipa.2001.5020
https://doi.org/10.30843/nzpp.2006.59.4481
https://doi.org/10.1016/j.biocontrol.2004.09.003
https://doi.org/10.1016/j.jip.2018.04.004
https://doi.org/10.1093/jee/98.6.1856
https://doi.org/10.1080/09583150410001720617
https://doi.org/10.1080/09583150050114972
https://doi.org/10.1080/09583150050114972
https://doi.org/10.1016/S0065-2296(05)40006-3
https://doi.org/10.1016/j.jspr.2004.04.002
https://doi.org/10.1007/s10526-016-9756-x
https://doi.org/10.1007/s10526-016-9756-x
https://doi.org/10.1007/s10526-009-9247-4
https://doi.org/10.1007/s11046-005-0122-2
https://doi.org/10.1007/s11557-016-1188-6
https://doi.org/10.3389/ffunb.2024.1443343
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Wallis and Sisterson 10.3389/ffunb.2024.1443343
Biotechnological Exploration. Eds. S. D. Mandal, G. Ramkumar, S. Karthi and F. Jin
(Springer, Sinapore).

De La Rosa, W., Alatorre, R., Barrera, J. F., and Toriello, C. (2000). Effect of Beauveria
bassiana and Metarhizium anisopliae (Deuteromycetes) upon the coffee berry borer
(Coleoptera: Scolytidae) under field conditions. J. Econ. Entomol. 93, 1409–1414.
doi: 10.1603/0022-0493-93.5.1409

Dolci, P., Guglielmo, F., Secchi, F., and Ozino, O. (2006). Persistence and efficacy of
Beauveria brongniartii strains applied as biocontrol agents against Melolontha
melolontha in the Valley of Aosta (northwest Italy). J. Appl. Microbiol. 100, 1063–
1072. doi: 10.1111/j.1365-2672.2006.02808.x

Elbanhawy, A. A., Elsherbiny, E. A., Abd El-Mageed, A. E., and Abdel-Fattah, G. M.
(2019). Potential of fungal metabolites as a biocontrol agent against cotton aphid,
Aphis gossypii Glover and the possible mechanisms of action. Pest. Biochem. Physiol.
159, 34–40. doi: 10.1016/j.pestbp.2019.05.013

Faria, M. R., and Wraight, S. P. (2007). Mycoinsecticides and mycoacaricides: a
comprehensive list with worldwide coverage and international classification of
formulation types. Biol. Control 43, 237–256. doi: 10.1016/j.biocontrol.2007.08.001

Gandarilla-Pacheco, F. L., Galán-Wong, L. J., López-Arroyo, J. I., Rodrıǵuez-Guerra, R.,
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