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The natural system at Great Salt Lake, Utah, USA was augmented by the

construction of a rock-filled railroad causeway in 1960, creating two lakes at

one site. The north arm is sequestered from the mountain snowmelt inputs and

thus became saturated with salts (250-340 g/L). The south arm is a flourishing

ecosystemwith moderate salinity (90-190 g/L) and a significant body of water for

ten million birds on the avian flyways of the western US who engorge themselves

on the large biomass of brine flies and shrimp. The sediments around the lake

shores include calcium carbonate oolitic sand and clay, and further away from

the saltwater margins, a zone with less saline soil. Here a small number of plants

can thrive, including Salicornia and Sueda species. At the north arm at Rozel

Point, halite crystals precipitate in the salt-saturated lake water, calcium sulfate

precipitates to form gypsum crystals embedded in the clay, and high molecular

weight asphalt seeps from the ground. It is an ecosystem with gradients and

extremes, and fungi are up to the challenge. We have collected data on Great Salt

Lake fungi from a variety of studies and present them here in a spatial survey.

Combining knowledge of cultivation studies as well as environmental DNA work,

we discuss the genera prevalent in and around this unique ecosystem. A wide

diversity of taxa were found in multiple microniches of the lake, suggesting

significant roles for these genera: Acremonium, Alternaria, Aspergillus,

Cladosporium, Clydae, Coniochaeta, Cryptococcus, Malassezia, Nectria,

Penicillium, Powellomyces, Rhizophlyctis, and Wallemia. Considering the

species present and the features of Great Salt Lake as a terminal basin, we

discuss of the possible roles of the fungi. These include not only nutrient cycling,

toxin mediation, and predation for the ecosystem, but also roles that would

enable other life to thrive in the water and on the shore. Many genera that we

discovered may help other organisms in alleviating salinity stress, promoting

growth, or affording protection from dehydration. The diverse taxa of Great Salt

Lake fungi provide important benefits for the ecosystem.
KEYWORDS

Great Salt Lake, hypersaline adaptation, halophilic fungi, eDNA, microbial

community diversity
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1 The Great Salt Lake ecosystem

An enormous and iconic terminal lake, Great Salt Lake (Utah,

USA), is a significant body of water on the Pacific Flyway, feeding ten

million birds annually (Sorensen et al., 2020). The ecology is

dependent on two invertebrates in the open water, the brine

shrimp and brine fly, and a large expanse of wetlands for nesting

and feeding (Baxter, 2024). But this incredible ecosystem is only in

the south arm of the lake, which receives water from the snowpack of

the nearby Wasatch mountains. Around 1960, construction of a

causeway for rail transport disrupted the lake; the north arm of Great

Salt Lake was segmented away from the mountain runoff, which

caused this part of the lake to become saturated (Adams, 1964). Since

salinity is a driver of biological complexity, the microbial community

of the north arm (250-340 g/L salts) is distinct from the south arm

(90-190 g/L) (Baxter and Zalar, 2019). The thalassohaline water

chemistry mimics the ion ratios of the oceans, largely sodium and

chloride with a high sulfate concentration (Saccò et al., 2021).

Great Salt Lake has been shrinking as water diversions for

consumptive uses have increased (Null and Wurtsbaugh, 2020), a

fate similar to other terminal lakes globally (Wurtsbaugh et al., 2017).

Climate change pressures have reduced inflows, exacerbating the

water loss (Wang et al., 2018; Meng, 2019; Baxter and Butler, 2020;

Hassan et al., 2023). This has altered the microbial microniches at the

lake, changing salinity and exposing new environments such as tar

seeps (Kornhauser et al., 2020) and a broad expanse of encroaching

shoreline plants (Bradbury and Parrott, 2020). In addition, evaporite

minerals, including halite (NaCl) and gypsum (CaSO4·2H2O),

are deposited as the water recedes (Eardley and Stringham, 1952;

Rupke and McDonald, 2012).

Thus, investigations of Great Salt Lake microbial communities

should consider the many facets of the ecosystem, including the

water, minerals, sediment, petroleum seeps, soils, shoreline plants,

salinity gradient, and invertebrate flora. The baseline hurdle is

hypersalinity, but the microorganisms that thrive here are poly-

extremophiles as they must also deal with challenging chemistry.

The prokaryotes of Great Salt Lake, especially the archaea, have

been probed for ability to deal with desiccation, and radiation

resistance (Bayles et al., 2021), but few studies until recently have

focused on the fungi. We are amid several projects at the lake; this

manuscript is a compilation of our findings, and that of others, with

respect to fungi data from the Great Salt Lake ecosystem to date.
2 Cultivation of fungi at Great
Salt Lake

Fungi have prolific dispersal mechanisms (Chaudhary et al., 2022)

and their extremophile repertoire in hypersaline systems is unmatched

(Gostinčar and Gunde-Cimerman, 2023), yet microbial explorations at

Great Salt Lake have mostly ignored the possibility of fungi in the

ecosystem. The first reported cultivation of a fungus from the lake was

regarding a Cladosporium species from a submerged piece of wood

floating in the brine (Cronin and Post, 1977). A yeast isolation study in

the south arm resulted in culturing Debariomyces hansenii and
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Metschnikowia bicuspidata, the latter possibly associated with brine

shrimp (Butinar et al., 2005). A recent, more systematic cultivation

effort isolated 32 strains from 11 genera (Baxter and Zalar, 2019). This

study cultured species in the brine of both the north and south arms. In

addition, the authors cultivated fungi from calcium carbonate oolitic

sand, halite crystals, and the Rozel tar seeps. Drawn from all these

sources, known cultivars are assembled into Table 1. All cultivation

work except for the first isolated Cladosporium used isolation methods

from Gunde-Cimerman et al. (2000) and others. Four different

procedures were employed including plating on high salt media after

filtration, deploying agar baits in tubing in the brine, and enriching

species with additives such as yeast extract and glucose.
3 Environmental DNA studies of fungi
at Great Salt Lake

The “fungi gap” is not limited to cultivation investigations;

molecular studies of many systems are only beginning to accrue

mycology data (e.g. Zhang et al., 2015). In environmental DNA

(eDNA) work, it is not uncommon for fungal taxa to be missing in

the analysis. This could be due to the resistance of some fungi to DNA

extraction due to their thick cell walls (Gostinčar et al., 2014).

Alternatively, it could be because fungi are more difficult to type

with simple probes than prokaryotes owing to limited variability in

target genes and the dearth of available genome sequences in databases

(Ruiz and Radwan, 2021). Using molecular techniques has helped

assess the mycological diversity at Great Salt Lake, even with these

limitations. In our work, we employed bead-beating DNA extraction

kits to better homogenize the cellular material (Tedersoo et al., 2022)

and used replicate extractions to avoid overwhelming the spin column

matrix (Dickie et al., 2018). Both of these strategies have been shown to

maximize the resulting DNA quantity.

In several ongoing projects, we have explored the north arm lake

water and sediment, gypsum crystals that form in the clay, petroleum

seeps, the north shoreline soils, and the plant rhizosphere microbiomes

along the margins. We have also sampled the south arm microbialite

mats in the benthic zone, the Ephydra gracilis (brine fly) pupae attached

to the mats, the south shoreline soils, and the plant rhizosphere

microbiomes in this area. The location of the (north and south)

shore samples is marked with yellow circles on the image in Figure 1.

We sampled from this variety of locations and microniches

around Great Salt Lake. Samples from the north arm were taken at

Rozel Point (N 41.43783°, W−112.67103°), and the south arm

samples were collected from Antelope Island State Park

(N 41.0639°, W −112.2487°) (Figure 1). The soil sampling was

done seasonally and with replicates to represent a large area. For

each soil sample type and season, three replicates were taken and

pooled. Sampling occurred once per season (June-August) at each

location for four seasons (2019-2022). DNAwas isolated from each of

the soil samples using MP Bio FastDNA Spin Kit for Soil (MP

Biomedicals, Santa Ana, CA, USA). Petroleum samples were taken

from three individual seeps at the north arm Rozel tar seeps and

frozen. These were ground with a sterile ceramic mortar and pestle

into a fine soil-like consistency, then extracted using the same kit.
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Other samples required a different treatment for extraction.

Microbialites from two locations, brine fly pupae, and surface-

sterilized gypsum were crushed in separate experiments then sterile

molecular grade water was added to make a slurry. In each case, the

supernatant was filtered through a 0.45 µm Pall MicroFunnel Filter

(Show Low, AZ, USA). The north arm brine (Winogradsky

column) samples were also filtered in this way. In each separate

sample, the DNA was extracted from the membrane of the filter

using the DNeasy PowerWater Kit (Hilden, Germany).
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Isolated total genomic DNA from all sources was sent out to

assess fungal diversity with PCR and DNA sequencing

(www.mrdnalab.com, Shallowater, TX, USA). The genomic DNA

was amplified with primers for fungal internal transcribed spacers

(ITS) 1 and 2 using “ITS1-2” forward and reverse primers (Walters

et al., 2016; White et al., 1990). Bacterial tag-encoded FLX amplicon

pyrosequencing (bTEFAP) long read 5k ITS1-4 diversity assay

was used for the identification of fungi (Dowd et al., 2008).

MRDNA provided the abundance measures for each Operational

Taxonomic Unit (OTU) represented. Sequencing controls allowed

us to delete any contaminating background DNA contributed by

the elution buffer. Final OTUs were taxonomically classified using

BLASTn against a curated database derived from NCBI

(www.ncbi.nlm.nih.gov) and compiled into each taxonomic level

by abundance. In the analysis, the data were binned at the level of

Genera. Casting this wide net, we have detected a diversity of fungal

genera in the sampled microniches (Figure 2). All of our data sets

were pruned to include only genera at 4% or above in abundance at

that site, which excluded those taxa present in insignificant

numbers in our datasets. However, the files uploaded to Genbank

contain all the sequences (see Data Availability Statement).
4 Analysis of taxa from a
spatial perspective

When analyzing data for spatial insights, it is important to

acknowledge the nimble dispersal mechanisms of fungi, especially at

a location like Great Salt Lake with significant wind, water, and dust

(Golan and Pringle, 2017; Chaudhary et al., 2022). Some of our data

highlight fungal species that are likely introduced to the sampled

location versus endemic at that site. For example, gypsum crystals

(Figure 2), which are embedded in the barren salt playa, appear to

have entombed fungi (or their spores) that are associated with

insects and plants. Saccharomyces bayanus (Naumov et al., 2011),

Microascus cirrosus (Kumar et al., 2023), and Fusarium

brachygibbosum (Tirado-Ramirez et al., 2021) are all found on

plants; Ophiocordyceps sinensis infects caterpillars (Zhang et al.,

2012) and Isaria fumosorosea causes disease in a variety of insects

(D’Alessandro et al., 2011). Malassezia cuniculi has been found on

animal skin (Gaitanis et al., 2012), and Lecanicillium fungicola is a

mushroom pathogen (Banks et al., 2019). There are no insects or

plants living in this area of the dried hypersaline lakebed. We may

be capturing genetic signals of fungi thriving in the surrounding

sagebrush steppe, and not just at the precise site sampled.

Among the cultivars (Table 1) and the amplified signatures from

eDNA studies (Figure 2), some genera emerge as significant or

prevalent. These interesting stories give the data more meaning and

may suggest the roles of fungi across the various microniches of the

ecosystem, or as indicated above, they may indicate the breadth of

dispersal. The following discussion examines genera that are prevalent

in more than one location at Great Salt Lake, listed in alphabetical

order. In the eDNA experiments, we have listed the percent abundance

for the associated amplicons for that particular dataset.
TABLE 1 Cultivars of Fungal strains at Great Salt Lake arranged
alphabetically under phylum. Sampling locations, source, and references
are included.

Strain Site/SourceRef

Acremonium sp. NA/Halite1

Acremonium egyptiacum SA/Brine1

Alternaria arborescens NA/Ooids1

Alternaria arborescens NA/Halite1

Alternaria multiformis NA/Brine1

Alternaria rosae NA/Brine1

Aspergillus flavus SA/Brine1

Aspergillus fumigatus NA/Tar seeps1

Aspergillus fumigatus SA/Brine1

Cladosporium sp. SA/Brine-soaked wood2

Cladosporium cladosporioides SA/Brine1

Cladosporium halotolerans SA/Brine1

Cladosporium cladosporioides NA/Ooids1

Cladosporium cladosporioides NA/Brine1

Cladosporium pseudocladosporioides SA/Brine1

Cladosporium herbarum NA/Brine1

Coniochaeta polymorpha NA/Rozel tar seeps1

Debaryomyces hansenii SA/Brine3

Debaryomyces hansenii SA/Brine1

Metschnikowia bicuspidata SA/Brine3

Nectria punicea NA/Brine1

Neocamarosporium sp. NA/Ooids1

Parengyodontium album NA/Brine1

Penicillium aff. mononematosum NA/Ooids1

Penicillium buchwaldii NA/Brine1

Penicillium crustosum SA/Brine1

Stemphylium sp. NA/Halite1

Wallemia muriae NA/Brine1

Wallemia sebi SA/Brine1
NA, north arm of Great Salt Lake; SA south arm of Great Salt Lake. Reference footnotes in the table
are defined as follows: (Baxter and Zalar, 2019)1, (Cronin and Post, 1977)2, (Butinar et al., 2005)3.
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We noted evidence for Acremonium species around various

sites at Great Salt Lake. A. psammosporum sequences were

amplified from DNA extracted from the Rozel tar seeps on the

north shore (4.4% abundance) (Figure 2) and another species was

cultured near that site from halite crystals (Table 1). A species

associated with humans and animals, A. egyptiacum (Summerbell

et al., 2018), was grown from samples of south arm brine (Table 1).

Acremonium species are endemic to marine habitats (Jones et al.,

2009), and their presence at Great Salt Lake is consistent with these

marine-borne fungi in other studied thalassohaline lakes that were

once connected to the oceans (Grum-Grzhimaylo et al., 2018).

Species in the genus Alternaria are known for mitigating salt

and nutrient stress in plants (Tiwari et al., 2023). Therefore, finding

Alternaria embellisia phragmospora amplicons associated with

south arm soil (27.5%) and Suaeda plant roots (4.2%) (Figure 2)

should not be surprising. However, a number of Alternaria species

are found at the Great Salt Lake north arm site not alongside plants.

In the Winogradsky column from the brine and sediment, A.

alternata was detected (9%) (Figure 2). Other Alternaria species

near the north shore included A. arborescens cultured from

minerals (both halite crystals and calcium carbonate oolitic sand),

and both A. multiformis and A. rosae isolated from north arm

brine (Table 1).
FIGURE 1

Great Salt Lake as imaged from the International Space Station
2022. Image credit: NASA, public domain. The isolated north arm
(NA), above the railroad causeway, is hypersaline and pink in color
from the haloarchaea enrichment (Baxter and Zalar, 2019). The
south arm (SA) is tinted green from the phytoplankton prevalent in
the less saline water. Yellow circles indicate the shore sampling
locations for the work detailed here in both the NA and SA.
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FIGURE 2

Fungal taxa detected in eDNA work at Great Salt Lake. Genera are
listed in the left column, and filled boxes indicate amplification of
ITS variable regions. North arm sites are on the left of the graphic,
and south arm on the right. Colors indicate the presence of that
genus in a certain location: Pink represents taxa detected in a north
arm water and sediment Winogradsky column (De Leon et al.,
2023); gray, gypsum crystals; black, tar seeps at Rozel Point; blue,
microbialites; tan, brine fly pupae; orange, shoreline soils; light
green, Salicornia spp. roots; dark green, Suaeda spp. roots.
frontiersin.org
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In many ecosystems, including those designated as extreme,

Aspergillus species are a common component of the soil microbiota,

serving beneficial roles in addition to saprophytic ones (Nayak et al.,

2020). This genus is noted for its ability to solubilize phosphates,

recycle carbon and nitrogen, and decontaminate soils. In the south

arm, A. flavus and A. fumigatus were cultured from brine (Table 1).

In the north arm, A. niger eDNA was detected at the Rozel tar seeps

(17%) (Figure 2) and A. fumigatus was cultured from these

petroleum seeps (Table 1). These species have been associated

with other sites rich in hydrocarbons (Ai-Jawhari, 2014).

The first fungus ever reported at Great Salt Lake was a

Cladosporium species, cultivated from wood that was found floating

in the water (Cronin and Post, 1977). Subsequent studies isolated

C. cladosporioides, C. halotolerans, and C. pseudocladosporioides from

the south arm lake brine, and C. cladosporioides and C. herbarum from

north arm brine (Table 1). C. cladosporioides was grown from ooids on

the north arm shore (Table 1), and this species’ sequences were also

amplified from the Rozel tar seeps (6.5%) (Figure 2). Our eDNA studies

presented here show evidence of C. davidiella tassiana in the root

microbiome of both plant species tested, Salicornia from the north arm

(17%) and Suaeda from the south arm (6.7%) (Figure 2). Since the

members of this genus have demonstrated abilities to protect plants

against cellular stressors (Răut et al., 2021), the Cladosporium

associated with the lake water, tar, or minerals may be due to

effective dispersal versus a role in those microniches.

Clydae vesicula was observed in root microbiomes of Salicornia

on both shorelines (17% north; 4.7% south) (Figure 2). Such

Chytridiomycota in freshwater systems are typically parasites of

zooplankton that use motile zoospores in their aquatic lifestyle

(Kagami et al., 2014). In marine systems they have been observed

inside phytoplankton (Gleason et al., 2015; Comeau et al., 2016),

even diatoms in Arctic Sea ice (Hassett et al., 2017). C. vesicula was

recently found in root microbiomes of rice plants in rainfed soils,

which are likely wet enough for zoospore movement (Barro et al.,

2022); perhaps the spring runoff of snowmelt that brings water to

the Great Salt Lake ecosystem can also allow these chytrids to

flourish in the Salicornia rootzone.

The genus Coniochaeta is implicated in other arid Utah biomes

in carbon and nitrogen cycling (Challacombe et al., 2019), but it is

best known for its association with wood necrosis in plants (Damm

et al., 2010). We observed signatures of C. lecythophora in the north

arm Winogradsky column (9.2%) (Figure 2, and De Leon et al.,

2023) suggesting it resides in that part of Great Salt Lake or was

introduced from the landscape. In the north shore tar seeps, this

species was also detected by eDNA (5.3%) (Figure 2), and C.

polymorpha was cultivated from the tar (Table 1). There does not

appear to be evidence for Coniochaeta thriving in hydrocarbon-rich

habitats, underscoring the possibility of these strains being blown in

from the nearby arid landscape.

The genus Cryptococcus includes both yeasts and filamentous

species and is considered cosmopolitan in its distribution

(Zajc et al., 2014). Two species of Cryptococcus, C. diffluens and

C. saitoi, were identified in our study (Figure 2), although their

function remains unknown. Both species were present in soil

samples and in the rhizosphere of Salicornia from the north arm

sampling location (11.5%), which has highly elevated soil salinity
Frontiers in Fungal Biology 05
levels (Bradbury and Parrott, 2020). The species are both

encapsulated yeasts, which have been shown to be salt tolerant

(Zajc et al., 2014).

Malassezia yeasts are typically animal skin mycobiota, which are

usually commensal but can become pathogenic (Torres et al., 2020).

Meuser et al., 2013 detected Malassezia sp. in the Great Salt Lake

south arm water column via 18S rRNA primers (≤ 3.6%) (Meuser

et al., 2013). The work presented here (Figure 2) indicates presence of

this genus within gypsum crystals (M. cuniculi) and Salicornia root

microbiomes (M. restricta) at the north arm lake shore and associated

with the soil samples from the south arm (M. globosa). We were

concerned about the possibility of these species being introduced

from human hands due to their documented relationship with

mammals. However, they grow well in invertebrate model systems

(Torres et al., 2020) and have been found in nematodes (e.g. Renker

et al., 2003). A recent discovery of nematodes in the south arm lake

water suggests the Malassezia could indeed have an animal host in

the lake and perhaps in the shore sediment (Jung et al., 2024).

Nectria, a genus of saprophytic ascomycete fungi associated

with decaying wood, plays a role in the breakdown of plant material

(Chung et al., 2019).Nectria mauritiicolaDNAwas detected in both

soil samples (north 35%; south 33.3%) as well a high association

with all plant roots at both sampling sites [north arm Salicornia

(15.6%), Sueada (62.4%); south arm Salicornia (57.3%), Sueada

(42.9%)] (Figure 2). Nectria species have been detected in salterns

(Chung et al., 2019), in microbial mats in Puerto Rico (Cantrell

et al., 2013), and Nectria punicea was cultivated from north arm

brine (Table 1).

The genus Penicillium boasts species that are known to mitigate

salt and nutrient stress in plants in extreme environments (e.g.

Molina-Montenegro et al., 2020), and we found P. chrysogenum

associated with south arm Suaeda plant roots (15.4%) (Figure 2).

Although our eDNA scan did not locate this genus elsewhere,

several species were previously cultivated: in the north arm P.

buchwaldii (brine) and P. aff. mononematosum (ooids), and in the

south arm P. crustosum (brine) (Table 1).

Powellomyces hirtus was very the most abundant fungus present

(84%) in the eDNA study of microbialite structures (Figure 2). These

mats support pupation of the Ephydra flies, and in the pupae

themselves, P. hirtus was also the most abundant (91%).

Powellomyces is considered a soil-dwelling taxa, and it has also

been observed growing inside the protective casing of pollen grains

(Longcore et al., 1995). This species may be considered parasitic as it

appears to negatively impact plant growth (Wang et al., 2021).

The abundance in the mats and pupae suggest P. hirtus may be

thriving in the south arm lake ecosystem, but it’s role there is unclear.

The genus Rhizophlyctis includes 36 species of ubiquitous soil-

inhabiting chytrids (Letcher et al., 2008). Rhizophlyctis rosea was

identified from north arm soil (6.9%), as well as in the rhizosphere

of Suaeda plants (4.7%) (Figure 2). Rhizophlyctis rosea has been

shown to survive in dry soil for extended periods, then resumes

growth after rainfall or other moisture (Willoughby, 2001).

Rhizophlyctis rosea, which is one of the most often observed soil

chytrids, is a cellulose decomposer (Letcher et al., 2008).

Wallemia is a common inhabitant in hypersaline environments,

and thus it was anticipated that this genus might be at Great Salt
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Lake. Indeed, W. muriae was cultivated from north arm brine and

W. sebi from south arm lake water (Table 1).W. sebi DNA was also

amplified at the north shore tar seeps (3.3%) (Figure 2).

Taxonomically, W. sebi is a complex of at least four species and

among the most xerophilic eukaryotic life (Jančič et al., 2015).

Wallemia have been isolated from dust and other low water activity

(aw) habitats (Zalar et al., 2005), and its spores are known to be air-

disseminated (Zeng et al., 2004).
5 Roles for fungi at Great Salt Lake

5.1 Alleviation of salinity stress

The soils surrounding Great Salt Lake are impacted by two major

stressors of plant growth: lack of fresh water and high soil salinity

(Bradbury and Parrott, 2020). While fungi cannot increase the

availability of water in the soil, they have been shown to mitigate

plant salt stress by forming symbiotic relationships with plants, either

in the rhizosphere or as endophytes (Gupta et al., 2021). Several

genera found in our eDNA including Penicillium, Alternaria,

Aspergillus, and Trichoderma appear to reduce salt stress-induced

pathways in plants by producing osmoprotectants to prevent osmotic

stress (Tiwari et al., 2023) and can mitigate salt/nutrient stress in

plants phosphate-solubilizing (Molina-Montenegro et al., 2020).

Many Ascomycota genera, including Aspergillus, can improve soil

fertility, regulate water uptake and distribution, and produce

compounds to regulate ion uptake and transport in plants (Aizaz

et al., 2023; Lubna et al., 2022; Abeer et al., 2014).Aspergillus eurpaeus

and Fusarium sp. accumulate solutes such as polyols and free amino

acids under salt stress to change their osmotic potential and allow

water to enter their cells (Chamekh et al., 2019). Fungi have evolved

other strategies which allow for growth in hypersaline conditions,

such as changes in plasma membrane fluidity (Gunde-Cimerman

et al., 2009). In plant root microbiomes, for example Penicillium

chrysogenum found in Suaeda roots, the presence of such

microorganisms makes sense to mitigate the salt encountered in

the soils. But other species associated with the Great Salt Lake

microbialites present novel concepts of symbiosis in mat

communities. Acaulospora kentinensis represents 55% or greater of

the fungal abundance in the microbial mats. This genus is associated

with the roots of Asian grasses where increases salt tolerance for the

plants (Wu et al., 1995). Could this strain alleviate salt stress for a

microbialite consortia? Diversispora eburnea, an arbuscular

mycorrhizal fungus in the lake mats, might also work in this regard

for the microbialites; a study previously showed that this species

improved maize growth under saline stress (Sun et al., 2022).
5.2 Nutrient cycling

One of the roles of fungi in ecosystems is decomposition,

facilitating the cycling of various nutrients. While saline or

hypersaline environments can negatively impact fungal diversity

(Saifullah Dahlawi et al., 2018), we have identified several in our
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dataset which are involved in nutrient cycling including Fusarium,

Trichoderma, Penicillium, Alternaria, Cladosporium, Aspergillus

and Coniochaeta (Egidi et al., 2019). The genus Aspergillus (north

arm tar seeps) has been shown to solubilize insoluble phosphates,

such as Ca, Fe and Al phosphate, and to recycle carbon and nitrogen

through the environment (Nayak et al., 2020). It has also been

found in biocrusts in southern Utah, where it plays a role in soil

stability and plant biomass decomposition (Challacombe et al.,

2019). Coniochaeta species (north arm water and tar seeps) have

also been implicated in plant biomass decomposition and carbon

and nitrogen cycling in arid ecosystems (Challacombe et al., 2019),

as have Penicillium species (south arm Suaeda soil samples)

(Kuypers et al., 2018).
5.3 Decontamination and remediation

Hydrocarbons are a rich source of energy for fungi and other

microorganisms, some of which can use hydrocarbons as a sole

carbon source (Prince and Walters, 2016). The Great Salt Lake

microbial community would certainly utilize the rich petroleum

carbon source in this extreme environment (Prince and Prince,

2022). At Great Salt Lake, several species of fungi were identified

that may have the ability to degrade the polycyclic aromatic

hydrocarbons (PAH) that characterize the Rozel tar seeps

(Damsté et al., 1987; Prince, 2019). Cladosporium cladosporioides

(Bakri, 2022; Birolli et al., 2018), Penicillium citrinum (Birolli et al.,

2018), Penicillium commune (Esmaeili and Sadeghi, 2014), and

Epicoccum nigrum (Queissada et al., 2013). Rhodotorula marinawas

identified at the Rozel seeps as well and some species of marine

Rhodotorula have been found to degrade PAH’s (Shailubhai et al.,

1984; Lin et al., 2022) so it is possible that this Great Salt Lake

species also has this capability. The most abundant fungal species

identified at the seeps was Aspergillus niger, a ubiquitous fungal

species that is present in other petroleum-rich sites and degrades

hydrocarbons including high molecular weight tar (Zafra et al.,

2014; Mauti et al., 2016; Barnes et al., 2018; Nayak et al., 2020).

Polluted soil was used to inoculate enrichment cultures to observe

the microbiota that degrade PAHs; the enriched fungi composition

included Aspergillis (Spini et al., 2018). The genus, Fusarium, was

the most abundant fungal taxa, and we discovered a species in

gypsum crystals near the Rozel tar seeps. Also, Trichoderma was

prevalent in their data, and we located it in the north arm

brine column.

Heavy metals in soils may also be mitigated by some species of

Aspergillus (e.g. Ai-Jawhari, 2014; Nayak et al., 2020), which is a

significant attribute at Great Salt Lake, a terminal basin where

metals have accumulated due to natural and mining sources

(e.g. Naftz et al., 2008; Adams et al., 2015; Wurtsbaugh et al.,

2020). In the microbialites, the arbuscular mycorrhizal fungus,

Diversispora eburnea, aids plants in dealing with heavy metals (e.g.

Buck et al., 2019, Faggioli et al., 2019; Sun et al., 2023), and it begs the

question if it may have a similar function in microbial mats of Great

Salt Lake where metal contamination has become an environmental

concern (Adams et al., 2015).
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5.4 Plant growth promotion

The shoreline soils surrounding Great Salt Lake are home to

many halophytic plants, including Distichlis spicata, Salicornia

utahensis, Suaeda erecta and others (Bradbury and Parrott, 2020).

These plants are adapted to thrive in this high salt, low water

environment, but recent research has pointed to halophilic fungi

inhabiting the plant’s rhizosphere may play an outsized role both

germination and growth. Several Ascomycota genera have been

shown to promote seed germination and promote plant growth by

altering rhizosphere hormone balance thus changing phytohormone

plant signaling pathways (Dodd et al., 2010; Verbon and Liberman,

2016). Aspergillus, Trichoderma and Microascus have all been found

in various locations around the lake (Figure 1) and are implicated in

bio-priming of seeds (Aizaz et al., 2023). Cladosporium species, found

in the rhizosphere of both Salicornia and Sueda in the south arm of

the lake, have been previously implicated in the production of protein

hydrolysates (PHs), a class of biostimulants, which act as a plant

growth-promoting agent, protecting plants from biotic and abiotic

stressors (Răut et al., 2021).
5.5 Desiccation resistance

One survival strategy in terminal lakes, which vacillate in

elevation, is resistance to desiccation during periods of drought or

seasonally high rates of evaporation. Many of the fungi of saline

systems are adept at surviving periods of dryness, for example, the

genus Wallemia is observed in low water activity (aw) habitats such

as salterns or dust particles (Zalar et al., 2005). But some fungi may

enable desiccation resistance to the larger community. Mingxiaea

siamensis, formerly Bullera siamensis (Wang et al., 2011), was

abundant in the microbialite mats of Great Salt Lake (Figure 2).

This genus of yeast is associated with biofilm production in marine

and saltern habitats (Zajc et al., 2017.), which can aid in combatting

the dehydration associated with those environments. Microbialite

mats must resist cycles of desiccation, especially in drought years,

and M. siamensis could play a crucial role.
5.6 Virulence and predation

Predator prey relationships are important in maintaining

balance in any ecosystem, but in extreme environments, the

predators are often microbial. In the brine fly pupae, a species

matching Powellomyces hirtus was the most abundant fungus

(about half of all amplicons), and it also is part of the fungal

consortia of the microbialites (Figure 2), where the fly larvae dine

on microbial mats and pupate. These chytrids are known to predate

algae and have been found associated with diatoms (Kilias et al.,

2020) such as the Navicula species found in the mats (Lindsay et al.,

2017). Chytrids are also predators for cyanobacteria, which are also

important in microbialite mat formation (Gleason et al., 2015)

Although Coniochaeta and Aspergillus species, such as those found

in the Rozel Tar Seeps (Figure 2), have been implicated in virulence
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in Utah desert plants, these taxa are not likely virulent to the lake

biology. Instead, they more probably were introduced by airborne

plant material or spores (Challacombe et al., 2019).
6 Insights and conclusions

Given the paucity of data on fungi at Great Salt Lake, our survey

began with the spatial approach of “who” is where. This is challenging

considering the nuances of an ever-changing Great Salt Lake, thus it

is critical to understand the study site. In interpreting the eDNA data,

we encountered sequences that were likely not part of the lake system

but may have introduced from nearby farm fields or grasslands. Case

in point, Ustilago bullata, an infectious agent causing smut in corn

and grasses, was implicated in soil and shoreline plant roots

(Figure 2), but it is not known to be associated with these types of

halophytes. Also, the mycobiome of Great Salt Lake microniches may

differ from similar habitats elsewhere; for example, European

Salicornia root fungi communities are distinct (Furtado et al., 2019).

The diversity of soil types at Great Salt Lake (Bradbury and

Parrott, 2020) alone presents a broad range of fungal habitats. Oolitic

sand, formed in the lake water from the precipitation of calcium

carbonate around organic pellets in concentric layers, surrounds the

lake (Mathews, 1930). Clay forms where groundwater seeps around

dried polygons of oolitic playa (Beaume et al., 2024), and gypsum

crystals precipitate here (Eardley and Stringham, 1952). The

microbiota of these varied soils are likely distinct based on particle

size, geochemistry, water interactions, and the presence or absence of

plants (Bradbury and Parrott, 2020).

Another factor that creates variability is water level. As a

terminal lake, Great Salt Lake varies in elevation depending on

how water inputs for any given year balance with evaporation rates.

Some of the spaces analyzed in this study that are now sandy plant

habitat could have been under water and devoid of vegetation a few

years ago. Whereas this spatial approach gives us important survey

data, a longitudinal temporal approach would be necessary to

capture the mycobiota of this changing ecosystem over time.
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