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Antagonistic interactions
between maize seeds
microbiome species and the
late wilt disease agent,
Magnaporthiopsis maydis
Ofir Degani1,2*, Aseel Ayoub2, Elhanan Dimant1

and Asaf Gordani1,2

1MIGAL – Galilee Research Institute, Plant Sciences Department, Kiryat Shmona, Israel, 2Faculty of
Sciences, Tel-Hai College, Tel Hai, Israel
Magnaporthiopsis maydis is a maize pathogen that causes severe damage to

commercial corn fields in the late growth stages. Late wilt disease (LWD) has

spread since its discovery in the 1960s in Egypt and is now reported in about 10

countries. The pathogen has a hidden endophytic lifecycle in resistant corn plants

and secondary hosts such as green foxtail, watermelon lupin and cotton. At the

same time, it could be an opportunist and hinder the host development under the

right conditions. This study uncoveredM.maydis interactions with newly identified

maize endophytes. To this end, six fungi were isolated from the seeds of three

sweet corn cultivars having varying susceptibility to LWD. These isolates were

identified using colony morphology and microscopic characterization, universal

internal transcribed spacer (ITS) molecular targeting and phylogenetic analysis.

Most of them belonged to pathogenic species. Compared to three previously

identified bioprotective microorganisms, the new species were tested for their

ability to secretemetabolites that repressM.maydis in vitro and to antagonize it in a

solid media confront test and a seedlings pathogenicity assay. The opportunistic

fungal species Aspergillus flavus (ME1), Aspergillus terreus (PE3) and the reference

biocontrol bacteria Bacillus subtilis (R2) achieved the highest M. maydis inhibition

degree in the plates tests (74-100% inhibition). The seedlings’ pathogenicity assay

that predicts the seeds’ microflora resistance to M. maydis highlighted the bio-

shielding potential of most species (23% or more epicotyl elongation over the

infected control). Fusarium sp. (ME2) was the leading species in this measure (43%

enhancement), and B. subtilis gave the best protection in terms of seeds’

germination (50%) and sprouts’ biomass (34%). The results of this study could

enhance our understanding of the pathobiome’s role in the context of LWD and

represent a first step in using the seeds’ natural protective microflora to develop

novel management strategies.
KEYWORDS

seedings pathogenicity assay, Cephalosporium maydis, crop protection, endophytes,
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/ffunb.2024.1436759/full
https://www.frontiersin.org/articles/10.3389/ffunb.2024.1436759/full
https://www.frontiersin.org/articles/10.3389/ffunb.2024.1436759/full
https://www.frontiersin.org/articles/10.3389/ffunb.2024.1436759/full
https://www.frontiersin.org/articles/10.3389/ffunb.2024.1436759/full
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffunb.2024.1436759&domain=pdf&date_stamp=2024-08-07
mailto:d-ofir@migal.org.il
mailto:ofird@telhai.ac.il
https://doi.org/10.3389/ffunb.2024.1436759
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/fungal-biology#editorial-board
https://www.frontiersin.org/journals/fungal-biology#editorial-board
https://doi.org/10.3389/ffunb.2024.1436759
https://www.frontiersin.org/journals/fungal-biology


Degani et al. 10.3389/ffunb.2024.1436759
1 Introduction

Maize (corn, Zea mays L.) is considered one of the world’s most

influential human food sources and the third leading crop after

wheat and rice (Zhao et al., 2017). Additionally, many countries

have been growing corn as an essential animal feed source and for

other uses. Maize late wilt disease (LWD) has spread since its

discovery in the 1960s in Egypt (Sabet et al., 1961; Samra et al.,

1962). It has been reported in 10 countries (Degani, 2021), with a

higher incidence in Israel (Degani and Gordani, 2022), Egypt (El-

Shabrawy and Shehata, 2018), India (Rakesh et al., 2022), Spain

(Ortiz-Bustos et al., 2019) and Portugal (Patanita et al., 2020).

However, the disease’s prevalence and impact are expected to

increase due to global warming (Pecsi and Nemeth, 1998;

Degani, 2021).

The pathogen Magnaporthiopsis maydis (former names

Cephalosporium maydis and Harpophora maydis) (Samra et al.,

1963; Saleh and Leslie, 2004; Luo and Zhang, 2013) causes severe

damage to corn fields in the late growth stages. M. maydis is a

potentially high-risk, hemibiotroph, seed-borne (Michail et al.,

1999) and soil-borne phytopathogen (Tej et al., 2018). It is

reported as being an almost asymptomatically endophyte in

LWD-resistant corn cultivars (Kumar et al., 2021). It can also

survive in secondary host plants such as lupine (Lupinus termis

L.) (Sahab et al., 1985), cotton (Gossypium hirsutum) (Sabet et al.,

1966), green foxtail (Setaria viridis) and watermelon (Citrullus

lanatus) (Dor and Degani, 2019). Yet, it may become pathogenic

and cause disease in some alternative hosts under certain conditions

(encouraging host and environmental states) (Degani et al., 2022a).

Without the host plant, the pathogen can spread and survive

through infected soils and crop residues (Sabet et al., 1970).

In susceptible sweet corn hybrids, LWD is characterized by a

relatively rapid wilting of the above soil parts that usually occurs 60-

80 days from seeding, from before the flowering stage (tasseling) to

physiological maturation (Darwesh and Elshahawy, 2023).

Dehydration signs start to appear nearly 50 days post-sowing,

progressing from the lower stem and leaves to the plant’s upper

part, potentially damaging the cobs (Johal et al., 2004). In severe

cases, the disease can cause nearly total dehydration and yield loss

(El-Naggarr et al., 2015; Degani et al., 2020). Nevertheless, most

outbursts of LWD have resulted in 30-50% economic losses (El-

Shehawy et al., 2014; Sunitha et al., 2020).

Presently, the primary approach for LWD management is

cultivating disease-resistant corn varieties (Kumar et al., 2021). This

strategy is economical, eco-friendly and compatible with any growth

method but requires constant effort to scan and identify new resistant

corn hybrids. Moreover, the continual growth of a specific resistant

maize cultivar for several seasons could ultimately lead to a selection

pressure that would, in the long run, lead to an outburst of aggressive

virulentM.maydis strains capable of causing the disease, as previously

reported in Egypt, Spain and Israel (Zeller et al., 2002; Garcıá-

Carneros et al., 2011; Ortiz-Bustos et al., 2015; Shofman et al., 2022).

Over the years, many strategies and control methods have been

tested for LWD. A traditional approach involving chemical pesticides

has produced promising results (Singh and Siradhana, 1989; Ghazy

et al., 2017; Degani et al., 2018; Degani et al., 2020). Yet, public
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concern regarding this method’s health and environmental risks

encourages searching for more eco-friendly solutions. Moreover,

using a single ingredient-based chemical pesticide to protect the

crops, as suggested lately (Degani and Gordani, 2022), may lead to

fungal resistance development and effectiveness losses (Corkley et al.,

2022). Specifically, this concern is regarding Azoxystrobin, an

ingredient known to be one of the most effective fungicides to

control LWD (Degani et al., 2014; Degani et al., 2019). The reason

is that there is a high risk of emerging Azoxystrobin-resistant M.

maydis strains as it occurs in other pathogens (Avila-Adame and

Koller, 2003; Fernández-Ortuño et al., 2010; Castroagudı ́n
et al., 2015).

Therefore, significant research on alternative LWD management

has suggested several impactable options, including biological

methods (Ghazy and El-Nahrawy, 2020; Degani and Dor, 2021; El-

Naggar and Yassin, 2024), agrotechnical methods such as balanced

soil fertility (Samra et al., 1966; Singh and Siradhana, 1990) and

watering (Singh and Siradhana, 1987a), solar heating (Fayzalla et al.,

1994) and allelochemical methods (Tej et al., 2018). One focused

research effort addresses the identification of potential antagonistic

endophytes in commercial corn hybrids, using them as biocontrol

agents to shield plants from the pathogen (Degani et al., 2021).

Obtaining new and effective environmentally-friendly LWD

control options is a continuous scientific aim. Specifically, the full

potential protective ability of endophytes in the maize plant’s

microbiome to resist LWD is yet to be revealed. In addition, the

intriguing interactions of M. maydis and other pathogens in the

maize’s pathobiome could play a crucial role in the disease outcome

and the effectiveness of the control treatments. Plants are threatened

by diverse pathogen species living in complex communities that can

enhance diseases or oppress one another.

The classic triangle in phytopathology requires the interaction

of a susceptible host, a virulent pathogen and an environment

favorable for disease development (Francl, 2001). The plant

microbiome affects both host resistance and the plants’ close

surroundings. These microorganism communities inhabit the

plant’s rhizosphere (the roots’ nearby habitat) or phyllosphere

(the plant’s aboveground habitat), and comprise opportunistic

pathogens and non-pathogenic members that may protect the

plant from pathogens (Compant et al., 2019). They are formed by

bacteria and fungi inhabiting the same ecological niche and

cooperating or competing for the same plant resources. Plant-

friendly endophytes can now provide new ways of controlling

plant diseases.

Studying the role of maize endophytes in restricting the impact

of M. maydis is an essential initial step towards developing a new,

environmentally-friendly control interface based on strengthening

the plant’s microbiome. The protective partners in the natural

microflora of maize seeds can reduce the pathogen’s development

and spread within the host roots, improve the plant’s immunity to

diseases and enhance growth indices. Seed treatment as a

management protocol is considered economically feasible and

easily applied, and could be integrated with other practices,

regardless of the cultivation and irrigation methods.

In the current study, we hypothesized that fungal and bacterial

microflora, natural inhabitants of various maize grains, may
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positively impact plant health and serve as a fundamental front

barrier against the late wilt pathogen. Therefore, non-pathogenic

species can be used as bio-pesticides for sustainable agriculture. In

contrast, virulence species in the maize seeds’microbiome can affect

LWD in intricate ways. To test this hypothesis, we isolated

microorganisms from several maize cultivars’ grains, identified

them using colony morphology, microscopic traits and molecular

characteristics, and tested them against M. maydis on media plates.

Subsequently, microorganisms capable of restricting pathogen

growth by direct contact or by secreting antifungal metabolites

into the medium were applied to protect seedlings at the sensitive

pathogen-invasive phase.
2 Materials and methods

2.1 Preparation of the maize grains

To isolate new endophytes from sweet corn seeds, we choose

cultivars varying in susceptibility to LWD. All seeds were commercial

and were provided courtesy of the seed companies listed in Table 1.

Seeds were pretreated by the companies with Captan (cis-N-

trichloromethylthio-4-cyclohexene-1,2-diacarboximide) according

to Israel’s Plant Protection and Inspection Services (PPIS)

regulations. Before being subjected to endophyte isolation, the

grains were rinsed with tap water and soap while stirring 4-5 times

and changing the water until the seed coating was washed. The seeds

were then disinfected externally using 1% sodium hypochlorite

(NaOCl) for 1 min and sterilized twice with 70% ethanol.

Subsequently, the seeds were rinsed twice in sterile double-distilled

water (DDW). Finally, they were dried in a biological hood on sterile

paper for two hours.
2.2 Isolation and identification of
endophytes from the maize grains

The endophytes Isolation and identification method was

previously described in (Degani et al., 2021). The corn grains

were cut lengthwise using a sterile scalpel and placed on potato

dextrose agar (PDA; Difco Laboratories, Detroit, MI, USA) growth

plates, with the cutting surface downwards. The Petri plates (90-

mm-diameter plate with 10 half-seeds each) were incubated at 28 ±

1°C in the dark for 2-3 days. The developed endophytes (fungi and

bacteria) were isolated into new PDA plates and grown for 5-6 days

under the above conditions. The isolates (ca. 30) were divided into
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groups having similar colony characteristics. Transfer to new plates

was performed for representative isolates from each group, and the

process continued until pure colonies were obtained. Each colony

was transferred to a new plate by taking a small agar disk from the

colony’s edge and closely observing its appearance as it grew.

The mycelial mats or conidia were gently removed from the

plates, and a small portion was mixed with 10 µL of either potato

dextrose broth (PDB) or DDW. These mixtures were then applied

onto sterile glass slides for microscopic examination using a light

microscope at a magnification of 400× without staining. The

microscopic identification of the species (mainly spores and

conidiophores characteristics) was conducted using taxonomic keys.
2.3 Molecular identification of
the endophytes

DNA was extracted from the mycelia of PDA-grown endophyte

colonies using the Master Pure Yeast DNA Purification Set Kit

(Sigma, Rehovot, Israel). Molecular identification by PCR and

sequencing was performed by targeting the endophyte’s small

subunit ribosomal RNA gene (16s small rRNA gene) using the

universal internal transcribed spacer (ITS4 and ITS5) primers

(Table 2). PCR was done using the Rapidcycler (Idaho

Technology, Salt Lake City, UT, USA) in a total volume of per

reaction; of each primer (concentration of ), of commercial reaction

mixture RedTaq® ReadyMix (Sigma, Rehovot, Israel), of template

DNA and autoclaved DDW. PCR conditions were 94°C for 2 min,

30 rounds of 94°C for 30 sec, 55°C for 30 sec, 72°C for one min, and

a finishing step of 72°C for 5 min (Degani et al., 2021). The PCR

products were kept at 4°C until use. PCR products were sequenced

in the ITS4 forward and ITS5 reverse directions by Hy Labs

(Rehovot, Israel). Sequences were used to conduct a homology

search against GenBank using the BLASTN tool (National Center

for Biotechnology Information, Bethesda, MD, USA, at: http://

www.ncbi.nlm.nih.gov, accessed on 15 May 2024). For the

Fusarium species identification, the Fusarioid-ID database

pairwise alignment (at www.fusarium.org, accessed on 15 May

2024) was used.

Sequence comparison of the ITS gene and phylogenetic tree

construction were performed using the SeaView version 5.0

software (http://doua.prabi.fr/software/seaview, accessed on 15

May 2024) (Gouy et al., 2010). Sequences were aligned using the

CLUSTALW program (https://www.genome.jp/tools-bin/clustalw,

accessed on 15 May 2024), and the similarity percentages between

sequences in the phylogenetic tree were constructed using the
TABLE 1 List of maize cultivars tested for the presence of endophytes.

Cultivar Type Seed Company Supply Company Degree of LWD Sensitivity 1

Megaton Sweet Zeraim Gedera-Syngenta, Kibbutz
Revadim, Israel

Hazera Seeds Ltd., Berurim MP
Shikmim, Israel

Hypersensitive

Prelude Sweet SRS Snowy River Seeds, Australia Green 2000 Ltd., Israel Sensitive

Royalty Sweet Pop Vriend Seeds B.V., Andijk, The Netherlands Eden Seeds, Reut, Israel Resistant
1According to (Degani et al., 2020; Degani et al., 2022b).
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parsimony DNA-level algorithm (dnapars) method with the default

parameters, ignore positions with gaps and bootstrap with 1000

replications. The parsimony score for each tree is the sum of the

smallest number of substitutions needed for each site. The method

assumes that the tree with the lowest parsimony score, the simplest

of the set, is most likely to be correct. The ITS genes from reference

strains found in a previous study (Degani et al., 2021) and others

selected from the GenBank were incorporated into the analysis to

assist the taxonomic assignment.
2.4 Endophytes’ metabolites assay

In a non-indirect method, the growth restriction of M. maydis

was tested using endophyte-secreted metabolites (Degani and Dor,

2021). Ten 6-mm-diameter agar disks were cut from the culture

margins of each endophyte isolate colony (grown for 4-6 days at 28 ±

1°C in the dark) and added to 150 mL sterile potato dextrose broth

(PDB) in a 250 mL Erlenmeyer flask. Cultures were incubated at 28 ±

1°C in a rotary shaker at 150 rpm for six days in the dark. The liquid

medium of each endophyte culture was filtered through two

Whatman No.1 filter papers using a Büchner funnel. To prepare

endophytes’ extrolites-based solid growth medium, 5.85 grams of

PDA powder was added to a 300 mL bottle, mixed with each filtrated

liquid growth medium, and the pH was adjusted to 5-5.3 with NaOH

(PDB pH value). The liquid medium was autoclave sterilized for 30

min. Then 25 mL was poured into a 90 mm-diameter Petri dish (five

repeats for each endophyte isolate) and dried in a biological hood for

24 h.M. maydis 6-mm-diameter agar disks were cut from a culture’s

margins, and one colony agar disk was placed on each dish. PDA

plates without extrolites were used as a control.
2.5 Plates’ confrontation assay

Selected endophytes were identified by their biocontrol potential

to restrict M. maydis growth in a direct confront test according to

(Degani et al., 2021). Such potential includes their antifungal

compounds’ secretion, direct hyphae contact growth inhibition, or

the ability of the endophyte to grow on top of the M. maydis colony

surface. The mycoparasitism test was performed by placing

endophyte colony agar disks (6 mm in diameter cut from culture

margins) on a 90-mm-diameter PDA culture Petri dish in front of

similar disks fromM.maydis. Plates were labeled and incubated at 28

± 1°C in the dark. The interactions between M. maydis and each

isolated endophyte were documented and photographed after seven

days. Endophytes that managed to restrict M. maydis growth were

marked as having a microparasitic potential. Each endophyte was

tested in five repeats.
Frontiers in Fungal Biology 04
2.6 Percentage of inhibition of M. maydis

After six days of growth, the inhibition for the metabolites assay

experiment (Section 2.4) was calculated using (%I) = [((A+B)/2)

x100/R], where R = radial growth of the control; A+B = radial

growth of treatment. The percentage ofM. maydis inhibition for the

confrontation assay experiment (Section 2.5) was calculated using

(%I) = [(R-DM)x100/R], where R = radial growth of the control;

DM = radial growth of the treatment (Chagas et al., 2022). The

isolated endophyte with a high %I was considered an efficient

antagonist toward the pathogen M. maydis.
2.7 Seedings pathogenicity assay

Endophytes-treated maize seeds were tested in a pathogenicity

assay to evaluate the level of M. maydis bio-shielding (as in

(Degani et al., 2021)). The sweet corn Prelude cv. seeds were

rinsed in DDW, soaked in 1% NaOCl for 1 min, and then rinsed

twice with DDW. The endophytes’ cultures were grown in a liquid

PDB medium, as described in Section 2.4. The cultures were

ground in a blender for 2 minutes to obtain a blend of short

mycelial segments. This mycelia and growth medium combination

was used to prepare the seed-coating suspension. Sixty seeds were

then soaked for 15 min in the growth medium of each endophyte

culture (150 mL) mixed with 7 ml of Tween 80. Ten treated grains

were transferred to a 90 mm-diameter Petri dish in which sterile

Whatman paper was soaked in 5 ml DDW water. A 6-mm-

diameter agar disk of M. maydis (grown previously on PDA in

the dark at 28 ± 1°C) was added to each plate center. A sterile 6-

mm-diameter PDA disk was added to the control group. Three ml

DDW was added to each plate every three days to maintain

moisture and to allow efficient seed germination and pathogen

inoculation. After six days of incubation at 28 ± 1°C in the dark,

the seeds were photographed, and their germination percentages,

epicotyl length and fresh biomass were assessed.
2.8 Statistical analysis

The data from the in vitro plates and seedlings pathogenicity

assays were analyzed using Microsoft Excel (version 2401 Build

16.0.17231.20290) and GraphPad Prism software (version 9.5.1.733,

GraphPad Software Inc., San Diego, CA, USA). Statistical analysis

included a Shapiro-Wilk normality test followed by a one-way

analysis of variance (ANOVA) and a post-doc of Dunnett’s test

(which compares experimental groups to a single control group) or

the Fisher’s Least Significant Difference (LSD) test, and at a

significance level of p < 0.05.
TABLE 2 The primers used in this study for the endophytes’ identification.

Primer Sequence Uses Amplification

ITS4
ITS5

5′-TCCTCCGCTTATTGATATGC-3′
5′-GGAAGTAAAAGTCGTAACAAGG-3′ PCR target gene

Small subunit ribosomal RNA gene
560 bp
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3 Results

The current work aimed at isolating and identifying maize

seeds’ endophytes and exploring their bioprotective potential

against the late wilt (LWD) pathogen M. maydis. First, six fungal

species were isolated and identified molecularly (Figure 1; Table 3).

These selected endophytes belong to the genus Aspergillus,

Fusarium, Mucor and Cladosporium. The homology search using

the BLASTN and Fusarioid-ID tools resulted in 95.30-100%

similarity to GenBank species. The isolates’ identity (confirmed

by colony morphology and microscopic traits) was verified by

phylogenetic analysis (Figure 2; Supplementary Figure S2). The

phylogenetic tree consists of all maize seeds’ endophyte species

identified in Israel so far and provides a more comprehensive

understanding of these endophytes’ communities. It may be

drawn from the analysis that the species composition is usually

not linked to a specific maize cultivar. One exception is the

Chetomium species, which was isolated from Megaton seeds (a

highly LWD susceptible genotype). The endophytes’ population is

divided into two major branches. The first includes two sub-

branches: the Rhizopus and Alternaria sub-branch; and the

Magnaporthiopsis, Trichoderma and Chetomium sub-branch. The

second consists of Mucor circinelloides and Macrophomina

phaseolina, which are separate from the Penicillium and

Aspergillus species group and the Cladosporium and Fusarium

spp. group.

The newly identified endophyte species’ bioprotective potential

was tested compared to three previously recognized species (Degani

et al., 2021) by assessing their secreted metabolites’ inhibition

capability and direct confront antagonism against M. maydis

(Table 3). These tests are presented in detail below.
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The non-directed method assesses the antagonism derived from

the secretion of antipathogenic compounds that block M. maydis

colony growth. Summarizing the qualitative results (Figure 3)

revealed that four of the isolates were able to repress the

pathogen through the secretion of such metabolites into the

growth medium: the bacteria Bacillus subtilis (R2) and the three

fungal colonists – Aspergillus terreus (PE2, PE3), and Aspergillus

flavus (ME1). Specifically, one species, A. terreus (PE3), excelled in

this test and completely inhibited the pathogen. In contrast, in the

presence of Cladosporium sp. (RO1) extrolites, M. maydis grows

without apparent interference.

On solid media, after six days, the seed colonists M. maydis

confrontation assay results (Figure 4) supported the above results.

This examination revealed that some endophytes could restrict M.

maydis colony growth by secreting their extrolites (for example, S7,

R2, PE2, PE3) or by physical hypha-hypha contact (for instance,

Chaetomium cochliodes, M2). One isolate,Mucor circinelloides (PE1),

grew above the M. maydis colony and inhibited its growth.

Unexpectedly, this species was unsuccessful in the metabolites assay

(Figure 3). In contrast, some isolates such as RO1 were poor M.

maydis antagonists in both assays. Quantitative analysis of both the

extrolites and confront experiments is presented in Figure 5. The

highest inhibition scores (%I) were for Aspergillus terreus (PE3) in

the metabolites assay and Mucor circinelloides (PE1) in the

mycoparasitism experiment. An intriguing result regards S7, which

was unsuccessful in the metabolites assay but showed strong non-

direct antagonism in plate confrontation against M. maydis. Bio-

protective species that excel in both trials (p < 0.005) are ME1 (A.

flavus), ME2 (Fusarium sp.), PE2, PE3 (A. terreus), and the control

species R2 (B. subtilis) and M2 (C. cochliodes). The newly discovered

species were further examined in the seedlings’ pathogenicity assay.
FIGURE 1

PCR-based molecular identification of the maize seeds’ endophytes. The gel presented is cropped and rearranged to improve the presentation’s
clarity and conciseness. The full-length gel is presented in Supplementary Figure S1. The amplified product (ITS, targeting the small subunit
ribosomal RNA gene using the universal internal transcribed spacer) was detected by gel electrophoresis. The negative control (DDW) includes sterile
twice-distilled water instead of the DNA template.
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The seeds’ endophytes that passed both the metabolites and the

confront antagonism tests were selected for a seedling pathogenicity

assessment. The germination values of the LWD susceptible sweet

maize Prelude cv. seeds enriched with the protective endophytes were

measured under the pathogen stress in Petri dishes (Figure 6). While

statistical significance could only be reached compared to the non-

infected control, all the endophytes studied (except ME1) enhanced the

germinating seeds’ epicotyl elongation (23% or more), with Fusarium

sp. (ME2) being the most successful (reaching 43% enhancement over

the infected control). Also, B. subtilis (R2) evidently promoted the

seeds’ germination (by 50%) and the sprouts’ biomass (by 34%)

compared to the infected control. In contrast, other species

(particularly A. terreus, PE2) caused some decrease in those

measures (up to 50% and 41% reduction compared to this control).
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4 Discussion

Late wilt disease (LWD), caused by the fungusMagnaporthiopsis

maydis, threatens commercial maize production in high-risk areas.

Searching for control options against the pathogen is one of the top

priorities in Israel, Egypt and other countries. While disease-resistant

maize genotypes can reduce yield loss, aggressive variants of the

fungus can overcome host resistance (Ortiz-Bustos et al., 2015;

Shofman et al., 2022). Among alternative ways to control LWD,

one pioneering method is to isolate, identify and study the maize

seeds’ microflora bioprotective potential against LWD (Degani et al.,

2021). This study aimed at expanding this research direction and

enriching our understanding of the maize seeds’ natural micro-

inhabitants. The results may uncover the poorly understood
TABLE 3 Endophytes included in this study and their metabolites and confront assays resultsa.

Desig.
Maize
Cultivar

Primer Species Class.
NCBI/Fusarioid-
ID Accession

Percent
identity

Metabolites’
inhibitionb

Confront
assay

winnerc

M2 d Megaton cv.

ITS 4
Chaetomium
subaffine

Fungi HM365247.1 100%

8.24% (+)

ITS 5
Chaetomium
cochliodes

Fungi MN534819.1 98.33%

S7 d Simon cv.

ITS 4
Penicillium
citrinum

Fungi MN046972.1 99.57%

1.23% (++)

ITS 5
Penicillium
citrinum

Fungi OP237262.1 98.85%

R2 d Royalty cv.
ITS 4 Bacillus subtilis Bacteria MT415782.1 99.06%

82.89% (++)
ITS 5 Bacillus subtilis Bacteria MT415782.1 99.06%

ME1 Megaton cv.
ITS 4 Aspergillus flavus Fungi OQ422930.1 99.48%

73.64% (++)
ITS 5 Aspergillus flavus Fungi KY006838.1 95.30%

ME2 Megaton cv.

ITS 4
Fusarium
ananatum

Fungi CBS 118516 97.74%

43.64% (+)

ITS 5
Fusarium
beomiforme

Fungi CBS 100160 99.16%

PE1 Prelude cv.
ITS 4 Mucor circinelloides Fungi MH855528.1 99.10%

0.0% (++)
ITS 5 Mucor circinelloides Fungi MT603942.1 99.66%

PE2 Prelude cv.
ITS 4 Aspergillus terreus. Fungi AB369899.1 97.06%

69.35% (++)
ITS 5 Aspergillus terreus. Fungi MH472622.1 98.50%

PE3 Prelude cv.
ITS 4 Aspergillus terreus. Fungi MK108382.1 98.63%

100% (++)
ITS 5 Aspergillus terreus. Fungi MH472622.1 96.42%

RO1 Royalty cv.

ITS 4
Cladosporium
cladosporioides

Fungi KU680349.1 100%

0.0% (-)

ITS 5
Cladosporium
cladosporioides

Fungi MG755208.1 96.43%
aMaize seeds’ endophytes molecular identification and their metabolites and confront assay results summary. Identifying the isolates relies on the highest sequence similarity scores of the ITS
regions using the NCBI GenBank BLASTN search (National Center for Biotechnology Information, Bethesda, MD, USA, at: http://www.ncbi.nlm.nih.gov, accessed on 15 May 2024). For the
Fusarium species identification, the Fusarioid-ID database pairwise alignment (at www.fusarium.org, accessed on 15 May 2024) was used.
bThe first assay tested the endophyte’s secreted metabolites’ ability to restrict M. maydis growth on a solid potato dextrose agar (PDA) medium. Antagonist endophytes with high inhibition (%I)
scores (above 60%) were marked as winners in the metabolites’ assay.
cSecond, in the directly confront assessment on PDA, the endophytes were classified as strong (++), moderately strong (+) or weak (-) antagonists according to their ability to suppress M.
maydis growth.
dThe top three species were isolated and identified in a previous study (Degani et al., 2021) and used here for comparison.
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FIGURE 2

Phylogenetic analysis of the ITS4 gene of the endophytes’ isolates (presented in Table 3). The SeaView version 5.05 program (http://doua.prabi.fr/
software/seaview, accessed on 15 May 2024) generated the phylogenetic tree using the parsimony DNA-level algorithm (dnapars)-based method with
the default parameters and bootstrap with 1000 replications. The analysis contains the ITS gene from reference strains from a previous work (Degani
et al., 2021) to present all maize seeds’ endophyte species identified in Israel so far and others selected from the GenBank to assist the taxonomic
assignment. These can be identified by their NCBI accession number. The scale describes the genetic resemblance percentages between sequences.
The statistical measures (bootstrap support and posterior probability) for each node are displayed.
FIGURE 3

Endophyte’s secreted metabolites inhibition assay to identify M. maydis antagonism. This non-directed method identifies the interaction between the
pathogen M. maydis and selected endophytes listed in Table 3. The control was an M. maydis (Hm2 isolate) culture grown on a regular PDA medium
(without extrolites). Growth inhibition of M. maydis after six days of incubation indicates the endophyte secretion antifungal properties. Each photo
represents five repeats for each seed colonist’s assay.
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FIGURE 4

Plate confrontation assay to identify M. maydis antagonism. The PDA plate mycoparasitism assay after seven days of incubation was used as a direct
way to identify interactions between M. maydis and selected endophytes studied here. Tested microorganisms are listed in Table 3. The control was
a growth medium where the pathogen M. maydis seeded on both poles (Hm2 vs. Hm2). Each photo represents five repeats for each confrontation
assay. Species that managed to restrict M. maydis growth were marked as having microparasitic potential (grow above M. maydis mycelium or inhibit
it by hypha contact or by creating antifungal compounds). In weak antagonists, as can be seen for example in RO1 (on the left) vs. Hm2 (on the
right), the M. maydis’s mycelium covered almost the entire dish.
B

C D

A

FIGURE 5

Percentage of inhibition of M. maydis (%I) in the metabolites (Figure 3) and plate confrontation (Figure 4) assays. The following calculation measured
M. maydis’ inhibition (A, B). For the metabolites assay (C): (%I) = [((A+B)/2)x100/R], where R = radial growth of the control; A+B = radial growth of
treatment. For the mycoparasitism experiment (D), the calculation is (%I) = [(R-DM) x100/R], where R = radial growth of the control; DM = radial
expansion of treatment (Chagas et al., 2022). The vertical upper bars represent the standard error of the mean of the 5-6 replicates. Asterisks
indicate a significant difference from the control [p < 0.0005 (***), < 0.00005 (****)].
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pathogen-pathogen crosstalk that affects LWD and assist in

developing an eco-friendly method based on strengthening the bio-

shielding members in those communities and, thus, the seeds’

immunity to LWD.

The first indication of endophytes-M. maydis interactions may

be drawn from the plate’s confrontation assay. A typical response

between two species that inhibit each other’s growth on an artificial

rich solid medium is the formation of a dark border line between

them (Mallett and Hiratsuka, 1986). The appearance of hyphal

granules, dark gel-like structures, and vacuoles observed in fungal

interactions may indicate cell death due to mycoparasitism or

nutrient deprivation due to competitive interactions. A brown-

black line demarking the combating fungal strains could be linked

with melanin, 1,8-dihydroxynaphthalene (DHN), a defense against

environmental stresses (Krause et al., 2020). For example, it was

reported that in Armillaria mellea, melanized hyphal cells derived

from different fungal species of complex constituted the black line

(Mallett and Hiratsuka, 1986). This demarcation area was flanked

on each side by vesicular cells forming the pseudosclerotial plates

characteristic of each respective species.

In this study, such a dark border line was formed between M.

maydis and P. citrinum (S7) and B. subtilis (R2), implying

antagonism between these two fungi and the maize pathogen.

Both endophytes have been well-studied for their ability to

produce fungal-inhibiting secretions and promote plant growth.

The fungus P. citrinum is commonly found in plants such as
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soybean and wheat. It produces mycotoxin citrinin, digestive

enzymes (cellulase, endoglucanase and xylulase), and plant

growth hormones (as summarized by (Khan et al., 2008)). The

Bacillus species produces various antifungal compounds that

suppress or kill fungal pathogens, making these bacteria popular

for the biocontrol of plant diseases (Wu et al., 2015). These

compounds include non-ribosomal cyclic lipopeptides and

volatile organic compounds (VOCs) having strong antifungal

activities (Zhang et al., 2020). In line with this, the secreted

metabolites assay results show that B. subtilis (R2) extrolites

strongly inhibit M. maydis growth.

Indeed, an important endophytic bacterial species that has been

studied extensively is B. subtilis (Gond et al., 2015). This bacterial

genus is commonly found in the seeds of various maize varieties and

can be transmitted vertically from one plant generation to the next,

similar to other endophytes (Rodriguez et al., 2009). This suggests

that endophytes play a crucial role in the survival of their host

plants. These findings support the idea that LWD-resistant maize

genotypes acquire and inherit endophytes, which significantly

enhance their immunity to the M. maydis pathogen.

Indeed, the identified partners in maize seeds’ natural microflora,

such as B. subtilis reported here, can resist and even reduce the

pathogen’s development and spread inside the host roots. Besides

their antifungal properties, bacteria can live within the plants as

symbiotic endophytes, such as Bacillus amyloliquifaciens and B.

subtilis, which are naturally found in many maize varieties.
B

C D E

A

FIGURE 6

Seedlings pathogenicity assay. The inhibition influence of M. maydis on the seeds’ germination and the sprouts’ first development in vitro. The seeds
were enriched by the endophytes’ secreted metabolites (15 min incubation in their growth fluid). (A) The control plate included M. maydis stressed
seeds (Infected) and mock uninfected seeds (Healthy); (B) representative plate of B subtilis (R2) versus M. maydis (Hm2). Six endophytes were added
separately to the seeds in vitro. Seeds germination percentage (C), epicotyl length (D) and sprouts’ fresh biomass (E) were measured six days after
incubation at 28 ± 1°C in the dark. Vertical upper bars represent the standard error of the mean of six replicates (Petri dishes, each containing 10
seeds). Asterisks indicate a significant difference from the mock control [p < 0.005 (**), < 0.0005 (***)].
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Research indicates that these bacteria can help protect their host

plants by producing antifungal lipopeptides such as subtilomycin

(Deng et al., 2019). These compounds inhibit pathogens and trigger

the activation of the plant’s pathogenesis-related genes, enhancing the

plant’s systemic acquired resistance (Gond et al., 2015). Specifically, a

mixture of B. subtilis and Pseudomonas koreensis produced

siderophores and exhibited antagonistic activity against M. maydis

(Ghazy and El-Nahrawy, 2020). Additionally, this combination

prevented both pre-emergence and post-emergence damping-off

and promoted plant growth under greenhouse conditions. The

treatment was also highly effective in field trials, reducing infections

and increasing crop yield (Ghazy and El-Nahrawy, 2020).

The results of this study support global efforts and are promoting

the use of beneficial maize endophytes as a bio-barrier and protective

shield against the LWD fungus. Similar to the current study, seed

treatments using bio-control formulations (B. subtilis, Bacillus

pumilus, Pseudomonas fluorescens, Epicoccum nigrum) have been

recommended for controlling maize LWD and have shown

promising results in field tests (Hamza et al., 2013). These

treatments were applied over two seasons and successfully reduced

the impact of M. maydis on pre-emergence damping-off, disease

incidence and crop yield. In another study (El-Mehalowy et al., 2004),

rhizosphere actinomycetes (Streptomyces graminofaciens, S. rochei, S.

annulatus, S. gibsonii), yeasts (Candida glabrata, C. maltosa, C.

slooffii) and the fungus Rhodotorula rubra significantly inhibited

the growth of M. maydis in vitro and in seed treatments under

controlled greenhouse conditions. When these species were applied

without the LWD pathogen, they significantly improved maize plant

growth parameters.

Another potential bio-shielding fungus is P. citrinum – a seed-

borne protective fungal endophyte having a worldwide distribution

(Ahmad et al., 2010b; Goko et al., 2021) and a producer of a wide

range of fungal extrolites. Currently, P. citrinum is being explored

for its production of secondary metabolites and their associated

benefits on plant growth promotion (e.g., secreted gibberellin (Khan

et al., 2008)) and competitive antifungals (Wu et al., 2016). P.

citrinum secondary metabolites are also being studied as potent

molecules for drug development (Sahu et al., 2022). P. citrinum,

among many extrolites, produces the lactone antifungal HMG-CoA

reductase inhibitors mevastatin and citrinin (Ahmad et al., 2010a).

Thus, testing these compounds’ biocontrol potential against the

LWD pathogen would be very interesting and valuable.

Despite P. citrinum (S7) metabolites’ strong impact in the confront

test (Figure 4), it unexpectedly failed to antagonize M. maydis growth

in the metabolites assay (Figure 3). This result is probably affected by

the assay protocol, which involved autoclave sterilization of a PDA

medium consisting of P. citrinum growth medium instead of water.

This procedure destroys the structure of proteins and other heat-

sensitive compounds that may have antifungal potential. Yet, some

antifungal compounds produced by the seeds’ endophytes are heat-

stable. One such example is Fusarium sp. (ME2).

It is well known that Fusarium spp. produces toxins, the most

prominent of which are fumonisins, aflatoxins, ochratoxin A,

zearalenone, DON, and T-2 and HT-2 toxins, which are

frequently co-contaminants in maize seed (Tarazona et al., 2020).

One illustration of their importance in pathogen-pathogen
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interactions is a study dedicated to kernels and in vitro evaluation

(Lanubile et al., 2021). The work indicated that F. verticillioides-

Aspergillus flavus interactions in maize resulted in reduced

fumonisins and aflatoxins biosynthetic gene expression profiles.

Such interactions could exist here and should be explored more in

future studies.

The most potentM. maydis antagonistic fungal species identified

here (excelling in both the metabolites and the confrontation trials)

are Aspergillus terreus (PE3) and Aspergillus flavus (ME1). Like

Penicillium spp., Aspergillus spp. represents the most chemically

examined fungal group with hundreds of biologically active

secondary metabolites (Liu and Versicoamides, 2017). A. terreus is

a significant saprophytic and endophytic filamentous fungus,

producing a wide variety of bioactive secondary metabolites (Amr

et al., 2023). It was proposed for use as biocontrol of Rhizoctonia

solani, the causal agent of Phaseolus vulgaris andVicia faba damping-

off disease (Abdelaziz et al., 2023). This fungal species and some other

endophytes identified here may also be dormant pathogens

(opportunists) waiting for the proper condition to evoke their

attack on the host (Samson et al., 2011). On the other hand, A.

terreus was found to be a plant growth promoter after its inoculation

in rice and maize plants in vivo and in vitro (Javed et al., 2020). Thus,

as reported here, the A. terreus (PE3) inhibition ability against M.

maydis makes it a good candidate for LWD bio-friendly control.

It is important to note that many endophytes use multiple

methods to combat invasive pathogens. They can directly inhibit

the pathogen’s growth and also trigger the plant’s systemic defense

response (Gao et al., 2010). Research into the microbial

communities, both pathogenic and non-pathogenic, associated

with maize could enhance crop management and yield under

these threats. All maize plants in natural environments contain

seed-vectored endophytes, which may affect the resistance of maize

cultivars to late wilt disease (LWD). Differences in resistance

between susceptible and resistant LWD maize cultivars may stem

from variations in their endophytic communities.

Finally, the seeding pathogenicity assay adjusted and used in the

current study is a rapid research tool for evaluating the seeds’

microflora protective members’ ability to prevent pathogens’

penetration and establishment stages. This stage is essential to rule

out inefficient antagonist microorganisms, focusing research efforts

on more promising ones. The results of the current study are

motivating us to expand our knowledge on this subject to uncover

the full potential of the maize microbiome in helping the plant

survive against pathogens. Understanding these interactions under

natural conditions will help us grasp (and potentially influence) the

long-term effects of excluding endophyte-based biocontrol methods.
5 Conclusion

This study focused on understanding the endophytes’ role in seeds’

acquired resistance to late wilt disease (LWD). Most microorganism

species isolated from maize grains and identified here had an

antagonistic effect against the LWD pathogen Magnaporthiopsis

maydis in vitro (extrolites and confrontation assays). The bacteria B.

subtilis (R2) was the best protective endophyte in terms of seeds’
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germination (50%) and sprouts’ biomass (34%). The maize cultivar’s

resistance/susceptibility to the disease may be related to the endophyte

colonizing it. Indeed, the most successful species in the confrontation

and seedlings pathogenicity assays, A. terreus (PE2, PE3), A. flavus

(ME1) and B. subtilis, were isolated from the most LWD-susceptible

maize cultivars. Still, the possible link between the maize cultivar LWD

susceptibility and the bioprotective potential of its endophytes

community members should be clarified in future studies. Also,

studying the endophytes’ impact on M. maydis during the later

growth stages is critical. The results of this study are encouraging us

to deepen and widen our understanding of this subject matter to

uncover the maize microbiome’s role in the plant survival struggle

against pathogens. Such future research directions may include

studying the endophytes’ action mechanism involved in pathogen

repression, interactions between the seeds’ microflora colonizers, and

host physiology and environmental factors that affect the seeds’

microbiome composition and function. Exploring these interactions

under natural conditions could help us manipulate and influence the

consequences of endophyte-based biocontrol.
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