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In Rhodotorula mucilaginosa,
active oxidative metabolism
increases carotenoids to
inactivate excess reactive
oxygen species
Edson Mosqueda-Martı́nez1, Natalia Chiquete-Félix1,
Paulina Castañeda-Tamez1, Carolina Ricardez-Garcı́a1,
Manuel Gutiérrez-Aguilar2, Salvador Uribe-Carvajal 1*

and Ofelia Mendez-Romero1*

1Department of Genetics and Molecular Biology, Instituto de Fisiologı́a Celular, Universidad Nacional
Autónoma de México, Mexico City, Mexico, 2Department of Biochemistry, Facultad de Quı́mica,
Universidad Nacional Autonoma de México, Mexico City, Mexico
Carotenoids produced by bacteria, yeasts, algae and plants inactivate Free

Radicals (FR). However, FR may inactivate carotenoids and even turn them into

free radicals. Oxidative metabolism is a source of the highly motile Reactive

Oxygen Species (ROS). To evaluate carotenoid interactions with ROS, the yeast

Rhodotorula mucilaginosawas grown in dextrose (YPD), a fermentative substrate

where low rates of oxygen consumption and low carotenoid expression were

observed, or in lactate (YPLac), a mitochondrial oxidative-phosphorylation

(OxPhos) substrate, which supports high respiratory activity and carotenoid

production. ROS were high in YPLac-grown cells and these were unmasked by

the carotenoid production-inhibitor diphenylamine (DPA). In contrast, in YPD-

grown cells ROS were almost absent. It is proposed that YPLac cells are under

oxidative stress. In addition, YPLac-grown cells were more sensitive than YPD-

grown cells to menadione (MD), a FR-releasing agent. To test whether

carotenoids from cells grown in YPLac had been modified by ROS, carotenoids

from each, YPD- and YPLac-grown cells were isolated and added back to cells,

evaluating protection from MD. Remarkably, carotenoids extracted from cells

grown in YPLac medium inhibited growth, while in contrast extracts from YPD-

grown cells were innocuous or mildly protective. Results suggest that

carotenoid-synthesis in YPLac-cells is a response to OxPhos-produced ROS.

However, upon reacting with FR, carotenoids themselves may be inactivated or

even become prooxidant themselves.
KEYWORDS

carotenoids, Rhodotorula mucilaginosa, carbon source, aerobic metabolism,
diphenylamine (DPA), ROS
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1 Introduction

Life is found almost anywhere on Earth (Merino et al., 2019).

Organisms have developed systems to survive in extreme conditions

such as high and low proton and salt concentrations or extreme

temperatures (Coleine et al., 2022; Touchette et al., 2022; Liu et al.,

2023; Yoo et al., 2023). Oxygen is an ideal electron acceptor that

releases large amounts of energy during its catalyzed reduction

(Mendez-Romero et al., 2022). However, its non-catalyzed partial

reduction produces highly reactive Free Radicals (FR) known as

Reactive Oxygen Species (ROS) (Sies et al., 2022). ROS damage

proteins, lipids and nucleic acids, leading to cell dysfunction and

eventual death (Li et al., 2018). Cells have developed multiple

mechanisms to prevent ROS toxicity: some, such as physiological

uncoupling, prevent ROS generation (Guerrero-Castillo et al., 2011;

Cabrera-Orefice et al., 2014; Castañeda-Tamez et al., 2024). Other

systems deactivate ROS enzymatically: these are superoxide

dismutase, catalases and glutathione reductase (Jamova et al.,

2024). A third class of ROS detoxification system includes

pigments like chlorophylls, melanin and carotenoids, that react

with FR to inactivate them (Priyadarshini Pradhan et al., 2022;

Tamiaki, 2022; Suthar et al., 2023). These pigments quench and

inactivate ROS, protecting proteins, membranes, and DNA (Stahl

and Sies, 2003; Salman et al., 2007; Choi and Lee, 2015; Lucas et al.,

2020). In humans, ingested carotenoids protect against cancer and

illnesses that include cardiovascular disorders, cataracts, age-related

macular degeneration, osteoporosis, and diabetes (Milani et al.,

2017; Shabhir and Nuzhat, 2018; Paul et al., 2023).

Rhodotorula spp. fungi (Moliné et al., 2010; Irazusta et al., 2013;

Chen et al., 2022) thrive in diverse harsh environments, including

soils, contaminated waters, and permafrost layers (Ge et al., 2021).

When exposed to UV-radiation, hyperosmolarity or ROS, these

species enhance carotenoid synthesis (Bhosale and Gadre, 2002;

Aksu and Eren, 2005; Garcia-Cortes et al., 2021; Li et al., 2022).

Under these conditions, the DPA-mediated inhibition of carotenoid

production decreases survival (Moore et al., 1989; Moliné et al.,

2010). It has been suggested that pigmented yeasts of the genera

Rhodotorula, Sporobolomyces, Phaffya and Cystofilobasidium

synthesize carotenoids to compensate for deficiencies in other

antioxidant systems, such as copper and zinc superoxide-

dismutase (Cu/Zn-SOD) (Moore et al., 1989; Schroeder and

Johnson, 1993; Moliné et al., 2009). While R. mucilaginosa does

possess the gene for Cu/Zn-SOD, it does not express it under basal

conditions (Hernández-Saavedra, 2003).

Carotenoids may be non-substituted hydrocarbons such as b-
carotene and torulene, or xanthophylls, oxygenated derivatives like

thorularhodin (Watcharawipas and Runguphan, 2022; Paul et al.,

2023). Carotenoids inactivate ROS through two possible

mechanisms: the first one involves dissipating energy into the

surrounding medium as heat, returning singlet oxygen (1O2) to

its basal state without altering the carotenoid (Stahl and Sies, 2003).

The second mechanism involves electron transfer, where

carotenoids are oxidized and inactivated; these oxidized species

cannot be recycled (Ribeiro et al., 2018). Carotenoid reactions can
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be hazardous as they may produce pro-oxidizing derivatives that

damage cell structures (Henry et al., 2000; Lucas et al., 2020).

Inhibitors of carotenoid biosynthesis, such as diphenylamine

(DPA), block the sequential desaturation of phytoene (Clarke

et al., 1983; Moliné et al., 2012) and are used to assess the role of

carotenoids in the cell (Maxwell et al., 1966; Hayman et al., 1974).

We added different DPA concentrations to R. mucilaginosa to

evaluate carotenoid protection against ROS. Cells grown in lactate as

the carbon source produced more carotenoids than those using

dextrose. Dextrose is a fermentative substrate that requires little

mitochondrial activity (Castañeda-Tamez et al., 2024). YPLac-grown

cells exhibited higher oxygen consumption rates and were under

oxidative stress, as indicated by increased carotenoid synthesis. DPA

was added to inhibit carotenoid production, unmasking ROS

concentrations. Higher ROS were found in YPLac-grown cells.

Additionally, YPLac-grown cells were more sensitive to

menadione. When added back to new cells, isolated carotenoids

from YPD-grown cells exhibited a mild protective effect, while those

from YPLac-grown cells inhibited growth partially. These findings

suggest that, increased carotenoid synthesis constitutes a response

to oxidative stress in R. mucilaginosa. However, during ROS

deactivation, some carotenoids are probably modified, losing their

protective activity and even producing pro-oxidizing species (Lucas

et al., 2020).
2 Materials and methods

2.1 Yeast and culture media

All reagents were analytical grade. Rhodotorula mucilaginosa

ATCC 66034 was kept at room temperature in Petri dishes

containing YPD agar (10 g yeast extract, (MCD Lab, Estado de

México, Mexico) 20 g peptone (MCD Lab, Estado de México,

Mexico), 20 g glucose (Sigma Chem Co, St. Louis Mo, USA) and

20 g agar (Difco, Detroit Mi, USA). Cells were used within three

weeks. For experiments, a loophole was inoculated into 10 mL of

YPD (1% yeast extract, 2% peptone, 2% dextrose) or YPLac (1%

yeast extract, 2% peptone, 2% lactate, pH 6.0. For YPLac, titration of

pH to 6.0 with NaOH was needed to neutralize added 85% lactic

acid (Meyer, CDMX, Mexico) and grown overnight. Then, an

aliquot was added to 100 mL of the corresponding medium to an

O.D. = 0.05 (540 nm). Note that the final concentration for each

carbon source was 2%, i.e., 0.11 M dextrose or 0.23 M lactic. Flasks

were incubated in a Gyratory Shaker (G10 model, New Brunswick

Scientific, New Jersey, USA) at 250 rpm and 30°C for 24 hours. All

experiments were performed in triplicate. Carotenoid production

was inhibited by adding different concentrations of diphenylamine

(DPA) (Sigma-Aldrich, Darmstadt, Germany) as described by

Moliné et al. (2010). To discard any vehicle effects, we adjusted

DPA concentrations in stock solutions (e.g., a 3.75 mM DPA

solution was used to add 4 mL/mL and attain 15 mM DPA). We

always added 4 µl EtOH/mL alone in controls to discard any effects

on growth or oxygen consumption (See below).
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2.2 Growth curves

Cells were seeded introducing a loophole from a Petri dish

culture into 50 mL of either YPD (where dextrose is a fermentable

carbon source) or YPLac (where lactate is a non-fermentable carbon

source) (Castañeda-Tamez et al., 2024). After 24 h, cells were added

to 100 mL of the corresponding medium, adjusting concentration to

O.D. = 0.05 and were cultivated at 30°C. We used 250 mL

Erlenmeyer flasks modified in our glass shop by attaching a Klett-

test tube to the wall (Pinocchios) and cell growth was evaluated

every three hours in a Klett-Summerson Model 800 colorimeter

(Green filter) (Klett Manufacturing Co., New York, USA). To

discard any effects of DPA on growth, samples containing 15 and

40 µMDPA were also tested (Supplementary Figure S1). In addition

to absorbance data, biomass wet weight was measured. Although,
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dry weight is probably more accurate, wet weight measurement is

very straightforward and is routinely used to produce an estimate of

cell mass (Uribe et al., 1985; Godbey, 2022). Cells were harvested

and washed with distilled water three times at 6000 x g for 5 min at

4°C and then, samples were centrifuged at 12,000 x g for 5 min and

the supernatant was discarded (Mussagy et al., 2021a).

Subsequently, pellets were weighed using a Highland® Portable

Precision Balance-HCB 602H (ADAM, Oxford, USA).
2.3 Rate of oxygen consumption

To test oxidative metabolism, the rate of oxygen consumption

was measured in cells harvested at 24 h (Log phase) grown in either

YPD or YPLac (Purvis and Gegogeine, 2003). Respiration buffer
FIGURE 1

Rhodotorula mucilaginosa growth curves and biomass. (A) Growth of R. mucilaginosa was evaluated using a Klett-Summerson colorimeter (Green
filter) in the presence of either a fermentable carbon source YPD (black dots) or a non-fermentable carbon source YPLac (gray circles). When SD
bars were smaller than the illustrated dots, they were omitted. (B) Biomass of samples taken at 24 h (wet weight). Data are mean ± SD (n= 3):
different letters indicate a significant difference (p<0.05).
FIGURE 2

Rate of oxygen consumption by R. mucilaginosa cells. Cells grown in either YPD- or YPLac-media for 24 h. were used. Reaction mixture: 10 mM 4-
morpholineethanesulfonic acid (MES), pH 6.0. 2% dextrose. Where indicated, 40 mM DPA or 32 mM CCCP. Cells 12.5 mg ww/mL Data are means ±
SD (n=6). Statistical differences (one-way ANOVA) between YPD-cells and YPLac-cells are indicated with Latin letters. Asterisks indicate differences
within a specific medium comparing the uncoupled state (CCCP) against their respective basal respiratory activity. In all cases, p<0.0001.
frontiersin.org

https://doi.org/10.3389/ffunb.2024.1378590
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Mosqueda-Martı́nez et al. 10.3389/ffunb.2024.1378590
was 10 mM 4-morpholineethanesulfonic acid (MES) pH 6.0. Cells

were added to a final concentration of 12.5 mg (ww)/mL (Dejean

et al., 2000). Additions were: one minute after initiating a given

trace 40 µM DPA and after another minute 32 µM carbonyl cyanide

3-chlorophenylhydrazone (CCCP) (Barrientos, 2002) (see

Supplementary Figure S2). Measurements were made using a

Clark-type electrode coupled to an oximeter (StrathKelvin

instruments model 782, North Lanarkshire, Scotland) equipped

with a 1 mL water-jacketed chamber. Temperature was kept at 30°C

with a water bath (PolyScience 7, Warrington Pa, USA). Oxygen

uptake was measured as a function of time from the tangent to the

initial part of the progress curve and expressed as nanoatom-grams

of oxygen per minute per milligram of cells (wet weight) (natgO

min-1. mg cells (ww)-1) (Bari et al., 2010; Nicholls and

Ferguson, 2013).
2.4 Carotenoid extraction and quantitation

Under stress, R. mucilaginosa increases carotenoid production.

To evaluate this, carotenoids were extracted from 24 h cells using a

microwave method as described by Mohamadi et al. (2013) with

slight modifications. Briefly, cells were washed with distilled water

three times at 6000 x g for 5 min at 4°C. Then, samples were

centrifuged at 12000 xg for 5 min and the supernatant was discarded

while the pellet (1 g (ww) mL-1) was spread on the surface of a glass

Petri dish. Each dish was treated in a microwave oven with a

concave reflection system for 30 sec at 700 watts (Daewoo, Seoul,

Korea). A fine pink powder was obtained and dissolved in DMSO to

50 mg dry weight per mL. The sample was sonicated for 30 min

(Sonics Vibra Cell, Newtown, CT, USA) at 20 kHz, 50% amplitude

with pulses of 30 sec alternated with 30 sec resting periods on ice.
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These were incubated under agitation for 1 h at room temperature

and then cyclohexane, 5 mL/0.1 g dry weight biomass was added

and further incubated for 60 min at room temp. Extraction was

performed twice. At the end, the sample was centrifuged at 12000 x

g for 10 min and the remaining organic phase was evaporated under

a mild airflow (3 L/min) in a dark chamber until a dry powder was

obtained. Each sample was solubilized in 0.2 mL 96% ethanol

(Jaeschke et al., 2017) and absorbance spectra, from 400 to 600

nm (POLARstar Omega luminometer, BGM LABTECH,

Allmendgrün, Germany) were taken. Carotenoid identities were

annotated as in Varmira et al. (2016). To avoid interference with the

torularhodin peak at 480 nm, torulene was identified by its

characteristic shoulder at 530 nm instead of 490 nm, Carotene

concentration was determined as in Sharma and Ghoshal (2020).
2.5 Thin layer chromatography

TLC was used to estimate of carotenoid composition on YPD-

and YPLac-cell extracts. The stationary phase was silica gel in

commercial plates (TLC silica gel 60 F254, 6x9 cm (Merck,

Darmstadt, Germany). The mobile phase was ether:hexane:

acetone (90:30:10, v/v/v; Meyer, CDMX, Mexico). Samples were

run for 20 min at room temperature (Kanno et al., 2021). Images

were taken in visible light. The distance (Rf) between the baseline

and each spot was estimated, and spots were tentatively identified

comparing with the literature (Zeb and Murkovic, 2010; Cheng and

Yang, 2016). In an effort to further explore carotenoid identity, each

band from TLC was excised and eluted in the same solvent and its

absorbance spectrum was read at 400 to 600 nm in a POLARstar

Omega luminometer. Detected pigments were annotated as in

Moliné et al. (2012).
FIGURE 3

Carotenoid production by R. mucilaginosa cells. (A) Absorbance spectra of carotenoids extracted from R. mucilaginosa grown in YPD (black line) or
YPLac (gray line) at the Log phase. Peaks corresponding to carotenoids typically obtained from R. mucilaginosa are indicated with arrows: b-
carotene (450 nm), Torularhodin (490 nm) and Torulene (520nm). (B) Total carotenoid estimated from spectra taken under each condition, as
indicated; data are mean ± SD (n=3). Different letters indicate a significant difference (p<0.05). Where: dextrose (black) and lactate (gray). (C) TLC of
carotenoid extracts from YPD- or YPLac-grown R. mucilaginosa cells. For comparison, a commercial sample of b-carotene was also included.
Different colored spots were observed and labeled as follows: a, Rf = 0.92; b, Rf = 0.85; and c Rf= 0.33 (YPD) and 0.14 (YPLac), respectively. The
mobile phase used was petroleum ether:hexane:acetone, in a ratio of 90:30:10 v/v. (D) Absorbance spectra from TLC spots a + b from either YPD-
and YPLac-extracts and of spot c from either YPD- and YPLac -extracts. In all cases, YPD-extract traces are in black, while YPLac-extract traces are
in gray). Data are representative (n= 3).
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2.6 Survival under oxidative stress

R. mucilaginosa survival was evaluated in a dilution spot assay of

cells grown in either YPD or YPLac at 1.0 O.D. First, cells were grown

in 100 mL, at 250 rpm at 30°C in the presence of 0, 15 or 40 µM DPA

(Sigma, USA) (Jamieson, 1992). At 15 mM DPA carotenoid

production was inhibited by 80%, while as 40 mM DPA it was

inhibited by 100%. After 24 hours, 0, 15 or 40 mMmenadione (MD),

a free-radical producing agent was added (Sigma-Aldrich, Darmstadt,

Germany) and the mixture was further incubated under agitation for

2 more hours in an orbital shaker at 250 rpm (G10, New Brunswick

Sci, NJ, USA). Then, samples were collected and concentration

adjusted to O.D. = 1.0. These cells were used to conduct a spot

assay using a 96 well plate with 200 mL in each well. Then, performing

1/10 serial dilutions in the same medium where they grew (either

YPD or YPLac) (dots, from left to right in each panel). All samples

were incubated at 30°C for three days. Petri dishes were distributed as

follows: Cells grown in either YPD (upper panels) or YPLac (lower
Frontiers in Fungal Biology 05
panels) were divided into three groups: No additions, Medium

supplemented with 15 µM DPA, and Medium supplemented with

40 µM DPA. In each panel, rows were as follows: row 1, no additions;

row 2, DMSO alone; row 3, 15 mM MD and row 4, 40 mM MD.
2.7 Reactive oxygen species quantitation

ROS concentrations at different carotenoid concentrations were

measured in cells grown in the presence of different DPA

concentrations (0 to 40 µM) (Moore et al., 1989; Irazusta et al., 2013;

Tang et al., 2019). In each sample, both, carotenoids and ROS were

measured. The reaction buffer (0.25 M Na3PO4, pH 7.4) was

complemented with 10 mM Amplex® Red, hydrogen peroxide/

peroxidase kit (Invitrogen, Waltham Ma, USA), 0.2 U horseradish

peroxidase/mL and 0.2 U superoxide dismutase/mL (Zhou et al., 1997).

Cells from each medium were harvested and washed with distilled

water three times at 6000 xg for 5 minutes at 4°C and then these were
FIGURE 4

Effect of oxidative stress and inhibition of carotenoid synthesis on R. mucilaginosa survival and growth. Spot dilution assay (Serial dilutions: 1, 10-1, 10-2,
10-3, 10-4, 10-5). Cells were incubated as in Figure 3 in the presence or absence of DPA. Menadione was added 2 hours before starting the assay. For the
assay agar plates were incubated for 24 h at 30°C. (A). YPD-cells; (B), YPLac-cells. Panels: Left No DPA; Center, 15 mM DPA; Right, 40 mM DPA. Rows:
Row 1, No additions; Row 2, The vehicle DMSO; Row 3, 15 mM Menadione; Row 4, 40 mM Menadione. Images are representative agar plates (n= 3).
FIGURE 5

DPA titration of carotenoid and H2O2 production in R. mucilaginosa grown in (A) YPD or (B) YPLac. Peroxide concentration is expressed as nmol/µg
protein and carotenoid absorbance at 490 was estimated. Data are shown as mean ± SD (n=6). Where: carotenoids (dots), peroxide (squares).
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aliquoted in 5 mM 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic

acid (HEPES) pH 7.0 in a small Eppendorf tube (1.5 mL), mixed 50/

50 v/v with 0.5mm glass beads, vortexed for 3 min and solubilized with

sodium deoxycholate. Protein concentration in homogenates was

measured by biuret (Gornall et al., 1949). From each suspension, 100

µg protein/well was added to a POLARstar Omega luminometer (BGM

LABTECH) and samples were incubated for 40 min and read against a

H2O2 standard curve (0 to 200 nmol) made in 5 mM HEPES pH 7.0

(Guerrero-Castillo et al., 2011; Morales-Garcıá et al., 2021).

Experiments were conducted in triplicate and data are reported as

H2O2 nmol/µg protein ± SD. See 2.9 for statistical analysis. Carotenoids

were measured as described above (2.4).
2.8 Carotenoid extract prooxidant effect

To evaluate if carotenoids preserved protective activity after

exposure to stress, these pigments were recovered from either

YPLac- or YPD-grown cells (see section 2.4) sealed under a N flow

and stored in the dark at -20°C. Cells grown in either YPD or YPLac

plus 15 µM DPA produced a small amount of endogenous

carotenoids (20% as compared to the control). After 24 h, 40 mM

menadione without or with 40 µg/g (dry weight) cell carotenoid

extract (from either YPD or YLac-cultures) were added to the new

cells further incubating for 2 hours at 30°C. After incubation, cells

were used in a Colony Forming Unit (CFU) assay (Tran and Green,

2019; Suarez-Diez et al., 2020). Briefly, 50 µL of a 10-5 cell dilution

were added to YPD or YPLac agar plates and incubated for 3 days at

30°C. Then, CFUs were counted. Results are reported as percentage of

CFUs against a control without added carotenoids and menadione

(Bhuyan et al., 2023).
2.9 Statistical analysis

Statistical differences were evaluated using one-way ANOVA

(Fisher, 1992). Significant differences between means were

evaluated with Fischer’s multiple comparison test to p<0.05. Data

analysis and graphics were constructed with GraphPad Prism for

Windows, version 8.0.2 (263).
3 Results

3.1 Rhodotorula mucilaginosa grew more
in dextrose than in lactate

Growth curves for R. mucilaginosa (Figure 1A) were

complemented by biomass measurements in cells cultured for 24

h (Figure 1B). YPD-grown cells reached 570 Klett units at 24 h

(mid-Log phase) while YPLac-grown cells reached 405 Klett units.

The stationary phase was reached in both cases around 40 h,

reaching 810 Klett units for YPD-grown cells and 542 Klett units

for YPlac-cells (Figure 1A). YPD-cell biomass at 24 h was 17.6 g

(ww)/L while YPLac-cells weighed 8.8 g (ww)/L (Figure 1B). Thus,

cells grown in YPD grew about 1.8 times as much as YPLac-grown
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cells. This is comparable to reports by others (Elsanhoty et al., 2017)

and to results from other yeasts such as S. cerevisiae (De Barros

et al., 2023). All experiments were conducted in cells grown until

mid-Log phase (24 hours). As DPA was used in other experiments,

its effect on growth was tested. Consistent with findings in the

literature (Moore et al., 1989; Irazusta et al., 2013), DPA did not

affect growth in R. mucilaginosa (Supplementary Figure S1).
3.2 The rate of oxygen consumption was
higher in YPLac- than in YPD-grown cells

Oxygen consumption was measured in YPD- and in YPLac-cells

both in basal conditions and at a maximal flow of electrons evoked by

the OxPhos-uncoupler CCCP (Figure 2; Supplementary Figure S2).

DPA was also tested, and it did not have any effects (Figure 2;

Supplementary Figure S2). The basal rate of oxygen consumption for

YPD-grown cells was 8 natgO min-1. mg cells (ww)-1 and 15 natgO

min-1. mg cells (ww)-1 in the uncoupled state (Figure 2, black bars). In

YPLac-grown cells the basal rate of oxygen consumption was 15

natgOmin-1. mg cells (ww)-1 and when CCCP was added it increased

to 23 natgO min-1. mg cells (ww)-1 (Figure 2). Thus, both in YPD-

grown cells (Figure 2, black bars) and YPLac-grown cells (Figure 2,

gray bars), the uncoupled rate of respiration was higher than in the

basal state, while DPA had no effects. In addition, in all cases the rate

of oxygen consumption was higher in YPLac- than in YPD-grown

cells (Figure 2), indicating cells were well coupled. Recently, it was

reported that in R. mucilaginosa the mitochondrial respiratory chain

components vary in concentration, depending on whether the growth

medium is YPLac or YPD (Castañeda-Tamez et al., 2024). The higher

rate of oxygen consumption observed in YPLac-grown cells suggested

that ROS increased.
3.3 Carotenoid concentration was higher
in YPLac- than in YPD-grown cells

R. mucilaginosa cells grown in YPLac medium were orange,

while YPD-grown colonies were pale pink (See Figure 3, “No

addition” rows) suggesting that carotenoid production was higher

in cells grown in YPLac medium. Thus, we decided to evaluate

carotenoid concentrations by extracting them from either YPD-

(Figure 3A, black trace) or YPLac-grown cells (Figure 3A, gray

trace) and running absorbance spectra from 400 to 600 nm

(Mussagy et al., 2021b). Carotenoids extracted from YPD-grown

cells presented an initial absorbance nearing 0.5 units at 400 nm,

and an absorbance increase reaching a peak at 490 nm. At higher

wavelengths, absorbance decreased except for a shoulder at 520 nm,

nearing zero at 600 nm. Under YPLac growth conditions, initial

absorbance was close to 0.75 units and steadily increased until

maxing out at 490 nm and decreasing at wavelengths higher that

520 nm. Notably, spectra exhibited peaks that were like those

reported for Rhodotorula sp, i.e., b-carotene (lmax 450 nm),

torularhodin (lmax 490 nm), and torulene (lmax 520 nm) (Park

et al., 2007; Varmira et al., 2016; Udensi et al., 2022). To have a

rough estimate of carotenoid concentrations in these samples, the
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extinction coefficient 0.16 cm-1 M-1 was used as in Sharma and

Ghoshal, 2020 and Mussagy et al., 2021a (Figure 3B). In YPD

samples, carotenoids were 90 µg/g cells dry weight, and in YPLac-

grown samples 161 µg/g cells dry weight. The large increase in

carotenoid synthesis observed in YPLac-grown cells suggested that

these were under high oxidative stress.

To further characterize carotenoid production in R.

mucilaginosa, a TLC assay was performed (Figure 3C). Extracts

from either YDP- or YPLac-grown cells were included, along with a

b-carotene standard (Std.). Both extracts revealed three colored

bands, with bands a and b running very close to each other and to

the large band in the standard (Rf= 0.92 to 0.85). A third band (c)

with decreased migration was also detected in YPD- (Rf= 0.33) and

in YPLac-growth extracts (Rf=0.14). All bands were scrapped from

the silica plate, and their absorbance spectra were analyzed from

each, YPD- (Figure 3D, black traces) or YPLac (Figure 3D, gray

traces). Bands a and b were too close, so they were pooled together.

The spectra revealed two peaks at 450 and 484 nm, suggesting the

presence of a mixture of b-carotene (450 nm) and torulene (484 nm)

(Figures 3C, D, top panel) (Moliné et al., 2012). In YPLac-cells

absorbance was higher than in YPD-cells. In addition, an absorbance

shoulder at 520 nm was proportionally decreased only in YPLac,

suggesting that carotenoid contents were different (Figure 3D traces

for bands a and b). The lower band c ran at slightly different Rfs

depending on whether it came from YPD- or YPLac-grown cells.

However, the deep red color and the curved shape of both bands

suggested that it was the same carotenoid. This was tested running

separate spectra for bands c from each, YPD- (Figure 3D bottom

spectrum, black trace) or YPLac (Figure 3D bottom spectrum, gray

trace). Spectra from bands c were almost superimposable. In

addition, these exhibited a peak at 490 nm, suggested that both

bands c were the same pigment, possibly torularhodin. These results,

together with data from other authors, suggest that all three

carotenoids usually found in R. mucilaginosa were present in

extracts from both YPD- and YPLac-cells (Perrier et al., 1995;

Park et al., 2007; Moliné et al., 2012; Cheng and Yang, 2016;

Varmira et al., 2016; Kot et al., 2019; Tang et al., 2019; Lucas et al.,

2020). Additionally, data suggest that carotenoid proportions vary

with the carbon source as observed in the TLC results and spectra

(Figures 3C, D). Still, TLC results are only suggestive, and further

analyses using mass spectrometry are needed to unequivocally

identify each band. It is puzzling that band c ran different

distances in the YPLac or YPD-cell extracts. It is suggested that as

torularhodin contains oxygen, it may be more susceptible to

modification by ROS, changing slightly its structure and its affinity

for the stationary phase, thus exhibiting a different Rf (Britton, 2008).
3.4 YPLac-cells were more sensitive to
oxidative stress than YPD-cells

The differences in oxidative metabolism activity and in carotenoid

concentration in YPD- and YPLac-cells led us to compare cell viability

under stress (Figure 4). This was tested in the presence of two different

DPA concentrations. In addition, where indicated, menadione (MD)
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was added to produce ROS and increase oxidative stress. Following

protocols like those reported by others (Moore et al., 1989; Irazusta

et al., 2013; Tang et al., 2019), a dilution/survival assay was conducted

both in YPD-cells (Figure 4A) and in YPLac-cells (Figure 4B).

Conditions included controls (Figure 4, left panels), DPA at 15 µM

(Figure 4, center panels) and at 40 µM (Figure 4, right panels). Where

indicated, 15 mMMD (Figure 4, rows 3) or 40 mMMD (Figure4, rows

4). DMSO, the solvent used forMD, was also tested and it did not affect

results (Figure 4 rows 2).

YDP-cell survival was not affected by 15 mM DPA (Figure 4A,

central panel, row 1) and only mildly by 40 mM DPA (Figure 4A,

right panel, row 1). In addition, the FR-producing agent MD

inhibited growth only slightly (Figure 4A rows 3 and 4). In

contrast, in YPLac-cells (Figure 4B), even in the controls, growth

decreased slightly as dilution increased and it was more evident at

each DPA concentration (Figure 4B all panels, rows 1 and 2). At 40

mM DPA and 15 mM MD, YPLac-cell growth was absent at all

dilutions (Figure 4B, center panel, row 4) and at 40 mM DPA both

MD concentrations fully inhibited growth (Figure 4B, right panel,

rows 3 and 4). In contrast to YPD-cells, YPLac-cells were highly

susceptible to MD, suggesting that they were already under

oxidative stress (Biryukova et al., 2009; Tauffenberger et al.,

2019). These results suggest that the carotenoid increase in

YPLac-cells was due to oxidative stress.
3.5 Carotenoid depletion unmasks high
ROS production in YPLac-grown cells

In spite of their higher carotenoid content (Figure 3A), YPLac-

cells were more sensitive to DPA and MD that YPD-cells (Figure 4).

These results suggest that even control YPLac-cells were under

oxidative stress (Castañeda-Tamez et al., 2024). To test this, we

decided to unmask ROS production by inhibiting carotenoid

synthesis. Thus, we measured both carotenoids and ROS in the

presence of 1.5 to 40 mM DPA (Figure 5). Carotenoid

concentrations are reported as the percentage of absorbance at

490 nm observed in the control, without DPA, which in YPLac-cells

was O.D. = 1.75, while in YPD cells was O.D. = 0.95 (See Figure 3)

(Sharma and Ghoshal, 2020; Mussagy et al., 2021a). At each DPA

concentration, measurements of ROS (Figure 5 black squares) and

total carotenoids (Figure 5, circles) showed that DPA led to a

proportional decrease in carotenoids, both in YPD- (Figure 5A) and

in YPLac-grown cells (Figure 5B). In contrast, ROS concentration

variations were different for either YPD or YPLac-cells. In YPD

cells, ROS remained below 1.0 nmol H2O2/µg protein except at 40

µM DPA, a slight increase was observed, to 1.8 nmol H2O2/µg

protein (Figure 5A, black squares). In contrast, in YPLac-cells, ROS

were already at 1.4 nmol H2O2/µg protein even without DPA and

then, different DPA concentrations led to increased ROS, reaching

6.3 nmol H2O2/µg protein at 40 µM DPA. Thus, it is proposed that

in YPLac-cells carotenoids increased due to high ROS

concentrations and DPA unmasked these high concentrations of

ROS. In contrast, YPD-grown cells did not exhibit high carotenoid

production because they did not produce as much ROS (Figure 5).
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3.6 Carotenoids from YPD- or YPLac-cells
showed different effects on fresh
cell cultures

After carotenoids interact with free radicals, they may become

inactive or even pro-oxidant (Ribeiro et al., 2018; Lucas et al., 2020).

To test whether carotenoid inactivation contributed to the increased

ROS susceptibility observed in YPLac-cells, we quantified the effects

of adding extracted carotenoids to new cells (Figure 6). YPLac-cell

carotenoid extracts (Figure 6, vertical striped bars) or YPD-cell

carotenoid extracts (Figure 6, horizontal striped bars) were added to

cells grown with MD plus DPA in either YPD (Figure 6, black bars)

or YPLac (Figure 6, gray bars). Then, Colony Forming Units

(CFUs) were measured. In controls without extracted carotenoids,

YPD- (Figure 6, black plain bar) and YPLac-grown cells (Figure 6,

gray plain bar) produced 2.3x108 and 1.2x108 CFUs, respectively

(See Supplementary Figure S3). When carotenoid extracts from

YPD-cells were added back to new cell cultures, a non-significative

increase in CFU numbers both in YPD- and YPLac-grown cells was

observed (Figure 6, vertical striped bars). In contrast, adding

YPLac-carotenoid extract resulted in a decrease to about half the

number of CFUs both in YPD- and YPLac-cells (Figure 6,

horizontal-striped bars). These results suggest that in YPLac-cells

aerobic metabolism induced high levels of ROS reacted with
Frontiers in Fungal Biology 08
carotenoids, which were inactivated or even became pro-oxidizing

species themselves (Ribeiro et al., 2018; Lucas et al., 2020).
4 Discussion

Yeasts thrive on different carbon sources, adjusting their

metabolism (Fendt and Sauer, 2010). In Saccharomyces cerevisiae,

glucose and fructose promote fermentative metabolism while

lactate and pyruvate depend on oxidative metabolism (Renvoisé

et al., 2014). Fermentative metabolism induces catabolic repression,

decreasing TCA and respiratory-chain enzyme expression

(Gancedo, 1998; Renvoisé et al., 2014). Although oxidative

phosphorylation is an efficient ATP producing pathway, it is not

favored by yeast due to its slower rate. In addition, redox reactions

may overproduce deleterious ROS.

Catalyzed oxygen reduction is highly exergonic and provides

high amounts of free energy to sustain life (Nicholls and Ferguson,

2013). However, it may also react spontaneously to yield highly

mobile free radicals known as the Reactive Oxygen Species (ROS).

ROS react with organic molecules such as proteins, nucleic acids

and lipids evoking dysfunction and death (Jomova et al., 2023).

Since the Great Oxygenation Event (GOE), only those organisms

that can manage ROS toxicity survived (Rosas-Lemus et al., 2016;

Mendez-Romero et al., 2022). ROS production in the cell may be

prevented by many mechanisms, including uncoupling of oxidative

phosphorylation (Guerrero-Castillo et al., 2011) or hiding, in

biofilms (Jarros et al., 2020) or behind an impermeable

epithelium (Rosas-Lemus et al., 2016). Rhodotorula spp is

exceptional in that it possesses most stress-defense systems: it is

protected from contaminating agents by an extracellular matrix

(Cho et al., 2001), it can associate into biofilms (Jarros et al., 2020),

its mitochondrial respiratory chain is highly branched (Castañeda-

Tamez et al., 2024), it expresses ROS detoxifying enzymes (Li and

Ma, 2021) and in addition, it produces carotenoids that inactivate

ROS produced by UV radiation (Garcia-Cortes et al., 2021) of by

oxidative stress (Chen et al., 2022).

For the first billion years after life began, anaerobic life

flourished. Unicellular prokaryotes and eukaryotes populated the

Earth (Lane, 2002). Then, about two and a half billion years ago

GOE, where oxygen concentration rose about 105 times, led to the

first mass extinction (Lane, 2002). Oxygen reduction releases large

amounts of energy during its physiological reduction (Mendez-

Romero et al., 2022). However, a special kind of FR, the highly

motile, toxic ROS may be produced in spontaneous side reactions

(Li et al., 2018; Sies et al., 2022). Once ROS are produced, these are

deactivated by enzymes like superoxide dismutase, catalases and the

glutathione system (Jamova et al., 2024) or by pigments like

chlorophylls, melanin and carotenoids (Stahl and Sies, 2003;

Salman et al., 2007; Choi and Lee, 2015; Lucas et al., 2020;

Priyadarshini Pradhan et al., 2022; Tamiaki, 2022; Suthar et al.,

2023). In humans, ingested carotenoids can protect against cancer

and various illnesses, including cardiovascular disorders, cataracts,

age-related macular degeneration, osteoporosis, and diabetes

(Milani et al., 2017; Shabhir and Nuzhat, 2018; Paul et al., 2023).
FIGURE 6

Effect of previously extracted carotenoids on cell viability using a
CFU assay. Cells were incubated as in Figure 1 with 15 µM DPA for
24 h. Then 40 mM menadione was added to all samples, alone
(Plain columns) or with 40 µg carotenoid extracts/g cells dry weight
from either YPD- (vertical lines) or YPLac-cells (horizontal lines) was
added, and cells were further incubated for 2 h at 30°C, shaking at
250 rpm. Next, samples were plated in YPD or YPLac agar at a 10-5

dilution and incubated for 3 days at 30°C. These were used to
evaluate CFUs YPD-cells Black bars and YPLac Gray bars. Data are
shown as mean ± SD (n=3). Where indicated: *(p=0.0051),
**(p=0.0122).
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The mitochondrial respiratory chain produces FR, mostly in

the NADH/ubiquinone oxido-reductase (Complex I), and in the

ubiquinone/cytochrome-c oxido-reductase (Complex III) (Mazat

et al., 2020). To prevent ROS overproduction, unicellular

organisms, plants and crustaceans express branched respiratory

chains, where a high rate of electron flow does not give FR enough

time to spontaneously react with O2 (Guerrero-Castillo et al., 2011;

Cabrera-Orefice et al., 2014; Castañeda-Tamez et al., 2024). In

contrast to mitochondrial oxygen consumption, fermentation

does not produce free radicals, and thus most unicellular

species decrease expression of mitochondria either in the absence

of oxygen or when supplied with fermentative substrates (Malecki

et al., 2020; Malina et al., 2021). When oxidative metabolism

is needed mitochondria are expressed, increasing the risk of

oxidative damage.

Oxidative stress promotes carotenoid production, retention and

bioavailability: in Bacillus pseudofirmus OF4, carotenoids

contribute to resist oxidative stress during growth at high pH

(Hicks et al., 2019). Similarly, in Blakeslea trispora during

submerged fermentation, oxidative stress triggers antioxidant

enzyme activity, enhancing carotenoid synthesis (Roukas, 2015).

Additionally, aerobic growth conditions in Enterococcus gilvus up-

regulate carotenoid biosynthesis genes, which results in enhanced

survival (Hagi et al., 2014). Furthermore, in Xanthophyllomyces

dendrorhous higher oxygen supply increases astaxanthin

biosynthesis, while oxygen limitation inhibits growth (Wang and

Yu, 2009). Lastly, regulation by ROS enhances growth in

Rhodobacter sphaeroides under autotrophic conditions, resulting

in improved cell growth and increased carotenoid levels (Lee et al.,

2022). Here, R. mucilaginosa did increase carotenoid synthesis

when oxidative metabolism was activated. In addition, our results

strongly indicate that the role of carotenoids was to deactivate the

high amount of ROS produced by mitochondrial activity.

In our hands, R. mucilaginosa growth curves were similar to

those reported for other Rhodothorula species where biomass yield

is enhanced in dextrose (Aksu and Eren, 2005; Ferrao and Garg,

2011; Xu et al., 2011; Szotkowski et al., 2019; Byrtusová et al., 2021).

In lactate, growth yields were lower (Figure 1) while ROS and

carotenoid levels increased, indicating that these cells were under

oxidative stress (Sakaki et al., 2002; Lee et al., 2022). Carotenoids

react with ROS, inactivating them. However, these reactions may

modify carotenoids, which can be inactivated and even become pro-

oxidant species (Landolfo et al., 2019). Modifications like these are

suggested by our TLC experiments, where a carotenoid band

exhibited a different running pattern (Figure 3C) (Wall, 2005).

Again, in contrast to non-substituted carotenoids such a b-carotene
and torulene, torularhodin contains a carboxyl, and thus it is likely

that its ROS sensitivity is higher (Sli-Gel et al., 1987; Britton, 2008).

Indeed, it has been reported that carotenoids with oxygen

substituents react to high oxygen and ozone producing

enantiomers and other oxidized derivatives with different

migration patterns in TLC (Britton, 2008). Enhancing carotenoid

production by subjecting cells to stress seems to be common

practice (Shi et al., 2020; Eun and Lee, 2024). Our results suggest

that care should be exercised when industrially producing

carotenoids, due to the possible deterioration of the desired
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their production.

In other yeast species such as Kluyveromyces marxianus cultures

grown in ethanol oxidative metabolism increases. This results in

higher catalase expression increase suggesting cells are under

oxidative stress (Koleva et al., 2008). In Rhodotorula glutinis

increased ROS also stimulates carotenoid synthesis (Sakaki et al.,

1999). In Debaryomyces hansenii, the expression of alternative

components of the mitochondrial respiratory chain is higher

when cultured in YPLac than in YPD (Cabrera-Orefice et al.,

2014). Our data revealed that oxidative metabolism in cells grown

in YPLac induces oxidative stress, leading to increase synthesis of

carotenoids (Figure 3). The heightened menadione sensitivity of

cells grown in YPLac further confirms a state of oxidative stress

(Figures 3, 4, 6). In addition to oxidative stress, the enhancement of

carotenoid production may have resulted from higher availability of

as pyruvate and acetyl-CoA, which are derived from lactate

metabolism (Somashekar and Joseph, 2000; Chaturvedi et al., 2021).

Rhodotorula species produce torularhodin, torulene and b-
carotene (Perrier et al., 1995; Moliné et al., 2012; Kot et al., 2019;

Tang et al., 2019). These were probably present in our extracts as

suggested by absorbance spectra and TLC (Figures 5A–C) (Park

et al., 2007; Cheng and Yang, 2016; Varmira et al., 2016). It has been

suggested that carotenoid proportions vary with the carbon source

(Lucas et al., 2020) and R. mucilaginosa growing on Minimal

Medium contains 60-80% torularhodin and 10-20% b-carotene,
while torulene can be found in negligible amounts (Moliné et al.,

2012). As expected, in R. mucilaginosa grown in lactate, carotenoid

synthesis increased (Figure 3).
5 Conclusion

Under oxidative stress R. mucilaginosa increases carotenoid

production. Inhibiting carotenoid synthesis unmasked a high

concentration in YPLac-grown cells (Figure 4). This highlights

the protective role of carotenoids in R. mucilaginosa (Figures 5, 6),

which has already been reported by others (Maxwell et al., 1966;

Valadon and Mummery, 1966; Moore et al., 1989; Baltschun et al.,

1997; Stahl et al., 1998; Boussiba, 2000; Irazusta et al., 2013).

Carotenoid-mediated protection was not needed by YPD-grown

cells, suggesting that under these conditions few ROS were

present. Remarkably, carotenoids in YPLac-grown cells were

most likely modified after ROS exposure (Henry et al., 2000),

such that their addition decreased survival in YPLac-grown R.

mucilaginosa cells (Figure 6). The exact identity of native and

modified carotenoids was not confirmed. To do this, mass

spectrometry experiments have to be conducted on the bands

resolved by TLC (Figure 4).
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SUPPLEMENTARY FIGURE 1

Rhodotorula mucilaginosa growth curves in the presence of the carotenoid
synthesis inhibitor diphenylamine (DPA). Media were (A) YPD (black) or (B)
YPLac (gray). Conditions included: control, continuous line, 15 µM DPA

(dashed line) and 40 µM DPA (continuous line). Experimental conditions as
in Figure 1. DPA was added in 40 mL of 95% ethanol from appropriate

stock solutions.

SUPPLEMENTARY FIGURE 2

Representative oxymetry traces. Cells were added to a final concentration of

12.5 mg (ww)/mL. Where indicated additions were: 40 µM DPA and 32 µM

carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Added cells were from
cultures grown in (A) YPD or (B) YPLac.

SUPPLEMENTARY FIGURE 3

Effect of previously extracted carotenoids on cell viability using a CFU assay.
The data used to make Figure 6 are presented to show original CFU

numbers in each YPD and YPLac samples. Empty Bars reporting CFUs

without any additions are included. All others are as in Figure 6: Plain
bars, menadione without carotenoids. Striped bars: 40 mg carotenoid

extracts/g cells dry weight from either YPD- (vertical lines) or YPLac-cells
(horizontal). Cells were incubated for 2 h at 30°C, shaking at 250 rpm.

Samples were plated in YPD or YPLac agar at a 10-5 dilution and incubated
for 3 days at 30°C. These were used to evaluate CFUs. YPD-cells Black bars

and YPLac Gray bars.
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