Check for updates

OPEN ACCESS

EDITED BY Xiaoyun Su, Chinese Academy of Agricultural Sciences (CAAS), China

REVIEWED BY Jiwei Zhang, University of Minnesota Twin Cities, United States Rakesh Kumar Sharma, Manipal University Jaipur, India

*CORRESPONDENCE Hirofumi Hirai Mirai.hirofumi@shizuoka.ac.jp

RECEIVED 07 April 2023 ACCEPTED 05 June 2023 PUBLISHED 27 June 2023

CITATION

Mori T, Takahashi S, Soga A, Arimoto M, Kishikawa R, Yama Y, Dohra H, Kawagishi H and Hirai H (2023) Aerobic H₂ production related to formate metabolism in white-rot fungi. *Front. Fungal Biol.* 4:1201889. doi: 10.3389/ffunb.2023.1201889

COPYRIGHT

© 2023 Mori, Takahashi, Soga, Arimoto, Kishikawa, Yama, Dohra, Kawagishi and Hirai. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Aerobic H₂ production related to formate metabolism in white-rot fungi

Toshio Mori^{1,2}, Saaya Takahashi¹, Ayumi Soga¹, Misa Arimoto¹, Rintaro Kishikawa¹, Yuhei Yama¹, Hideo Dohra^{2,3,4,5}, Hirokazu Kawagishi^{1,2} and Hirofumi Hirai^{1,2,4}*

¹Faculty of Agriculture, Shizuoka University, Shizuoka, Japan, ²Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan, ³Faculty of Science, Shizuoka University, Shizuoka, Japan, ⁴Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan, ⁶Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan

Biohydrogen is mainly produced by anaerobic bacteria, anaerobic fungi, and algae under anaerobic conditions. In higher eukaryotes, it is thought that molecular hydrogen (H₂) functions as a signaling molecule for physiological processes such as stress responses. Here, it is demonstrated that white-rot fungi produce H₂ during wood decay. The white-rot fungus Trametes versicolor produces H₂ from wood under aerobic conditions, and H₂ production is completely suppressed under hypoxic conditions. Additionally, oxalate and formate supplementation of the wood culture increased the level of H_2 evolution. RNA-seq analyses revealed that T. versicolor oxalate production from the TCA/glyoxylate cycle was down-regulated, and conversely, genes encoding oxalate and formate metabolism enzymes were up-regulated. Although the involvement in H₂ production of a gene annotated as an iron hydrogenase was uncertain, the results of organic acid supplementation, gene expression, and self-recombination experiments strongly suggest that formate metabolism plays a role in the mechanism of H_2 production by this fungus. It is expected that this novel finding of aerobic H₂ production from wood biomass by a white-rot fungus will open new fields in biohydrogen research.

KEYWORDS

aerobic H_2 production, formate dehydrogenase, oxalate metabolism, *Trametes versicolor*, white-rot fungi

1 Introduction

Hydrogen gas is considered a potential sustainable energy carrier due to its advantages of high energy density, zero emissions when burning, and ease of production from various renewable sources. H_2 can be produced from biomass materials *via* both thermochemical and biological processes. Photo- and dark fermentation are biological conversion processes by which organic substrates and/or biomass materials can be used to produce H_2 by a diverse group of microorganisms. In dark fermentation, carbohydrates in the biomass are

10.3389/ffunb.2023.1201889

broken anaerobically to H₂, CO₂, and organic acids by hydrogenproducing anaerobes (Ghimire et al., 2015). Some anaerobic bacteria, such as those of the genera Escherichia and Clostridium, can produce H₂ from organic acids (Mnatsakanyan et al., 2004; Matsumoto and Nishimura, 2007). Photo-fermentation of organic substrates is performed by photosynthetic bacteria. These bacteria utilize small organic acids to produce H₂ under anaerobic conditions in the presence of light (Azwar et al., 2014). Various anaerobic eukaryotes are also able to produce H2 in hydrogenosomes. The anaerobic fungi Neocallimastix and Piromyces spp. are well-known H₂ producers (Hackstein et al., 1999). These enteric fungi hydrolyze carbohydrates, and the resulting sugars are metabolized to pyruvate via glycolysis or to malate via the tricarboxylic acid (TCA) cycle (Hess et al., 2020). Hydrogenosomes metabolize pyruvate and malate to acetate for ATP generation, and H₂ and CO₂ are also generated by the combined ATP generation reaction (Marvin-Sikkema et al., 1993; Hackstein et al., 1999). Organic acids often function as important factors in the H₂ production process in anaerobes.

Although hydrogenase-like (or NARF; nuclear prelamin A recognition factor, NAR1; cytosolic Fe-S cluster assembly factor) genes are widely distributed in the genomes of higher eukaryotes, their function and role remain unknown (Horner et al., 2002). It is generally thought that animal cells are unable to generate H₂, but it is also known that molecular hydrogen has diverse biological effects in animals, including anti-oxidative stress, anti-inflammatory, and anti-allergic effects (Ohta, 2012). Higher plants are also affected by H₂, as it improves tolerance to various abiotic stresses, including oxidative, salt, and desiccation stress (Li et al., 2018). Additionally, it is thought that H₂ improves physiological processes such as growth and development in higher plants and interacts other signaling molecules. Some early studies demonstrated hydrogenase-mediated H₂ production in seedlings of some higher plants under sterile conditions (Renwick et al., 1964; Torres et al., 1986). Some recent reports indicated that plant hormones and abiotic stresses promote endogenous H₂ release in higher plants and that H₂ signaling induces plant antioxidant defenses and enhances salt tolerance (Xie et al., 2012; Zeng et al., 2013). Although details of the H₂ production and H₂ signaling pathways remain unclear, molecular H₂ seems to play a very important role in stress responses in higher eukaryotes.

White-rot fungi are unique microorganisms that are capable of degrading all main wood components, cellulose, hemicellulose, and lignin. During lignin degradation, white-rot fungi produce various reactive oxygen species (ROS) and radicals, such as radical mediators (Dashtban et al., 2010). White-rot fungi also produce oxalate to release and mineralize excessive carbon in order to grow on woody materials that have an extremely high C/N ratio (Shimada et al., 1994). Based on these data, the authors predicted that white-rot fungi, which are always exposed to oxidative stress during wood decay and have excellent ability to metabolize organic acids, can produce H_2 in conjunction with organic acid metabolism to enhance oxidative stress tolerance. In this study, it was evaluated the H_2 production ability of various white-rot fungi during wood decay and investigated the underlying production mechanism.

2 Materials and methods

2.1 Fungal strains

White-rot fungi, Pleurotus ostreatus NBRC 33211, NBRC 104981, Trametes hirsuta NBRC 104984, NBRC 106840, and Trametes versicolor NBRC 104985, NBRC 106839 were obtained from the National Institute of Technology and Evaluation, Japan. Phanerochaete chrysosporium ME-446 (ATCC 34541) and Phanerochaete sordida YK-624 (ATCC 90872) were obtained from the American Type Culture Collection, USA. Ceriporia lacerata K-70 (accession number [AN] of internal transcribed sequence [ITS]: LC312413), Phanerochaete sp. K-64 (AN-ITS: LC710144), K-91 (AN-ITS: LC710143), K-97-2 (AN-ITS: LC710142), M-4 (AN-ITS: LC710145), Schizophyllum commune M-21 (AN-ITS: LC710146), T. hirsuta M-9 (AN-ITS: LC710150), T. versicolor K-39 (AN-ITS: LC710147), K-41 (AN-ITS: LC312415), K-86 (AN-ITS: LC710148), M-24 (AN-ITS: LC710149) and unidentified K-89 were isolated from naturally decaying wood samples and identified based on their ITS, following a previous report (Mori et al., 2018).

2.2 Test of H₂ evolution from wood meal

All fungal strains were grown on PDA at 30°C. Two mycelial discs (10 mm diameter) were punched from the edge of the mycelia and placed into a 70-mL serum vial containing 0.5 g of extractive-free beech or cedar wood meal (80-100 mesh, moisture content: 80%). After 5 days of pre-incubation at 30°C under atmospheric pressure, the inoculated vial was sealed with a butyl rubber plug to limit the O₂ supply and prevent H₂ diffusion. The sealed vial was incubated for 14 days at 30°C, and then the headspace gas was sampled, and H₂ production was analyzed by gas chromatography on an instrument equipped with a thermal conductivity detector (GC-TCD), as previously reported (Mori et al., 2016).

2.3 Characterization of H_2 production activity of *T versicolor* K-41

To elucidate the relationship between O_2 and H_2 production by *T. versicolor* K-41, the experiments described below were performed. First, 5-day pre-cultures of *T. versicolor* K-41 on 0.5 g of cedar wood meal (80-100 mesh, moisture content: 80%) in serum vials were incubated stationary at 30°C after sealing with a butyl rubber septum, and the flask headspace gas was analyzed by GC-TCD every 3 days. After 15 days of incubation, the headspace gas was flushed with 10 mL of pure O_2 or N_2 , and then incubation and headspace analysis were continued. To clarify the effect of oxygen concentration on H_2 production by *T. versicolor* K-41, H_2 production experiments under different O_2 concentration conditions were performed. Sealed cedar wood cultures of *T. versicolor* K-41 were prepared as described above. The O_2

concentrations in vials headspace were adjusted to approximately 2.5%, 6.3%, 12.5%, 25% and 50% by O_2 flush, following replacing the headspace gas with pure N_2 gas. After 14 days incubation at 30° C, the headspace gas was analyzed.

Two types of cedar wood meal cultures were prepared (0.5 g of cedar wood meal in a 70-mL serum vial). For the first cultures, 0-1.0% (g/g) CaCO₃ was mixed thoroughly with cedar wood meal, and then water was added to adjust the moisture content to 80% before autoclaving. Two PDA discs of *T. versicolor* K-41 were inoculated on the cedar wood meal and then pre-incubated for 5 days at 30°C. After an additional 9 days of incubation with sealing, the headspace gas was analyzed. For the second culture, two PDA discs of *T. versicolor* K-41 were inoculated on wood meal medium without CaCO₃ and pre-incubated for 5 days at 30°C. Then, 200 µL of 15 mM (or 0-120 mM) organic acid salt solution (pH 4.5, sodium acetate, formate or oxalate) or water was added to 5 places (40 µL each) in the wood cultures. The vials were then sealed and incubated for an additional 14 days at 30°C, followed by headspace gas analysis.

Two PDA discs of *T. versicolor* K-41 were inoculated in 5 mL of T-medium (2 g/L glucose, 1 g/L yeast extract, 1 g/L KH₂PO₄, 0.2 g/L $[NH_4]_2SO_4$, and 0.5 g/L MgSO₄·7H₂O [pH 4.5]) with or without 0.1% CaCO₃ in 70-mL serum vials and pre-incubated for 5 days. After 9 days of incubation with sealing, the headspace gas was analyzed in the same manner described above.

2.4 RNA-seq analysis

Cedar wood medium was used for H_2 production, and Tmedium was used as a non- H_2 -producing medium. *Trametes versicolor* K-41 was incubated aerobically for 10 days on cedar wood medium, and total RNA was extracted from 200 mg (wet) of culture by bead beating in 0.7 mL of Plant RNA Purification Reagent (Invitrogen). The RNA was then purified using an RNeasy Plant Mini kit (Qiagen) plus an RNase-free DNase set (Qiagen) following the manufacturer's protocol. Total RNA was cleaned and concentrated using NucleoSpin RNA Clean-up XS (TaKaRa Bio Inc.) following the manufacturer's protocol. Under non- H_2 -producing conditions, 10 mycelial discs were inoculated on 50 mL of T-medium and incubated for 7 days, and total RNA was extracted as described above. RNA quality was assessed by agarose gel electrophoresis and determination of the OD₂₆₀/OD₂₈₀ ratio.

For RNA-seq analysis, library construction and sequencing were entrusted to Macrogen-Japan Co. The libraries were constructed using a TruSeq Stranded mRNA Library prep kit (Illumina Inc.) according to the manufacturer's protocol. Transcriptome sequencing of paired-end reads (150 bp) was performed using a NovaSeq 6000 system (Illumina). The raw reads (DRR374972-75) were cleaned using Trimomatic v. 0.38 to remove adapter sequences and low-quality bases (quality scores <30) and reads shorter than 100 nt (Bolger et al., 2014). Resultant high-quality paired-end reads were aligned to the *T. versicolor* FP-101664 SS1 genome sequence (GCF_000271585.1) using HISAT2 v. 2.1.0 (Kim et al., 2015). Transcript abundance was estimated using FeatureCounts v. 2.0.0 (Liao et al., 2014). Differentially expressed

genes (DEGs) were identified using the likelihood-ratio test implemented in the edgeR package v. 3.16.4 (Robinson et al., 2010). DEGs were defined by a log2 fold-change (logFC) >1 and logFC <-1 with a false discovery rate (FDR) <0.05. To identify significantly over- and under-represented biological features associated with H₂ production, gene ontology (GO) enrichment analysis was performed by parametric analysis of gene set enrichment (Kim and Volsky, 2005) based on the logFC between the H₂-producing and non-H₂-producing conditions.

2.5 Effects of O₂ level and CaCO₃ on expression of *Tvhyd* and *Tvfdh*

Trametes versicolor K-41 was pre-incubated for 5-day on cedar wood meal culture with or without 0.5% CaCO₃, as described above. After sealing all cultures following removal of PDA pellets, the cultures (without CaCO₃) were divided into three groups: O₂ purge (O₂ concentration fitted to average 80%), N₂ purge (O₂ concentration <0.5%), and control (without gas purge). After 7 days of incubation, the headspace gas was analyzed, and total RNA was extracted from 200 mg (wet) of culture. Total RNA (100 ng) was employed for cDNA synthesis using PrimeScript II reverse transcriptase (TaKaRa Bio). Quantitative PCR was performed on a Lightcycler 96 (Roche) system using TB Green Premix Ex Taq II (Tli RNaseH Plus, TaKaRa Bio Inc.). Gene-specific primers for the hydrogenase-like gene (AN: LC710151, Tvhyd; 5'-cgcaaatagcacatcgaccg-3'/5'-gacgtgatacac ccactgca-3'), formate dehydrogenase (AN: LC710153, Tvfdh; 5'-tact ccgccggaatgaagattgt-3'/5'-aactcatggccctgctcctc-3'), and glyceraldehyde-3-phosphate dehydrogenase (AN: LC710152, Tvgpd; 5'-cgctgtgaacgaccccttca-3'/5'-cttgccgtccttgacctcga-3') were designed. Expression levels were calculated according to the $\Delta\Delta$ Cq method using Tvgpd as the reference gene. Relative H₂ production and expression were calculated by comparison to values of the control.

2.6 Tvfdh expression in Escherichia coli

Tvfdh cDNA was amplified to attached KpnI and BamHI sites by PCR using primers (5'-actggtaccatgctcgccggcatctcgtc-3' and 5'ataggatcctcacttgcgctggccgtacg-3'), then amplified PCR product was ligated between the corresponding restriction sites of pCold I vector (TaKaRa Bio). Constructed vector was transformed into Chaperone Competent Cells pGro7/BL21 (TaKaRa Bio) following manufacture's protocol. The transformed E. coli was incubated in 3 mL of LB medium containing 0.5 mg/mL arabinose, 20 µg/mL chloramphenicol and 50 µg/mL ampicillin, at 37 °C, 200 rpm. After OD₆₀₀ was reached at 0.4, the culture was cooled to 4 °C, then 1.0 mM ATP and 0.1 mM isopropyl-\beta-D-thiogalactopyranoside (IPTG) were added. The culture was incubated for 15 h, at 15 °C, and bacterial cells were recovered by centrifugation (10,000 \times g, 10 min, 4 °C). Recovered cells were disrupted by bead beating (Micro smash MS-100, Tomy Seiko Co., LTD.), and cell-free extract recovered by addition of 0.1 M NaCl containing 0.1 M Tris-HCl (pH 4.5) was used for FDH activity test. FDH activity was determined by increase in absorbance at 340 nm due to

formation of nicotinamide adenine dinucleotide (NADH) in the reaction mixture (0.75 mL) contained 75 mM potassium phosphate (pH 6.5), 160 μ M β -NAD⁺, 20 mM sodium formate and 100 μ L cell-free extract (Watanabe et al., 2005).

2.7 Construction of pHyg^r and pTvfdh

Restriction sites were attached to *Tvgpd* terminator region by 2 step of PCR reactions, using primers (5'-ggcgcgccag atctgttagcacggagta-3'/5'- gtagattctgtttggtgtgcac-3') for first PCR and (5'-tctagaggatccggcgcgcagatct-3'/5'- gtagattctgtttggtgtgcac-3') for second PCR. The PCR product was TA-cloned into pMD20 vector (TaKaRa Bio), and the resulting plasmid was digested at *NdeI* site. Tagged sequence for In-fusion reaction was attached to *Tvgpd* promoter region by PCR using following primers; 5'-gatctact agtcatactgagatgacctccatagc-3' and 5'-ctctagaaatccatagtggatggg tggatgg-3'. The tagged *Tvgpd* promoter was direct cloned into the NedI digested plasmid by In-fusion reaction using In-fusion HD cloning kit (TaKaRa Bio) following manufacture's protocol. The constructed plasmid that having *AscI* and *BgIII* sites between *Tvgpd* promoter and terminator regions was designated p*Tvgpd*-pro/ter.

Hygromycin resistant gene (hyg^r) sequence then was redesigned based on *P. chrysosporium* high-frequency codon usage, and the resulting optimized gene was synthesized by GeneScript Japan, Inc. The *AscI* and *BglII* restriction sites were attached to hyg^r using primers; ggcgcgccatgaagaagacccgagc and agatctttactccttggcgcgt. p*Tvgpd*-pro/ter was digested by *AscI* and *BglII*. Then the PCR product was ligated into corresponding restriction enzyme sites of p*Tvgpd*-pro/ter (pHyg^r). Tvfdh gene was PCR amplified (primers: 5'-agaggatccggcgcgatgctcgccggcatctcgtc-3'/5'-aacagatctggcg cgtcacttgcgctggccgtacg-3'). The resulting product was used for Infusion reaction to clone into *AscI* digested pT*vgpd*-pro/ter to construct plasmid *Tvfdh* is under control of *Tvgpd* promoter (pTvfdh hereafter).

2.8 Homologous recombination of Tvfdh

T. versicolor K-41 protoplasts were prepared following method in previous report with some modification. Briefly, T. versicolor K-41 was precultured in liquid CYM medium at 30 °C for 7 days. The culture including mycelium was homogenized and 25 ml homogenate was added to 25 mL fresh CYM medium in 500-ml Erlenmeyer flask. The culture was incubated at 30 °C for 3 days, then mycelium was recovered by filtration. Mycelium was resuspended in 0.5M MgOsm (0.5 M MgSO4·7H2O in 10 mM 2morpholinoethanesulfonic acid (MES), pH 6.1), following addition of 2 volume of 0.5M MgOsm containing with 5% lysing enzyme (Sigma-Aldrich) and cellulase Onozuka RS (Yakult Pharmaceutical Ind. Co., LTD.). The mixture was incubated at 30 °C, 150 rpm for 16 h. After the reaction, MgSO₄ concentration in the solution was adjusted 1.0 M by gently addition of 2.0 M MgOsm. The crude protoplasts solution was layered onto 10 mM MES contained 1.0M sorbitol (SorbOsm), and centrifuged $(1,450 \times g, 15 \text{ min}, 4 \text{ °C})$ to removed undigested mycelial debris. Protoplasts accumulated on interface were recovered and washed 2 times with SorbOsm. Finally, protoplasts were resuspended in SorbOsm to fit 0.5 to 0.8×10^8 cells/mL.

Protoplasts were co-transformed with pHyg^r and pTvfdh. Plasmids (10 µg each) and 40 mM CaCl₂ in 300 µL SorbOsm was combined with 500 µL of protoplasts solution. The mixture was incubated for 30 min at 4 °C, and then gently mixed with equal volume of PEG solution (40% PEG #4000, 10 mM CaCl₂ in Tris-HCl, pH 7.0). After additional 30 min incubation at 4 °C, the diluted transformation solution with 5mL SorbOsm was mixed with 75 mL of regeneration medium (0.75 M sucrose, 10 mM MES, 0.5% agarose L03 (TaKaRa Bio), 50 µg/mL ampicillin, 20 µg/mL thiabendazole in CYM medium, pH 6.5) at 42 °C, and poured 10 Petri dishes (9 cm diameter). The dishes were incubated at 30 °C for 2 days, 7.5 mL of regeneration medium containing 40 µg/mL hygromycin instead of thiabendazole was overlaid to each dish. Regenerated hyphal clones that appeared in 7 days incubation were picked and subcultured in 20 µg/mL hygromycin containing PDA medium. Genome PCR of regenerated clones were done with specific primers of Tvfdh ORF and Tvgpd terminator sequences (5'- gagctgctcaagagcttcaag -3'/5'ggtttcgtttgtggcagagatg-3'), and PCR-positive clones were designated as F1-F38 strains. These transformed strains were employed to experiments, H₂ production from cedar and effect of supplementation of organic acids to H₂ production.

3 Results

$3.1 H_2$ generation from wood by wood-rot fungi

To investigate the H₂-production activity of wood-rot fungi, 12 strains of wood-rot fungi (K and M strains) isolated from naturally decaying wood were inoculated on beech wood meal. During limited O₂ supply incubation following aerobic cultivation, a small but clear H₂ peak was observed on GC-TCD analysis of the headspace gas of several beech wood meal cultures (Figure 1). H₂ was produced by 8 of 12 tested strains, and classification of those strains was attempted based on the ITS sequences. All 8 strains were found to belong to the Polyporales (1 Ceriporia strain, 3 Phanerochaete strains, and 4 Trametes strains). Therefore, 4 newly described Trametes fungi (2 strains each of T. versicolor and T. hirsuta) and 2 Phanerochaete fungi (P. chrysosporium and P. sordida) were tested in the same way. In addition, an Agaricales fungus (P. ostreatus) was also tested as a comparison. Although some strains of Polyporales fungi did not show H₂ production, all strains showing H₂ production belonged to the Polyporales. There were differences in the amount of H₂ produced from beech wood meal among strains of same species.

Nine of the 14 H₂-producing strains were then investigated for H₂ production on cedar wood meal. All tested strains produced H₂ from cedar in amounts greater than produced from beech. Because *T. versicolor* K-41 showed the highest H₂ production level (1.36 μ mol/L in headspace gas) in cedar wood meal culture (Figure 1), elucidation of H₂ production mechanism of this fungus was attempted.

3.2 Characterization of H_2 production activity of *T versicolor* K-41

Time courses of O_2 consumption and H_2 production by cultures of *T. versicolor* K-41 on cedar wood meal during cultivation after sealing were traced and shown in Figure 2. The O_2 concentration in the headspace began to decrease immediately after sealing (Figure 2A). The concentration fell 2.9% by day 12, and thereafter, little O_2 was consumed. By comparison, H_2 production was observed at day 3, and production continued until 12 days of incubation. After termination of H_2 production after 15 days, part of the headspace was replaced with pure O_2 or N_2 gas. Although no effect on H_2 production re-started following O_2 replacement (Figure 2B). However, H_2 production stopped again after the O_2 was consumed. Effect initial O_2 concentration on H_2 production is shown in

production (white circles) were measured after 2-week incubation with O₂ and N₂ adjusted to the specified oxygen concentration. The values are the mean \pm standard deviation (n=3).

Figure 2C. The result indicated that higher initial O_2 consumption and H_2 production were well correlated with initial O_2 concentration (R2 = 0.983 and 0.863, respectively).

To investigate the relationship between H₂ production and organic acid production during wood decay by *T. versicolor* K-41,

H₂ production from cedar wood meal containing 0-1.0% CaCO₃ was investigated. It is well known that CaCO₃ promotes the production of oxalate and other organic acids generated in the TCA/glyoxylate cycles of basidiomycetes (Takao, 1965). As shown in Figure 3A, T. versicolor K-41 showed significantly higher H₂ evolution in cedar meal containing 0.3 and 0.5% CaCO3 than in culture without CaCO₃; in particular, 1.5 times higher H₂ production was observed in the culture containing 0.5% CaCO₃. Therefore, to clarify involvement of organic acids, oxalate, formate, and acetate were added to 5-day-old cedar wood cultures of T. versicolor K-41 just before sealing, and H₂ production was then measured. While no difference was observed in H₂ production between the control and water- or acetate-supplemented cultures, oxalate and formate supplementation increased H₂ production to 120% and 127% compared with the control (Figure 3B). H₂ production increased depending on the level of formate supplementation, reaching a plateau at 6 µmol/flask (Figure 3C). In contrast, no H₂ evolution was observed regardless of CaCO₃ addition in T-medium, even though the oxalate and formate concentrations in the medium were increased by CaCO₃ addition (Table 1). Thus, H₂ production by T. versicolor K-41 may be a specific phenomenon during wood decay and may be related to the metabolism of organic acids, especially formate.

3.3 Estimation of H₂-producing pathway of *T. versicolor*

To identify differences in gene expression between H₂producing and non-H2-producing conditions, a differential expression analysis between wood and liquid cultures was performed. These culture conditions were completely different, indicating that gene expression patterns are expected to differ significantly. Simultaneously, it was predicted a possibility of differences in the expression of H₂ production-related genes due to clear differences in H₂ production. Therefore, a differential gene expression analysis under these conditions was conducted. A large number of genes showed differential expression (logFC >1.0 or < -1.0, FDR <0.05); a total of 1,106 and 1,256 genes were up-regulated in wood medium and liquid medium, respectively (Figure 4 and Supplementary Tables 1, 2). In T. versicolor K-41 cultivated on wood medium, many genes encoding cellulolytic and ligninolytic enzymes were up-regulated compared with liquid medium (Supplementary Table 1). In contrast, several genes encoding hydrophobin and amylase-type enzymes were down-regulated on wood medium (Supplementary Table 2). GO enrichment analysis indicated that cellulose metabolic process, peroxidase, processes related to oxidative stress, cation uptake, and peptidase activities were over-represented in wood medium (Supplementary Table 3). These results suggest that T. versicolor K-41 initiates defensive mechanisms for ROS and radicals generated during the wood decay process.

In the glyoxylate cycle, only the malate synthase gene (XM_008035809.1) was up-regulated on wood medium (Figure 5

FIGURE 3

The effects of CaCO₃ addition and organic acid supplementation on H₂ production by *T. versicolor* K-41 in cedar wood meal cultures. The effects of (A) CaCO₃ mixed ratio to wood medium, and (B) organic acid supplementation prior sealing. (C) The relationship between H₂ production and amount of formate added to the wood culture. H₂ production was measured on the 14th day after sealing. Asterisks indicate significant differences compared to the control (without any supplementation, * *P*<0.05, ** *P*<0.01). Values are mean \pm standard deviation (n=3).

TABLE 1 Cultivation profiles of T. versicolor K-41 in liquid medium with or without CaCO_3.

	control	0.1% CaCO ₃		
mycelia dry weight (mg)	121.3 ± 2.6	122.6 ± 4.2		
oxygen remaining (%)	2.1 ± 0.5	2.2 ± 0.8		
organic acid in fluid (mmol/L)				
oxalate	4.4 ± 0.3	10.9 ± 1.6**		
formate	0.5 ± 0.1	1.3 ± 0.1 **		

The cultures after 14 days incubation with sealing (limiting O2 supply) following 5 days aerobic pre-cultivation were used for the analyses. Asterisks indicate significant differences to wild type or no supplementation control (** P<0.01). Values are means \pm standard deviation (n=3).

and Table 2). No induction of TCA cycle (GO:0006099) genes was observed compared with liquid culture, although dehydrogenase E1 and transketolase domain-containing protein 1 (XM_008043731.1) were down-regulated, and succinate dehydrogenase cytochrome b560 subunit (XM_008041764.1) was up-regulated in wood culture (Figure 4, Table 2 and Supplementary Table 3). Malate synthase (XM_008035809.1) of the glyoxylate cycle was upregulated on wood medium. As shown in Figure 5 and Table 2, possible oxalate-producing enzymes were found in the annotations of the *T. versicolor* FP-101664 SS1 genome: a glyoxylate dehydrogenase (XM_008037380.1 and XM_008038286.1) that produce oxalate from glyoxylate (Davies and Asker, 1983; Munir et al., 2001). Although a gene encoding oxalaoacetate, which produces oxalate from oxaloacetate, was not found in the

MA plot of the normalized data. Each dot represents a single gene, and significantly differentially expressed genes are colored by orange. The genes related TCA/glyoxylate cycle and oxalate metabolism are colored by green and blue, respectively. A white dot is indicated a hydrogenase-like gene.

genome, XM_008045015 (annotated as a phosphoenolpyruvate/ pyruvate domain-containing protein) showed significant similarity (identity 88.1%, query coverage 86.0%) to the oxaloacetate acetylhydrolase of Fomitopsis palustris (accession: AB690578.1, Hisamori et al., 2013). The expression of all of these putative oxalate-producing enzymes in wood culture was clearly lower than the expression in liquid culture. Five oxalate decarboxylase (ODC) genes have been annotated in the T. versicolor genome (Table 2). Two of these ODCs were upregulated (XM_008041462.1 and XM_008041480.1) in wood culture, and two others were down-regulated (XM 008042273.1 and XM_008045068.1). Two highly expressed ODC genes were markedly up-regulated (Figure 4); therefore, all ODC genes appear to be up-regulated. Two formate dehydrogenase (FDH) genes (XM_008035816.1 and XM_008044301.1) showed expression levels ≥ 4 times higher in wood culture than in liquid culture. The transcript XM_008036235.1, annotated as an iron hydrogenase, showed relatively higher expression in wood culture compared with liquid culture (logFC=0.89, P=0.053, and FDR=0.125).

Tvfdh (encoding a formate dehydrogenase) and Tvhyd (annotated as an iron hydrogenase) were identified from the genome and cDNA of T. versicolor K-41. Relative production of H₂ and relative expression of *Tvhyd* and *Tvfdh* at 7 days after sealing in N₂- and O₂-purged wood cultures and wood culture containing 0.5% CaCO₃ are shown in Figures 6A, B. O₂ purge did not affect H₂ production; however, H₂ was undetectable in N₂-purged cultures (Figure 6A). No difference was observed in H₂ production between the control and O₂-purged samples. This is likely due to the presence of residual O2 in the samples during the early stages after sealing, resulting in H₂ production still proceeding in both samples. CaCO₃ addition increased H₂ production to approximately 150%, as shown in Figure 3A. Relative Tvhyd expression was significantly lower (17%) in N2-purged cultures and higher (172%) in O2-purged cultures compared with the control. In the case of Tvfdh, this gene showed significantly lower expression (less than 1%) in N2-purged cultures and tended to exhibit lower expression (62%, P=0.051) in O2-purged cultures. Although there were no significant differences in the expression levels of Tvhyd and Tvfdh on CaCO3-supplemented cedar culture compared with the control, the expression levels of both genes appeared to be higher. There was a correlation between the Tvfdh expression level and H₂ production (r=0.645); therefore, the relationship between Tvfdh and H2 production by T. versicolor K-41 was evaluated.

3.4 Effect of self-recombination of Tvfdh on H_2 production

Cell-free extract obtained from IPTG-induced *E. coli* retaining *Tvfdh* cDNA in pCold I showed clear NADH formation dependent on formate dehydrogenase activity (data not shown). Thus, construction of *Tvfdh* self-recombinant transformants of *T. versicolor* K-41 was attempted. A total of 38 self-recombinant strains were recovered by co-transformation, and all of these strains were employed to evaluate O_2 consumption during 2

FIGURE 5

TCA/glyoxylate cycle and proposed H₂ production pathway in *T. versicolor* K-41. Numbers beside arrows indicate enzymes catalyzing the reactions; 1: pyruvate dehydrogenase complex, 2: pyruvate carboxylase, 3: citrate synthase, 4: aconitate hydratase, 5: isocitrate dehydrogenase, 6: oxoglutarate dehydrogenase complex, 7: succinate-CoA ligase, 8: succinate dehydrogenase, 9: fumarate hydratase, 10: malate dehydrogenase, 11: isocitrate lyase, 12: malate synthase, 13: glyoxylate dehydrogenase and D/L-lactate dehydrogenase, 14: oxaloacetate acetylhydrolase, 15: oxalate decarboxylase (ODC), and 16: formate dehydrogenase (FDH). Bold upward and downward arrows indicate up- and down-regulated genes in wood culture compared with liquid culture, respectively. Protons may be reduced to H₂ *via* catalytic reaction of an as yet unknown hydrogen-producing enzyme (Hyd)? using electrons produced during formate metabolism.

weeks of incubation on cedar wood meal culture to estimate growth on wood meal. Five transformants showing 50% or higher O2 consumption were selected. The remaining 33 strains showed approximately 30% or less O₂ consumption, indicating that these strains probably grow slowly on cedar wood medium. The amount of H₂ production and remaining O₂ concentration after 14 days of incubation following sealing of cedar wood cultures inoculated with 5 selected strains were shown in Figure 7A. All selected strains showed a higher amount of H₂ in the headspace. Furthermore, the effect of oxalate and formate supplementation on H₂ production of Tvfdh over-expressing strains was investigated (Figure 7B). The wild-type strain exhibited improved H₂ production by the addition of oxalate and formate, and formate supplementation in particular showed a clear effect, as shown in Figure 3. Transformants showed higher H₂ production in cultures with either supplementation than did the wild-type strain with the same supplementation. In contrast, formate supplementation (3 µmol/vial) improved H₂ production by the transformants, whereas oxalate supplementation (3 µmol/vial) did not have a clear effect on H_2 production (Figure 7B).

4 Discussion

Hydrogen and methane gases hold promise as next-generation fuels. Biologically, both gases are produced by anaerobic microorganisms. Recent research revealed that eukaryotes, including animals, plants, and fungi, produce methane during responses to stressors such as ROS, even in the presence of O_2 (Liu et al., 2015). In the case of biohydrogen, many reports have described H₂ production from not only bacteria but also anaerobic eukaryotes. Hydrogenase-like genes are widely distributed among eukaryotes, including higher eukaryotes; however, the functions of these genes are still unknown (Horner et al., 2002). Some reports have described H_2 production by higher plants (e.g., Torres et al., 1986; Jin et al., 2013). Although the physiological roles of H_2 in higher eukaryotes remain unclear, it is thought that H_2 acts as an antioxidant and signaling molecule in higher plants and animals and improves tolerance to ROS (e.g., Itoh et al., 2011; Li et al., 2018). White-rot fungi produce a variety of radicals and ROS during the wood decay process (ten Have and Teunissen, 2001), and they may also have antioxidative self-defense mechanisms.

Based on these observations, it is hypothesized that white-rot fungi produce H₂ as an antioxidant that protects against oxidative stressors such as ROS and radicals that are generated during the wood decay process. In tightly sealed wood cultures, a peak of H2 on GC analysis was observed in the headspace gas of samples of more than half of the white-rot fungi species tested (Figure 1). While this was a very novel and interesting finding, the respective amounts and efficiencies of H₂ production were less than 1/1000 of bacterial H₂ production from lignocellulose (Ren et al., 2016). Therefore, H₂ production by white-rot fungi during wood decay is likely to be a secondary metabolic reaction rather than primary metabolism associated with energy production. It is possible that a portion of the produced H₂ is consumed to reduce the toxicity of radicals and ROS generated during wood decay under aerobic conditions. The H₂ production properties of *T. versicolor* K-41, which showed the highest H₂ production on wood medium, were thus investigated further. After sealing of the culture vials, this fungus consumed O₂ in the headspace via respiration, and H₂ production was only observed during O₂ consumption (Figures 2A, B). If O₂ was resupplied to the headspace of culture vials after O2 consumption ceased, the fungus resumed H₂ production. Additionally, H₂ production was well correlated with O2 concentration (Figure 2C). Thus, these results indicated that white-rot fungi emit H₂ during aerobic respiration but not anaerobic conditions, a property that contrasts markedly with that of bacterial H₂

TABLE 2	Fold-change in	expression c	of genes relating	to the TC	A/glvoxvlate	cycle and oxal	ate metabolism i	in wood culture	e compared to	liquid culture.
						- <i>j</i>				

Enzyme name ¹ /gene ID	Annotation	logFC	logCPM	P value	FDR	GOterm	KOterm			
1) Pyruvate dehydrogenase complex										
XM_008037889.1	mitochondrial pyruvate dehydrogenase E1 component beta subunit	0.59	8.23	0.064	0.145		K00161			
XM_008034705.1	pyruvate dehydrogenase	0.84	8.14	0.013	0.043		K00627			
2) Pyruvate carboxylase										
XM_008040683.1	pyruvate carboxylase	-0.80	9.11	0.016	0.050		K01958			
3) Citrate synthase										
XM_008038329.1	citrate synthase-like protein	0.39	6.95	0.184	0.322		K01647			
XM_008041170.1	citrate synthase	0.61	8.42	0.057	0.134	GO:0006099	K01647			
XM_008040953.1	peroxysomal citrate synthase	0.61	4.78	0.039	0.100	GO:0006099	K01647			
4) Aconitate hydratase										
XM_008034216.1	aconitate hydratase	0.95	4.98	0.001	0.006	GO:0006099	K17450			
XM_008042398.1	aconitate hydratase	0.27	9.27	0.457	0.613	GO:0006099	K01681			
5) Isocitrate dehydrogenase										
XM_008045165.1	isocitrate dehydrogenase	0.92	7.03	0.001	0.006		K00031			
XM_008036665.1	hypothetical protein	-0.18	6.66	0.552	0.699	GO:0006099				
XM_008037535.1	hypothetical protein	-0.17	6.40	0.563	0.709	GO:0006099				
6) Oxoglutarate dehydrogenase complex										
XM_008039342.1	2-oxoglutarate dehydrogenase E1 component	-0.11	4.37	0.712	0.825	GO:0006099	K00164			
XM_008043264.1	2-oxoglutarate dehydrogenase E1 component	0.06	8.75	0.847	0.918	GO:0006099	K00164			
XM_008043731.1	dehydrogenase E1 and transketolase domain-containing protein 1	-1.14	5.87	0.000	0.000	GO:0006099	K15791			
XM_008043611.1	dihydrolipoamide succinyltransferase	0.26	7.40	0.362	0.522	GO:0006099	K00658			
7) Succinate-CoA ligase	1		1			1				
XM_008033951.1	succinate-CoA ligase	0.70	6.73	0.009	0.032		K01899			
XM_008034755.1	succinate-CoA ligase	0.62	7.89	0.043	0.108	GO:0006099	K01900			
8) Succinate dehydrogena	ise									
XM_008037945.1	succinate dehydrogenase	0.31	8.52	0.335	0.494	GO:0006099	K00234			
XM_008041764.1	succinate dehydrogenase cytochrome b560 subunit	1.10	8.35	0.001	0.003	GO:0006099	K00236			
XM_008043277.1	succinate dehydrogenase iron-sulfur subunit	0.63	8.47	0.051	0.122	GO:0006099	K00235			
9) Fumarate hydratase										
XM_008034924.1	fumarate hydratase	-0.17	8.49	0.620	0.754	GO:0006099	K01679			
10) Malate dehydrogenase										
XM_008037733.1	malate dehydrogenase	0.82	8.68	0.023	0.068	GO:0006099	K00026			
XM_008038723.1	malate dehydrogenase	-0.62	9.61	0.056	0.131	GO:0006099	K00026			
11) Isocitrate lyase										
XM_008039384.1	isocitrate lyase	0.58	5.28	0.211	0.356		K01637			
XM_008034471.1	isocitrate lyase	0.97	4.23	0.001	0.007		K01637			

(Continued)

TABLE 2 Continued

Enzyme name ¹ /gene ID	Annotation	logFC	logCPM	P value	FDR	GOterm	KOterm			
12) Malate synthase										
XM_008035809.1	malate synthase	2.81	7.03	0.000	0.000	GO:0006097	K01638			
13) Oxalate producing enzymes										
XM_008045016.1	glyoxylate dehydrogenase	-2.37	3.80	0.000	0.000		K00101			
XM_008037380.1	L-lactate dehydrogenase	-0.71	0.69	0.250	0.402					
XM_008038286.1	D-lactate dehydrogenase cytochrome oxidoreductase	-1.01	3.97	0.000	0.002		K00102			
14) Oxaloacetate acetylhydrolase										
XM_008045015.1	Phosphoenolpyruvate/pyruvate domain-containing protein	-1.88	5.54	0.001	0.004					
15) Oxalate decarboxylase (ODC)										
XM_008041454.1	oxalate decarboxylase	0.57	2.26	0.156	0.285	GO:0033609				
XM_008041462.1	oxalate decarboxylase	3.74	7.17	0.000	0.000	GO:0033609				
XM_008041480.1	oxalate decarboxylase	4.45	6.08	0.000	0.000	GO:0033609				
XM_008042273.1	Bicupin oxalate decarboxylase/oxidase	-1.06	5.22	0.001	0.003	GO:0033609	K01569			
XM_008045068.1	oxalate decarboxylase	-1.23	2.68	0.001	0.006	GO:0033609				
16) Formate dehydrogenase (FDH)										
XM_008035816.1	NAD-dependent formate dehydrogenase	2.29	11.13	0.000	0.000	GO:0008863	K00122			
XM_008044301.1	NAD-dependent formate dehydrogenase	2.79	4.95	0.000	0.001	GO:0008863	K00122			
Hyd)? Hydrogenase-like gene										
XM_008036235.1	iron hydrogenase	0.89	4.28	0.053	0.125					

¹ Numerical values in front of gene names are corresponded to Figure 3.

production. These results also suggested that there is a relationship between H_2 production and wood decay by white-rot fungi.

Some H₂-producing bacteria are capable of utilizing short-chain organic acids such as formate, acetate, and lactate for H₂ production (Barbosa et al., 2001; Matsumoto and Nishimura, 2007; McDowall et al., 2014). It has also been shown that hydrogenosomes, organelles found in a wide variety of anaerobic eukaryotes, produce H₂ during pyruvate or malate metabolism (Davidson et al., 2002). These data suggest that organic acids have a significant effect on microbial hydrogen production. In environments with a high C/N ratio, such as wood, it is thought that white-rot fungi dispose of excess carbon as oxalate or other metabolites. Most oxalate is probably produced intracellularly from intermediates (oxaloacetate and glyoxylate) of the TCA and glyoxylic acid cycles (Mäkelä et al., 2002). Although oxalate accumulation in wood culture correlates well with fungal growth and ligninolytic manganese peroxidase activity in some white-rot fungi, including T. versicolor, white-rot fungi readily decompose excessive oxalate via intra/extracellular metabolism in order to avoid its toxic effect ((Dutton et al., 1993; Mäkelä et al., 2002). Oxalate is degraded to CO2 via formate by intracellular ODC and FDH and also degraded to CO₂ by extracellular peroxidase systems (Shimada et al., 1994). These pathways may enable white-rot fungi to control the concentration of intra/extracellular oxalate to maintain physiological conditions. The concentration of oxalate in the medium was shown to increase after addition of $CaCO_3$ to white-rot fungi cultures (Takao, 1965). The data presented here provide novel insights into the relationship between oxalate metabolism and H₂ production, because higher H₂ production was observed in cedar wood cultures supplemented with CaCO₃, oxalate, and formate compared with control cultures (Figures 3, 7). These results suggested that metabolism of organic acids, especially formate, is involved in H₂ production by *T. versicolor* K-41.

No hydrogen production was observed in the liquid culture, even though the addition of CaCO₃ enhanced extracellular oxalate accumulation (Table 1). RNA-seq analyses showed that T. versicolor K-41 exhibited lower oxalate production and higher oxalate metabolic activity in wood culture compared with liquid culture. As shown in Table 2, T. versicolor K-41 promoted the expression of oxalate metabolic enzymes, ODCs and FDHs, in wood culture. In contrast, oxalate-producing enzymes were suppressed. In addition, T. versicolor K-41 appeared to avoid accumulation of toxic organic acids, glyoxylate, oxalate, and formate, as only malate synthase was upregulated among the enzymes in the glyoxylate cycle. These result support the hypothesis that oxalate/formate metabolism is involved in H₂ production in wood culture. However, this data did not clarify the relationship between the expression of hydrogenase-like genes and H₂ production by T. versicolor K-41. Thus, these experiments indicate that molecular hydrogen synthesis is not the rate-limiting step in the H₂ production system in this fungus.

Accordingly, it was investigated the relationship between the expression of a hydrogenase-like gene (Tvhyd) and FDH gene (Tvfdh) and H₂ production under different O₂ conditions or CaCO₃ supplementation (Figure 6). N₂ purge showed clear effects, as low O₂ conditions completely suppressed H₂ production and inhibited Tvfdh expression. This result suggests that Tvfdh expression is likely more correlated with H₂ production than Tvhyd. Therefore, formate metabolism catalyzed by TvFDH is probably involved in H₂ production. Tvfdh self-recombination strains that maintained O₂ consumption produced higher amounts of H₂ in the headspace than the wild-type strain; however, transformants only exhibited improved H₂ production following formate supplementation, unlike the wild type (Figure 7). These results suggest that the amounts of oxalate and formate or the

associated metabolic activities are the rate-limiting step in H_2 production by *T. versicolor* K-41. Therefore, a possible H_2 production pathway for *T. versicolor* K-41 is proposed, as shown in Figure 5. Oxalate originating in the TCA/glyoxylate cycle is metabolized to form formate by intracellular ODC, and FDH oxidized formate to generate CO₂, H⁺, and two electrons. from formate. Then, TvHYD or an as yet unknown hydrogenase perhaps produces H_2 from protons by utilizing electrons produced in formate metabolism.

mean \pm standard deviation (n=3).

In this study, it was discovered that some white-rot fungi belonging to the Polyporales are capable of producing H_2 during wood decay. In the case of *T. versicolor* K-41, which showed the highest H_2 production, the fungus produced H_2 under aerobic conditions, and oxalate/formate metabolism is likely linked to the H_2 production system. In addition to these results, selfrecombination of *Tvfdh* clearly improved H_2 production in cedar wood culture, thus suggesting that TvFDH is involved in H_2 production by this fungus. This novel finding of aerobic H_2 production by an aerobic white-rot fungus opens new areas of inquiry in biohydrogen research. It is expected that be economically advantageous over anaerobic fermentation for process control if an aerobic H_2 production process could be established. However, the current H_2 production by white rot fungi is far below the commercially viable level. Additionally, there are many open questions remaining in terms of the mechanism of aerobic H_2 production by white-rot fungi has not been excluded, and the H_2 production by white-rot fungi has not been excluded, and the H_2 production of the enzyme producing H_2 and the underlying mechanism will be attempted in order to shed light on the physiological function of H_2 production in white-rot fungi.

Data availability statement

The datasets presented in this study can be found in the DDBJ repository, accession number DRA014108 (https://ddbj.nig.ac.jp/resource/sra-submission/DRA014108).

Author contributions

TM screened H_2 -producing fungi, analyzed gene expression, interpreted experiments, and wrote the manuscript. ST analyzed the effect of oxygen and self-recombinant strains. AS performed characterization of H_2 production activity. MA determined gene and cDNA sequences and contributed screening. RK and YY contributed to the construction of recombinant strains. HD performed RNA-seq and analyzed the data. HK proposed the H_2 production pathway. HH designed and interpreted the experiments

References

Azwar, M. Y., Hussain, M. A., and Abdul-Wahab, A. K. (2014). Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. *Renew. Sustain. Energy Rev.* 31, 158–173. doi: 10.1016/j.rser.2013.11.022

Barbosa, M. J., Rocha, J. M. S., Tramper, J., and Wijffels, H. R. (2001). Acetate as a carbon source for hydrogen production by photosynthetic bacteria. *J. Biotechnol.* 85, 25–33. doi: 10.1016/S0168-1656(00)00368-0

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Genome analysis Trimmomatic: a flexible trimmer for illumina sequence data. *Bioinfomatics* 30, 2114–2120. doi: 10.1093/bioinformatics/btu170

Dashtban, M., Schraft, H., Syed, T. A., and Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. *Int. J. Biochem. Mol. Biol.* 1, 36–50.

Davidson, E. A., van der Giezen, M., Horner, D. S., Embley, T. M., and Howe, C. J. (2002). An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus neocallimastix frontalis L2. *Gene* 296, 45–52. doi: 10.1016/S0378-1119(02)00873-9

Davies, D. D., and Asker, H. (1983). Synthesis of oxalic acid by enzymes from lettuce leaves. *Plant Physiol.* 72, 134–138. doi: 10.1104/pp.72.1.134

Dutton, M. V., Evans, C. S., Atkey, P. T., and Wood, D. A. (1993). Oxalate production by basidiomycetes, including the white-rot species coriolus versicolor and phanerochaete chrysosporium. *Appl. Microbiol. Biotechnol.* 39, 5–10. doi: 10.1007/BF00166839

Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., et al. (2015). A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. *Appl. Energy* 144, 73–95. doi: 10.1016/ j.apenergy.2015.01.045 and wrote the manuscript. All authors contributed to the article and approved the submitted version.

Funding

This work was supported by Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI), grant numbers JP16K15074 and JP18H02311.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/ffunb.2023.1201889/full#supplementary-material

Hackstein, J. H. P., Akhmanova, A., Boxma, B., Harhangi, H. R., and Voncken, F. G. J. (1999). Hydrogenosomes: eukaryotic adaptations to anaerobic environments. *Trends Microbiol.* 7, 441–447. doi: 10.1016/S0966-842X(99)01613-3

Hess, M., Paul, S. S., Puniya, A. K., Giezen, M., Shaw, C., Edwards, J. E., et al. (2020). Anaerobic fungi: past, present, and future. *Front. Microbiol.* 11. doi: 10.3389/ fmicb.2020.584893

Hisamori, H., Watanabe, T., Suzuki, S., Okawa, K., Sakai, H., Yoshimura, T., et al. (2013). Cloning and expression analysis of a cDNA encoding an oxaloacetate acetylhydrolase from the brown-rot fungus fomitopsis palustris. *Sustain. Humanosph.* 9, 57-64.

Horner, D. S., Heil, B., Happe, T., and Embley, T. M. (2002). Iron hydrogenases - ancient enzymes in modern eukaryotes. *Trends Biochem. Sci.* 27, 148–153. doi: 10.1016/S0968-0004(01)02053-9

Itoh, T., Hamada, N., Terazawa, R., Ito, M., Ohno, K., Ichihara, M., et al. (2011). Molecular hydrogen inhibits lipopolysaccharide / interferon γ -induced nitric oxide production through modulation of signal transduction in macrophages. *Biochem. Biophys. Res. Commun.* 411, 143–149. doi: 10.1016/j.bbrc.2011.06.116

Jin, Q., Zhu, K., Cui, W., Xie, Y., Han, B., and Shen, W. (2013). Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress *via* the modulation of heme oxygenase-1 signalling system. *Plant Cell Environ.* 36, 956–969. doi: 10.1111/pce.12029

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. *Nat. Methods* 12, 357–360. doi: 10.1038/nmeth.3317

Kim, S. Y., and Volsky, D. J. (2005). PAGE: parametric analysis of gene set enrichment. BMC Bioinf. 6, 144. doi: 10.1186/1471-2105-6-144 Li, C., Gong, T., Bian, B., and Liao, W. (2018). Roles of hydrogen gas in plants: a review. *Funct. Plant Biol.* 45, 783-792. doi: 10.1071/FP17301

Liao, Y., Smyth, G. K., and Shi, W. (2014). FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. *Bioinformatics* 30, 923–930. doi: 10.1093/bioinformatics/btt656

Liu, J., Chen, H., Zhu, Q., Shen, Y., Wang, X., Wang, M., et al. (2015). A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: an overview. *Atmos. Environ.* 115, 26–35. doi: 10.1016/j.atmosenv.2015.05.019

Mäkelä, M., Galkin, S., Hatakka, A., and Lundell, T. (2002). Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. *Enzyme Microb. Technol.* 30, 542–549. doi: 10.1016/S0141-0229(02)00012-1

Marvin-Sikkema, F. D., Gomes, T. M. P., Grivet, J.-P., Gottschal, J. C., and Prins, R. A. (1993). Characterization of hydrogenosomes and their role in glucose metabolism of neocallimastix sp. L2. Arch. Microbiol. 160, 388–396. doi: 10.1007/BF00252226

Matsumoto, M., and Nishimura, Y. (2007). Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 103, 236–241. doi: 10.1263/jbb.103.236

McDowall, J. S., Murphy, B. J., Haumann, M., Palmer, T., Armstrong, F. A., and Sargent, F. (2014). Bacterial formate hydrogenlyase complex. *Proc. Natl. Acad. Sci. U.S.A.* 111, E3948–E3956. doi: 10.1073/pnas.1407927111

Mnatsakanyan, N., Bagramyan, K., and Trchounian, A. (2004). Hydrogenase 3 but not hydrogenase 4 is major in hydrogen gas production by escherichia coli formate hydrogenlyase at acidic pH and in the presence of external formate. *Cell Biochem. Biophys.* 41, 357–365. doi: 10.1385/CBB:41:3:357

Mori, T., Kako, H., Sumiya, T., Kawagishi, H., and Hirai, H. (2016). Direct lactic acid production from beech wood by transgenic white-rot fungus phanerochaete sordida YK-624. J. Biotechnol. 239, 83–89. doi: 10.1016/j.jbiotec.2016.10.014

Mori, T., Sudo, S., Kawagishi, H., and Hirai, H. (2018). Biodegradation of diuron in artificially contaminated water and seawater by wood colonized with the white-rot fungus trametes versicolor. J. Wood Sci. 64, 690–696. doi: 10.1007/s10086-018-1740-x

Munir, E., Yoon, J. J., Tokimatsu, T., Hattori, T., and Shimada, M. (2001). A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete fomitopsis palustris. *Proc. Natl. Acad. Sci. U.S.A.* 98, 11126–11130. doi: 10.1073/pnas.191389598

Ohta, S. (2012). Molecular hydrogen is a novel antioxidant to ef fi ciently reduce oxidative stress with potential for the improvement of mitochondrial diseases. *Biochmica Biophys. Acta* 1820, 586–594. doi: 10.1016/j.bbagen.2011.05.006

Ren, N. Q., Zhao, L., Chen, C., Guo, W. Q., and Cao, G.-L. (2016). A review on bioconversion of lignocellulosic biomass to H2: key challenges and new insights. *Bioresour. Technol.* 215, 92–99. doi: 10.1016/j.biortech.2016.03.124

Renwick, G. M., Giumarro, C., and Siegel, S. M. (1964). Hydrogen metabolism in higher plants. *Plant Physiol.* 39, 303–306. doi: 10.1104/pp.39.3.303

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* 26, 139-140. doi: 10.1093/bioinformatics/btp616

Shimada, M., Ma, D. B., Akamatsu, Y., and Hattori, T. (1994). A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. *FEMS Microbiol. Rev.* 13, 285–295. doi: 10.1111/j.1574-6976.1994.tb00049.x

Takao, S. (1965). Organic acid production by basidiomycetes, i. screening of acidproducing strains. Appl. Microbiol. 13, 732–737. doi: 10.1128/am.13.5.732-737.1965

ten Have, R., and Teunissen, P. J. M. (2001). Oxidative mechanisms involved in lignin degradation by white-rot fungi. *Chem. Rev.* 101, 3397–3413. doi: 10.1021/cr0001151

Torres, V., Ballesteros, A., and Fernández, V. M. (1986). Expression of hydrogenase activity in barley (hordeum vulgare l.) after anaerobic stress. *Arch. Biochem. Biophys.* 245, 174–178. doi: 10.1016/0003-9861(86)90202-X

Watanabe, T., Hattori, T., Tengku, S., and Shimada, M. (2005). Purification and characterization of NAD- dependent formate dehydrogenase from the white-rot fungus Ceriporiopsis subvermispora and possible role of the enzyme in oxalate metabolism. *Microb. Technol.* 27, 68–75. doi: 10.1016/j.enzmictec.2005.01.032

Xie, Y., Mao, Y., Lai, D., Zhang, W., and Shen, W. (2012). H2 enhances arabidopsis salt tolerance by manipulating ZAT10 / 12-mediated antioxidant defence and controlling sodium exclusion. *PloS One* 7, e49800. doi: 10.1371/journal.pone.0049800

Zeng, J., Zhang, M., and Sun, X. (2013). Molecular hydrogen is involved in phytohormone signaling and stress responses in plants. *PloS One* 8, e71038. doi: 10.1371/journal.pone.0071038