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Fungi have been used to better the lives of everyday people and unravel the

mysteries of higher eukaryotic organisms for decades. However, comparing

progress and development stemming from fungal research to that of human,

plant, and bacterial research, fungi remain largely understudied and

underutilized. Recent commercial ventures have begun to gain popularity in

society, providing a new surge of interest in fungi, mycelia, and potential new

applications of these organisms to various aspects of research. Biotechnological

advancements in fungal research cannot occur without intensive amounts of

time, investments, and research tool development. In this review, we highlight

past breakthroughs in fungal biotechnology, discuss requirements to advance

fungal biotechnology even further, and touch on the horizon of new

breakthroughs with the highest potential to positively impact both research

and society.
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1 Introduction

The fungal kingdom is vast and contains many different species with a variety of

properties and useful enzymes. Fungi have contributed to the betterment of humanity

throughout history and maintain a great deal of potential to further advance humanity.

Fungi have been used for centuries in the food and beverage industry, used to make bread,

cheese, beer, wine, and many other products (Hesseltine, 1965; Dupont et al., 2017). Since

the 1990s, there has been a growing interest in using fungi for additional biotechnological

purposes with a ten-fold increase in publications containing the terms associated with

fungal biotechnology in recent years (Figure 1). Their genetic plasticity and ability to

rapidly adapt to new hazardous and difficult to colonize environments means that fungi can

contribute in many various environments. Their genetic tractability and transformability

add to their overall plasticity, horizontally acquiring foreign genes, entire pathways, and

even entire chromosomes. These properties make fungi ideal for industrial and

pharmaceutical purposes, but also great subjects for studying genetic control of

morphology and higher-level functions; to coordinate growth, sense their environment,

respond to extreme conditions, and even mechanisms of basic cellular decision making.
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Additionally, fungi underpin and support our world’s entire

ecological system. They reside in vast quantities in the soil

beneath our feet, recycling nutrients and contributing to the food

webs that many ecosystems rely on. Without their recycling of

nutrients, the entire food web would cease to function. Yet, our

understanding of fungi is more trivial than with nearly any other

kingdom of life. This review aims to highlight their distinct

advantages and where extra research would quicken the advent of

breakthrough fungal technologies.

Broadly speaking, “biotechnology” is the industrial use of

biological organisms and processes to benefit human endeavors.

Fungal biotechnology is a specialized area of biotechnology that

deals with the design and application of fungal biomass,

metabolism, or genetics to address societal or environmental

problems. The biology of fungi has great potential for addressing

some of the world’s most pressing issues, such as food security, energy

insecurity, human medicine, and environmental sustainability.

Despite decades of research on fungi as decomposers, saprotrophs,

and plant pathogens, applications of fungal biotechnology are only

recently gaining significant traction. The future of fungal

biotechnology looks very promising, with many new and exciting

applications on the horizon.

Many fungi play a critical role in the environment by breaking

down plant materials and recycling their nutrients and metabolic

byproducts back into their environment. When yeasts, like

Saccharomyces cerevisiae or Yarrowia lipolytica, break down plant

materials through fermentation, the valuable product ethanol is

produced (Bothast and Schlicher, 2005; Goldemberg, 2007; Liao

et al., 2016; Adrio, 2017). Currently, plant-derived ethanol is mostly

processed from yeast fermentation of simple sugars derived from

milled corn starch and sugarcane. However, ethanol production can

be more sustainable if produced from solely starch. Starting in the

1980’s, many studies made advancements in yeast engineering to

improve ethanol production through the expression of other fungal

amylases (Cole et al., 1988; Inlow et al., 1988; Ashikari et al., 1989; de
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Moraes et al., 1995). Yet, direct fermentation of starch remained

elusive until additional engineering efforts to modify the yeast cell

surface (Murai et al., 1997; Murai et al., 1999; Kondo et al., 2002;

Shigechi et al., 2004a) and successful fermentation directly from

starch is now possible (Shigechi et al., 2004b). These engineered

yeast strains are equipped with glucoamylase gene from another

fungus, Rhizopus oryzae, and an a-amylase gene from the bacterium

Streptococcus bovis (Shigechi et al., 2004b).

Researchers have also set out to engineer Saccharomyces

cerevisiae cells for production of fatty acid-derived biofuels and

chemicals. To do this, they first deleted the gene encoding acetyl-

CoA carboxylase (ACC1), which is responsible for converting

acetyl-CoA to malonyl-CoA. The researchers then inserted a gene

encoding thioesterase (TE) into the ACC1 locus. TE is an enzyme

that catalyzes the hydrolysis of acyl-CoAs to free fatty acids. The

engineered S. cerevisiae cells were able to grow on glucose and

produce high levels of free fatty acids, which can be used for biofuel

or chemical production (Hu et al., 2019). Further research on

fungal-derived biofuel production is critical to an era of social and

legislative efforts to reduce dependence on a depleting resource of

fossil fuels. Further research is being done to investigate other ways

these fungal-derived biodiesel, biofuels, and ethanol can be utilized.

Since ethanol production requires the presence of plant materials

and fungal materials, the sustainability of biofuel production holds

significant promise. The world’s dependence on fossil fuels despite

its ever-declining availability means there is a growing need for

renewable sources of energy like biofuels. Fungal-derived biofuels

offer a more sustainable and environmentally friendly alternative to

traditional fossil fuels. As a model organism with the first genome

to be fully sequenced, S. cerevisiae is being further explored as a tool

to accomplish other complex biochemical processes, including

engineering of nitrogen-fixation potential to address issues of

nitrogen fertilizer sustainability (Burén et al., 2017).

Plants are not the only materials that fungi have been successful

at breaking down. Some fungi have unique abilities to break down
FIGURE 1

Representation of publication trends for given terms between 1991-2021. Publication numbers represent all documents found within the given years
by Web of Science (www.webofscience.com/).
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hazardous hydrocarbons, organic pollutants, and other toxic

phenolic compounds (Treu and Falandysz, 2017). Fungi have

shown so much potential for this that the entire field has been

dubbed ‘mycoremediation’. Nutrient pollution, specifically nitrogen

and phosphorus, is one of the main environmental problems in

natural waterways and both salt and freshwater ecosystems from

agricultural fertilizer runoff. Fungal biomass from Trichothecium

roseum can remove up to 97.5% of phosphate; other species such as

Epicoccum nigrum, Geotrichum candidum, and other Trichoderma

sp. can remove significant amounts of nitrogen from waste water

streams (Coulibaly et al., 2003; Sankaran et al., 2010), removal of

heavy metals (Shakya et al., 2016), waste from the textile industry

(Jebapriya and Gnanadoss, 2013), and agro-industrial waste

(Ferreira et al., 2016; Matei et al., 2021). Both filamentous (Al-

Otibi et al., 2022) and edible mushroom species like Pleurotus tuber-

regium (oyster mushroom) and Fistulina hepatica (beefsteak

mushroom) (Isikhuemhen et al., 2003; Shen and Chaichi, 2020)

have demonstrated the ability to bioremediate crude oil

hydrocarbons. One successful mycoremediation experiment was

the cleanup of an oil spill in Prince William Sound, Alaska. In 1989,

the Exxon Valdez spilled over 11 million gallons of oil into the

sound. The oil coated beaches and killed wildlife. A team of

scientists used fungi to break down the oil by spraying a mixture

of calcium carbonate and fungal spores onto the beaches, allowing

the fungi to grow and break down the oil. This project

demonstrated that mycoremediation can be an effective way to

clean up large-scale environmental disasters (Kumar and

Kaur, 2018).

When the rose-pink yeast Rhodotorula taiwanensis was first

discovered in radioactive waste sites, researchers recognized the

capacity for this fungus to mycoremediate these waste sites.

Characterization of the genome of this robust yeast species

revealed the prosperity for sulfur metabolism to break down

sulfate-compounds present in acid mine drainage, genes involved

in heavy metal resistance and acquisition (including uranium), high

tolerance for radioactivity (Tkavc et al., 2018). In addition, R.

taiwanensis can also reduce the bioavailability of the heavy metals

and radionuclides, making them less mobile and less likely to

contaminate groundwater or other ecosystems. R. taiwanensis has

great potential as a tool for cleaning up radioactive waste sites,

however, more work is needed to optimize this remediation process

and the genes involved have yet to be fully explored and utilized.

Fungi are also poised to help address food security issues in

many unique ways. Cultivation of fungi as food in the form of edible

mushrooms dates back to as early as 200 BC in China, where special

notes and documentation about the effects of environment on the

growth and appearance of various Auricularia spp. (Cheng and Tu,

1978). Today, Agaricus bisporus button mushrooms are a staple in

produce sections of grocery stores around the globe, including the

United States. Other mushrooms like Flammulina velutipes, the

enoki mushroom, are common in East Asian produce stores. Many

other food favorites require fungal fermentation for their unique

flavors, like tempeh produced by fermentation with Rhizopus

oryzae, soy sauce produced through fermentation by Aspergillus

oryzae, blue cheese colonized by Penicillium roqueforti, and salami

aged and seasoned via colonization by unique Penicillium species,
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like the recently described P. salamii (Perrone et al., 2015). More

recent efforts to utilize fungi or fungal-derived products in food has

led to the development of unique products with meat-like

properties (hamburger, bacon, etc. - Impossible burger, Quorn,

and MyBacon), with little or no animal products involved (Meyer

et al., 2020). Beyond fungi as food themselves, many fungi form

intricate, beneficial relationships with plants, including food crops

and trees, in the form of mycorrhizae. Mycorrhizal fungi that form

intimate relationships with plant roots and exchange nutrients with

them, which can help improve crop yields, create more nutritious

foods, and even help crops withstand pests and diseases (Jeffries and

Rhodes, 1987). With the world population projected to reach 9

billion by 2050, there is an urgent need to find ways to increase food

production while ensuring food security for all people. Fungal

biotechnology through new food products and enhancing

mycorrhizal relationships offers promising solutions to this

challenge (Thirkell et al., 2017).

Advancements in biotechnology require intricate knowledge of

the biological systems and creative thinking in potential

applications. All of this requires financial investments in research.

Fungal biotechnology is likely to advance by following phases

highlighted in Figure 2: building a curiosity about fungi,

developing tools for advancing our knowledge, generating new

insights from studies, applying the new knowledge in unique

ways, transferring, developing, and testing the new technologies,

leading to a better world for all. Each successive phase is built upon

the previous one to create a more complete understanding of these
FIGURE 2

Fungi contribute to environmental cycles in many ways. Broad
curiosity about fungi begs the necessity of tool development to
better understand how they do the things they do. Better tools
reveal deeper insights that can have novel applications in our daily
world. Promising applications need further funding support for
technology transfer, product development, and optimization in
order to help contribute to a better world for all. Created with
BioRender.com.
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organisms and their potential applications in the real world. The

first phase of fungal biotechnology is simply a curiosity about fungi

to further study fungal species and attributes. Only a small portion

of the overall diversity of fungi e.g. Aspergillus, Neurospora,

Saccharomyces, Fusarium, etc. have made it to model organism

status. These organisms were selected due to their ease as an

experimental model or dire need to control as a pathogen.

Understanding other fungi and the roles they play in a broader

context will lead to the development of tools for studying fungi,

such as advanced microscopes and culturing techniques for more

difficult to culture fungi. None of this is possible without adequate

funding for basic mycological research.
2 MycoGenetics: Applications of
fungal genetics

The impact of next generation sequencing technology on

biology has been profound, particularly in the world of fungal

genetic research. Information revealed from improved DNA

sequencing has reshaped the entire phylogeny of the fungal

kingdom. In many cases, DNA sequencing has revealed that

different fungi thought to be the same species were in fact very

distinct from one another and vice versa (Begerow et al., 2010;

SanMiguel, 2011; Bazzicalupo et al., 2013; Dannemiller et al., 2013;

Ahrendt et al., 2018; Forin et al., 2018). Comparing DNA sequences

of many fungi that were thought to be very different species instead

revealed identical sequences and demonstrated the vast complexity

of different fungal reproductive structures (Axelson-Fisk and

Sunnerhagen, 2005; Schoch et al., 2014; Wu et al., 2019).Though

this discovery has led to some confusion and controversy over

which name to select for a given fungal species (i.e. “One Fungus,

One Name”) (Taylor, 2011), the benefits of DNA sequencing in

fungi far outweigh the negatives. Combining whole-genome

sequencing with other developing ‘-omic technologies like

phenomics, transcriptomics, and metabolomics has allowed

researchers to understand fungi and their interactions with the

environment like never before.
2.1 Advancements through long-read and
other emerging sequencing technologies

Fungal genomes are notoriously difficult to sequence and

assemble due to their large size and repetitive sequences. As a

result, most fungal genome studies have relied on short read

sequencing technologies, which often produce fragmented

assemblies. However, recent advances in long read sequencing

technologies, such as Nanopore and PacBio, have made it possible

to generate high-quality fungal genome assemblies. These new

technology platforms have already had a major impact on fungal

genetic research. For example, they have been used to generate the

first complete assembly of the human pathogenic fungus

Cryptococcus neoformans (Passer et al., 2019). This fungus is

responsible for hundreds of thousands of deaths each year, so

having a high-quality genome assembly is a major breakthrough
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for understanding the genetic mechanisms of the fungus to incite

disease in humans. The ability to generate complete genomes for

this and other medically important fungi will help researchers

develop new treatments and diagnostic tools.

In addition, long read sequencing has also been used to discover

novel genes and pathways in fungi. For example, a recent study used

PacBio long reads to annotate over 7,000 previously

uncharacterized genes in the model fungus Saccharomyces

cerevisiae (McIlwain et al., 2016). These newly discovered genes

are involved in a variety of functions including metabolism, stress

response, and cell wall biogenesis. The identification of these genes

would not have been possible without long read sequencing. Long-

read technologies are enabling researchers to generate high-quality

genome assemblies for medically important fungi and discover

novel genes and pathways that were previously hidden in

fragmented short read data sets.

Another sequencing advancement, Hi-C sequencing, has

contributed to our understanding of fungal genome structure. Hi-

C sequencing provides detailed information about the three-

dimensional (3D) structure of chromosomes and genomes. Hi-C

data has been used to generate 3D models of several fungal

genomes, including those of the yeast Saccharomyces cerevisiae

and the human pathogen Candida albicans (Schalbetter et al.,

2019; Guin et al., 2020). These models have revealed important

insights into the organization and function of these genomes. For

example, they have shown that S. cerevisiae chromosomes are

organized into distinct compartments that contain different sets

of genes involved in specific biological processes. Additionally, the

3D model of C. albicans showed that this pathogen has a highly

dynamic genome that undergoes large-scale changes in structure

during its infectious cycle. These studies demonstrate the power of

Hi-C sequencing for investigating the 3D structure of fungal

genomes. This technique is likely to be particularly useful for

studying species with complex or unusual genome structures,

such as those found in many plant pathogens.

In recent years, machine learning has become increasingly

popular in many science fields, including mycology. Machine

learning algorithms are able to effectively process large amounts

of data and identify patterns that would be difficult for humans to

discern. Additionally, machine learning can be used to develop

predictive models that can be used to generate new hypotheses or

guide experiments. There are a number of different machine

learning algorithms that have been applied in fungal research,

including support vector machines, decision trees, and artificial

neural networks. For instance, these algorithms have helped predict

virulence and fungicide tolerance in clinical isolates of many fungi

(Chaudhury et al., 2011; Dix et al., 2015; Delavy et al., 2020).

Additional research applying machine learning to fungal biology is

certain to help further identify patterns in data sets and generate

hypotheses, predictions, and new knowledge.

High quality whole-genome sequences of fungi provide a

valuable resource for the fungal biotech community. As machine

learning algorithms continue to improve predictions of gene

identification and protein 3D structures, these resources will

contribute to new alleles of known genes, entirely new genes, and

whole gene clusters. Equipped with these resources, fungal
frontiersin.org
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geneticists can study fungal genes and their products for additional

contributions to benefit society.
2.2 Bioinformatics tools for characterizing
fungal proteins

In the past decade, research on fungal proteins has accelerated

due to the availability of more sophisticated predictive tools. SignalP

and EffectorP are two such tools that predict the secretion of

proteins in fungi. SignalP consists of a neural network that

is trained on a set of known signal peptides. It can be used

to predict whether a given protein sequence contains a

signal peptide that destines a protein for secretion (Almagro

Armenteros et al., 2019). EffectorP consists of a Support Vector

Machine that is trained on known effector proteins. It can be used to

predict whether a given protein sequence is an effector protein.

ApoplastP is used to predict the localization of proteins in the

plant apoplast, and Localizer is used to predict additional

subcellular localizations in plant cells (Sperschneider et al., 2018).

ApoplastP uses four different methods (sequence alignment,

structural analysis, hydrophobicity analysis, and subcellular

localization prediction) to predict the localization of proteins in

the apoplast. Localizer uses sequence data and sliding windows to

predict signals for chloroplast, mitochondrial, and nuclear

localization signals (Sperschneider et al., 2017).

While subcellular localization prediction is often defined by

amino acid chemistry and motifs, other features such as enzymatic

activity and ligand binding site prediction are less amenable to such

an approach. Difficulty in establishing the 3D structure of a protein

from its sequence, or the “protein folding problem”, has been an

ongoing issue in biology, especially for proteins with no

experimentally validated homologs (Abriata et al., 2019; Pearce

and Zhang, 2021). Despite billions of known protein sequences, the

list of those with known structures is in the thousands and fungal

proteins represent a bare fraction, leading to limited adoption of

these tools in the fungal research community (Jumper et al., 2021).

Recent advances in machine learning, however, have led to the

development of the protein structure prediction tool AlphaFold,

which allows for atomic level prediction of protein structure even in

the absence of characterized homologs (Jumper et al., 2021). Since

the release of AlphaFold, its potential for revolutionizing

pharmaceutical treatment of human fungal pathogens has been

discussed (Thornton et al., 2021). Additionally, AlphaFold has been

used in the analysis of a broad range of fungal plant pathogens to

uncover common structures of secreted virulence proteins which

have lost sequence similarity across large evolutionary timescales

(Seong and Krasileva, 2023). Although this tool will require

extensive validation in the future to confirm its value in fungal

protein modelling, the potential for using AlphaFold in rational

protein design to achieve valuable and/or novel enzymatic activity

in fungi is promising.

Fungal proteins are involved in a variety of important biological

processes, including pathogenesis, metabolism, and cell-cycle

regulation. The use of predictive tools has helped to accelerate

research on fungal proteins by providing information about the
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function and localization of these proteins (Stergiopoulos and de

Wit, 2009; Petre and Kamoun, 2014; Sperschneider et al., 2015).

These tools will be useful in furthering our understanding of fungal

proteins and their roles in disease and development of products

involving fungal products derived from fungal proteins including

enzymes, antibiotics, and vitamins. As more data becomes available,

it is likely that machine learning will play an even bigger role in

fungal research.

Gene annotation software helps reveal conserved regions of

genes across organisms. Accurate prediction tools helps us

understand how fungal genes in genomes are structured and

organized, and how evolutionary principles may be affecting the

same sets of genes in different fungal species. These tools are sure to

help influence fungal biotechnology efforts, as key findings in the

conservation of gene structures also helps us understand conserved

function between fungal species.
2.3 Single-cell RNA sequencing of
fungal cells

scRNA-Seq is a technology which builds on previous

advancements in high-throughput sequencing by allowing for the

targeted analysis of gene expression in individual cells. This is first

achieved through the isolation of cells through methods including

laser microdissection, flow cytometry, and manual cell picking,

followed by the preparation of a cDNA library (Gross et al., 2015).

This approach has already been transformative in our

understanding of medicine (Tang et al., 2019), plant physiology

(Rich-Griffin et al., 2020), and bacterial ecology (Mauger et al.,

2022), but has seen limited application within fungal biology.

Mycology often trails in technological advancements in these

fields, missing out on exploring the unique aspects of both yeast

and filamentous fungi on these platforms.

A logical application of this technology is in better

understanding populations of yeast acting in either natural or

manufacturing settings. Unlike multicellular organisms typically

requiring harsh microdissection or protoplasting to release

individual cells, yeast are inherently single-celled organisms that

lend themselves to being more easily sorted and lysed. To this goal,

scRNA-Seq has been utilized on Saccharomyces cerevisiae, Candida

albicans, and the fission yeast Schizosaccharomyces pombe (Lipson

et al., 2009; Gasch et al., 2017; Saint et al., 2019; Dohn et al., 2021),

all of which demonstrate a surprising level of transcriptomic

heterogeneity in seemingly homogenous populations. Multiple

studies have demonstrated the existence of subpopulations within

isogenic yeast cultures which respond distinctly to both stress-

inducing and growth-promoting conditions, as has been noted in

human and mouse models (Gasch et al., 2017; Tan and Wilkinson,

2020; Urbonaite et al., 2021). While scRNA-Seq has been primarily

focused on answering questions of basic molecular and

microbiology, a more applied use of this method might be in

understanding yeast in an industrial setting (i.e. growth in

bioreactors). Evaluating gene expression of yeast populations

during biomass/lipid production has been a major research focus

in recent years, and a more precise understanding of transcriptomic
frontiersin.org

https://doi.org/10.3389/ffunb.2023.1135263
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org


Roth et al. 10.3389/ffunb.2023.1135263
shifts in these populations may allow for a greater fine-tuning of

targeted biochemistry (Aliyu et al., 2021). Multiple, easily scalable

microfluidics approaches to yeast single-cell transcriptomics have

been developed in recent years, suggesting that we may be at the

forefront of this technology gaining wider application within basic

and applied research (Dohn et al., 2021; Urbonaite et al., 2021).

Similar to yeast cells, filamentous fungi demonstrate

heterogeneity across colonies and even across cells within a given

hypha (de Bekker et al., 2011; Tegelaar and Wösten, 2017). Apical

cells are responsible for hyphal extension and are responsible for a

majority of protein secretion, but appear largely non-dependent on

sub-apical cells during growth in culture (although this is not the

case during other processes including pathogenesis) (Tegelaar and

Wösten, 2017; Peyraud et al., 2019). It has been previously

suggested that an increased focus on the molecular underpinnings

of fungal apical cells over -omics analysis of whole colonies may

help to reduce cellular heterogeneity and optimize the fungal

production of enzymes and other chemicals (Wösten, 2019).

scRNA-seq presents a distinct opportunity to address these

concerns, as the transcriptomic activity of apical cells can avoid

being masked by less productive cells within the same colony/batch.

This approach comes with additional challenges, however, as there

has been very little method development focused on scRNA-seq in

filamentous fungi.

Efforts to build these tools could expedite fungal biotechnology

to identify key genes involved in different fungal processes of the

same fungal isolate. Both fungi and slime molds have demonstrated

“decision-making” abilities (Beekman and Latty, 2015; Money,

2021), and understanding how cell-to-cell communication occurs

and gene expression of individual cells at a hyphal tip compared to

a mature mycelial mat are sure to reveal novel insights with

biotechnological value. For instance, knowing what genes are

important to initial colonization of a new environment

compared to the genes needed to establish dormancy or initiate

fruiting in that new environment could help improve efficiency of

bioremediation efforts.
2.4 Polymutants in fungal research

For decades, the creation of “gene knockouts’’ has been the

premier method used by the scientific community to study the role

and importance of specific genes in fungal biochemistry, host

interactions, and development. While the generation of single

gene mutants has helped to elucidate some of the most critical

processes in fungal physiology and biochemistry, the limitations of

such mutants are apparent (Teng et al., 2013). Fungal genomes

often have highly expanded gene repertoires, including cell wall

degrading enzymes, effectors, hydrophobins, and laccases which

may work individually or in concert to achieve defined and dynamic

goals (Westrick et al., 2019) Given these expansions, there can be

significant controversy surrounding the relative importance of a

given gene in any biological process, especially in situations in

which multiple genes may have tissue specific or coordinated

functions (Arroyo-Velez et al., 2020). A solution to this
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controversy is the generation of polymutants, in which multiple

members of a gene family or biosynthetic pathway have been

removed from the genome.

An attractive approach to remediating this problem is the usage

of marker-independent CRISPR-Cas9 technology, which is capable

of acting in tandem with a small guide RNA (sgRNA) to induce

small insertions or deletions within target genes and abolish protein

production (Ouedraogo and Tsang, 2020). Although Cas9 was first

used in yeast in 2012 (Qi et al., 2012) and a filamentous fungus in

2015 (Liu et al., 2015), an explosion of interest in recent years

highlights the potential of this tool (Hahn and Scalliet, 2021). A case

study of this technique can be seen in the necrotrophic fungal

pathogen Botrytis cinerea, in which a 12x polymutant was generated

using recombinant Cas9 to assess the relative importance of cell

death inducing proteins during infection (Leisen et al., 2020; Leisen

et al., 2022). Given the importance of cell death induction for such a

pathogen, it may be unsurprising that most individual genes had a

negligible effect on virulence, but two distinct polygolacturonases

were confirmed to be critical. The ease of such transformation

techniques has the additional benefit of allowing for the cross-

validation of gene knockouts between research labs, which is

important given the concern of reproducibility of individual gene

knockout phenotypes (Leisen et al., 2022; Qin et al., 2023).

Despite the convenience of the CRISPR-Cas9 technique, some

fungal systems must contend with the issues surrounding nuclear

localization/cytotoxicity of Cas9 and/or poor production of small

guide RNA (Arazoe et al., 2015; Fang et al., 2017; Ah-Fong et al.,

2021). In these cases, an additional tool which has gained interest in

recent years are recyclable markers, which allow for the sequential

removal of genes using a single selection marker, which

is subsequently excised from the genome between each

transformation. This technique has been demonstrated in a range

of fungal organisms using both antibiotic and auxotrophic markers

(Khrunyk et al., 2010; Zhang et al., 2013; Garcia et al., 2017). Such a

system was used to generate a septuple knockout mutant of all

putative hydrophobin genes in the genome of Penicillium expansum

(Luciano-Rosario et al., 2022).

While the benefits of these technologies to fundamental biology

are clear, their potential relevance in fungal biotechnology cannot

be overstated. Fungal organisms often undergo extensive gene

editing to achieve desired characteristics for secondary metabolite

(Ning et al., 2022), lipid (Coradetti et al., 2018), or biomass

production (Wilson and Harrison, 2021). Polymutants will likely

be transformative in our understanding of fungal biochemistry, as

gene redundancy can often mask the importance of given proteins

in a biological function (Dalmais et al., 2011). Although both of the

techniques described here have existed for close to a decade,

increasing adoption in recent years suggest that polymutants will

likely become a gold standard of fungal research. On the opposite

end of the spectrum to polymutants, transgene addition to fungal

strains and culturing in bioreactors can also be valuable. For

example, yeast strains have been engineered as cellular factories

for insulin production (Baeshen et al., 2014). More examples of

medicinal and agricultural applications of fungal metabolism and

bioreactors are described in section 3.2.
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3 MycoImplication: The applications
of knowledge derived from
research on fungi

3.1 Sustainable biomaterials

A primary component of all fungal cell walls is chitin. Like

cellulose, chitin can be processed into many different end-use

products with broad-reaching applications (Meyer et al., 2020).

With the ability to thrive on waste and by-products of current

industries that utilize plant material, fungi can be exploited as

cellular factories to produce chitin, chitosan, and other desirable

end-products.

The ability for fungal mycelia to colonize substrates in a

filamentous, interwoven manner provides unique opportunities to

make biomaterials in specific shapes and sizes. This combination of

traits makes fungi an appealing source of sustainable biomaterials.

When mycelia are inoculated onto plant material, it takes the shape

of whatever container that houses the plant substrate while

consuming the nutrients from the plant matter. When dried, the

mycelial product can be strong, durable, l ightweight,

thermotolerant, and flame resistant (Jones et al., 2020; Mojumdar

et al., 2021). These materials have begun making their way into

society in the form of packing and shipping materials, which are

attractive to customers craving enhanced sustainability. Mycelial

biomass is also amenable to 3D printing processes, allowing

customizable shapes of mycelial composite materials (Bhardwaj

et al., 2020).

Investigations into the compression strength of mycelial bricks

give promise for a future where foundations of buildings and other

structures could be supplemented with sustainable alternatives to

concrete (Achal and Mukherjee, 2015; Ziegler et al., 2016; Jones

et al., 2020; Ghazvinian and Gürsoy, 2022). Concrete frequently

heaves and cracks in colder climates due to the freezing and thawing

of the seasons. Some Ascomycete fungi metabolically induce the

precipitation of calcite, an important component of limestone and

concrete, leading to the notion of ‘self-healing concrete’ (Li et al.,

2015; Khushnood et al., 2022). Further, the hydrophobic nature of

most mycelia could help improve the longevity of concrete

structures by helping it shed water (Khushnood et al., 2022).

Additional creative, forward-thinking uses of mycelium are likely

to be proposed and pursued as interests in mycology and

sustainability continue to grow.
3.2 Bioreactors

As such a diverse kingdom, fungi produce and accumulate a

diverse range of unique compounds. These compounds are being

studied in many disciplines for their potential applications. Many

consumers enjoy the fungal-derived fermentation products like

bread, tempeh, kombucha, wine, or beer, and active efforts are

underway to improve fermentation processes for precision,

quality, and safety in fermented foods (Chai et al., 2022). Milk

spoiled “the right way” can produce delicious cheese, but requires
Frontiers in Fungal Biology 07
the addition of chymosin and pepsin that was historically

harvested from calf stomachs. Today, these proteins are

produced by Aspergillus niger in mass quantities in bioreactors

(Dunn-Coleman et al., 1991). Fungi produce many other diverse

ingredients and additives that are critical for our food systems,

including an estimated 95% of the citric acid used in the food

industry produced by Aspergillus niger (Copetti, 2019). Beyond

traditional fermentation, yeasts and other fungi have begun to

receive renewed attention for their roles in bioreactors for mass-

scale production of other desired compounds.

Historically, research on fungal bioreactors was intended to

identify ways to produce large quantities of plant degrading

enzymes, such as cellulases, pectinases, xylanases, and other

ligninolytic enzymes (Cocking, 1972). Today, the field of “white

biotechnology” refers to the use of biological organisms to mass

produce these compounds and more, with renewed focus on fungal

contributions (Meena and Siddhardha, 2019). Many fungal species

across the globe fill a similar niche in their contributions to the

degradation of plant products. Therefore, many alleles of these

catabolic enzymes exist in nature, and efforts to identify fungal

strains with highly inducible production of these enzymes in

submerged fermentation vessels have been successfully identified

(Fazenda et al., 2008; Hansen et al., 2015). Additional fungal-

derived enzymes like hydrolases, lipases, amylases, and proteases

contribute to more efficient detergents that we use in daily activities

like laundry and dishwashing (Østergaard and Olsen, 2011).

Similarly, the field of “red biotechnology” refers to the use of

biological organisms to produce medical tools and medicinal

compounds. Fungal metabolites long been recognized for their

potential to produce unique secondary metabolites. When

purified, these compounds often have characteristics of

pharmaceutical or agricultural relevance. Key examples of fungal

compounds with medicinal application include the spurious

discovery of penicillin in 1928 by Alexander Fleming in

Penicillium rubens, cyclosporine produced by Tolypocladium

inflatum, statins produced by Aspergillus and Penicillium species,

and stereochemistry transformation of steroidal hormones by

certain Rhizopus species (Aly et al., 2011). Further, the anti-

cancer drug taxol originally discovered in 1962 from the Yew

tree, Taxus brevifolia, can also be produced in Yew-tree associated

mycorrhizal fungi, Taxomyces andreanae (Stierle et al., 1993).

Further research has discovered that other mycorrizhal fungi

produce taxol, and advancements in fungal biotechnology are

likely to improve production of this important medicinal

compound (Gond et al., 2014). The strobilurins are another class

of metabolite with key applications in agriculture. Ironically, the

strobilurin fungicides that successfully kill many fungal pathogens

of plants were discovered in the Basidiomycete Strobilurus

tenacellus (Feng et al., 2020).

In the current era of mass genome sequencing efforts, new

biosynthetic pathways are being discovered in non-model fungi,

leading to new avenues for red biotechnology and fungal

contributions to medicine and beyond (Erjavec et al., 2012;

Wilken et al., 2019). A broadened survey of more fungal species

for metabolite production is key to identifying new compounds

with medicinal or agricultural relevance.
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3.3 Fungal batteries

The future of fungal applications is electric! Though passionate

mycologists are likely to agree figuratively, this can also be taken

quite literally. The porous structure of mushroom flesh can be

processed into carbon-rich, porous nano-ribbons, providing unique

qualities and abilities to hold and release electrical currents,

providing great potential to improve ion flow in Lithium-sulfur

batteries (Campbell et al., 2015; Wu et al., 2016). Further, the classic

“toadstool” mushroom, Amanita muscaria, and others in the

Amanita genus frequently produce a compound called Amavadin,

which has a vanadium ion in its core. Vanadium is relatively rare in

nature, but has tremendous potential to contribute to the next

generation of battery production via redox flow batteries (Kim et al.,

2015; Egitto et al., 2022). Investigating ways to promote vanadium

accumulation in mushrooms provides a promising avenue for

producing more efficient and sustainable batteries in a world that

is becoming more dependent upon electricity and the storage of

electrical power.
4 Conclusions

The application of biotechnology to the field of mycology and

fungal genetics has yielded a great deal of progress in recent years

and is on the cusp of applying great positive change to global

society. We highlighted the key areas of discovery and application of

fungi into emerging technologies. These discoveries and processes

have all been made possible by advances in technology that allow

for greater understanding and manipulation of fungal genomes and

growth conditions. Fungal applications have already shown great

promise in terms of their ability to improve efficiency and
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productivity in various industrial settings. As research continues

to progress in this area, it is likely that even more exciting and

impactful applications will be discovered. The application of

knowledge derived from research on fungi, is poised to be a

particularly fruitful arena, with potential applications ranging

from the development of new drugs to improvement in

agricultural productivity.
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