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César Hernández-Rodrı́guez and Lourdes Villa-Tanaca*

Laboratorio de Biologı́a Molecular de Bacterias y Levaduras, Departamento de Microbiologı́a,
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Autophagy (macroautophagy) is a survival and virulencemechanism of different

eukaryotic pathogens. Autophagosomes sequester cytosolic material and

organelles, then fuse with or enter into the vacuole or lysosome (the lytic

compartment of most fungal/plant cells and many animal cells, respectively).

Subsequent degradation of cargoes delivered to the vacuole via autophagy and

endocytosis maintains cellular homeostasis and survival in conditions of stress,

cellular differentiation, and development. PrA and PrB are vacuolar aspartyl and

serine endoproteases, respectively, that participate in the autophagy of fungi

and contribute to the pathogenicity of phytopathogens. Whereas the levels of

vacuolar proteases are regulated by the expression of the genes encoding

them (e.g., PEP4 for PrA and PRB1 for PrB), their activity is governed by

endogenous inhibitors. The aim of the current contribution is to review the

main characteristics, regulation, and role of vacuolar soluble endoproteases

and Atg proteins in the process of autophagy and the pathogenesis of three

fungal phytopathogens: Ustilago maydis, Magnaporthe oryzae, and Alternaria

alternata. Aspartyl and serine proteases are known to participate in autophagy

in these fungi by degrading autophagic bodies. However, the gene responsible

for encoding the vacuolar serine protease of U. maydis has yet to be identified.

Based on in silico analysis, thisU. maydis gene is proposed to be orthologous to

the Saccharomyces cerevisiae genes PRB1 and PBI2, known to encode the

principal protease involved in the degradation of autophagic bodies and its

inhibitor, respectively. In fungi that interact with plants, whether

phytopathogenic or mycorrhizal, autophagy is a conserved cellular

degradation process regulated through the TOR, PKA, and SNF1 pathways by

ATG proteins and vacuolar proteases. Autophagy plays a preponderant role in

the recycling of cell components as well as in the fungus-plant interaction.
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Introduction

Since fungal pathogens sense their nutrient supply and the

changes in their environment, they respond with survival

mechanisms aimed at establishing and promoting growth on

their hosts. The course of invasion involves the remodeling of

the fungal cell wall, adhesion, filamentation, appressorium

formation, and sporulation. When first arriving to the surface

of a plant, fungal pathogens face a nutrient-scarce environment

and must constantly seek the appropriate mechanisms for

survival. Particularly important are the mechanisms related to

the release, transport, and metabolism of nutrients found during

the different stages of infection (Johns et al., 2021).

Macroautophagy, hereafter called autophagy, is a highly

conserved non-selective catabolic mechanism in eukaryotic

cells consisting of the sequestering of cytosolic material (e.g.,

proteins and organelles) by autophagosomes and their delivery

as autophagic bodies to the interior of the vacuole (for most

fungal and plant cells) or their fusion with the lysosome (for

many animal cells). A key element of autophagy is the delivery of

hydrolytic enzymes into the vacuole (Fernandez et al., 2014; Zhu

et al., 2019). After the membranes of autophagic bodies are

degraded and the contents broken down by the vacuolar

hydrolytic enzymes, degradation products are effluxed to the

cytoplasm and reutilized in anabolic pathways (Parzych and

Klionsky, 2019) (Figure 1A).
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By degrading damaged molecules and organelles, autophagy

facilitates the cellular homeostasis and at the same time their

health and longer life span (Aman et al., 2021; Tyler and

Johnson, 2018). During vegetative budding, DNA damage can

induce cell cycle arrest and autophagy. Furthermore, the

selective autophagy-related cytoplasm-to-vacuole targeting

pathway (CvT) is also crucial for cellular homeostasis and

operates during nutrient rich conditions (Levine and Klionsky,

2004). When facing a sufficiency of nutrients nutrient uptake,

carried out by plasma membrane transporters of the cell, that

participate in nutrient acquisition to sustain cellular growth and

much of them also as receptor, are degraded via endocytosis to

avoid an excess of nutrient uptake (Busto and Wedlich-

Söldner, 2019).

Autophagy is induced under certain stress conditions,

including nutrient deprivation, oxidative damage to

organelles, cell cycle dysregulation, and critical levels of

aging-derived molecules. It is suggested that the size of the

insult determines whether autophagy favors cell survival or

cell death. The latter option avoids the propagation of

damaged or mutated cells (Azzopardi et al., 2017). Hence,

the proper balance of autophagy seems to be vital. Whereas a

dysfunction in autophagy leads to an accumulation of toxic

subcellular components, resulting in aging and disease

(Azzopardi et al., 2017; Aman et al., 2021), an excess of

autophagy generates detrimental effects, as exemplified by its
BA

FIGURE 1

The role of autophagy, including the regulation of vacuolar proteases, in the yeast S. cerevisiae. (A) The TOR and RAS/cAMP kinases negatively
regulate autophagy when the yeast is growing in nutrient rich conditions (glucose, NH+

4, and Gln), thus avoiding G0 arrest. Both kinases
inactivate Atg1, Atg13, and Atg8 proteins, which are involved in the first step of development of autophagosomes (Cebollero and Reggiori, 2009)
and in the inactivation of transcription factor Gln3. The latter activates NCR genes and the Snf1 kinase. Under conditions of nutrient scarcity,
Snf1 kinase is located in the vicinity of the vacuole and is released from the inhibition exerted by TOR and PKA, allowing it to inactivate TOR and
PKA kinases. This inactivation takes place in part due to the targeting of Ras2 to the vacuole for proteolysis, mediated by the complex cell cycle
regulator Whi2-phosphatase Psr1 (Leadsham et al., 2009). In addition to degrading specific proteins (e.g., Ras2), proteases and lipases break
down autophagic bodies and their cargos, releasing amino acids and other biosynthetic units. These are either reused directly or induce Glu and
Asp synthesis to replenish the amino acid sinks and therefore assure cell survival (Liu et al., 2021). In response to carbon availability, PKA and
TOR regulate assembly and disassembly of V-ATPase through their effector Sch9 (Wilms et al., 2017). Vacuolar pH is regulated to maintain
intracellular pH homeostasis and allow for the auto maturation carried out by protease PrA (Kane, 2006). (B) PrA matures to some extent in the
endoplasmic reticulum (ER) before arriving to the vacuole and completing the process through automaturation. Subsequently, it stimulates the
maturation of other vacuolar proteases, which are also synthesized as zymogens. Figure created by BioRender.com (accessed in April 2022).
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capacity to promote tumor cell survival and proliferation

(Azzopardi et al., 2017).

Unlike in other organisms, autophagy is induced in yeasts,

mainly by the signal of nutrient scarcity. The process is initiated

by inhibiting its master negative regulator, the TOR kinase

(target of rapamycin) (Noda and Ohsumi, 1998). Indeed, it is

implicated in yeast survival during nutritional stress (Liu et al.,

2021). The autophagic process is initiated by the inhibition of its

master negative regulator, the TOR kinase (target of rapamycin)

(Noda and Ohsumi, 1998). The RAS/cAMP pathway negatively

regulates autophagy as well, while Snf11 stimulates this

macromolecular turnover system (Cebollero and Reggiori,

2009; Shashkova et al., 2015).

Protein degradation and the subsequent efflux of amino

acids by the transporter Atg22 allow the cell to directly reuse

free amino acids to synthesize glutamate and aspartate through a

series of deamination and transamination reactions (Liu et al.,

2021). Poor nutrient conditions not only cause bulk degradation

of proteins in the vacuole, but also degradation of specific

proteins (Figure 1A). As a consequence of the specific

degradation of active Ras2, for instance, the absence of this

protein in the mitochondria prevents the activation of

autophagic apoptosis (Leadsham et al., 2009).

The vacuolar proteolytic system of the yeast Saccharomyces

cerevisiae encompasses at least nine different unspecific

proteases. Endoproteases PrA and PrB (an aspartic and serine

protease, respectively) (Takeshige et al., 1992) participate in the

activation of various vacuolar hydrolases and thus play a well-

documented role in autophagy. PrA and PrB are first synthesized

as preproenzymes and then mature over a series of post

translational modifications, such as proteolysis, that take place

in the endoplasmic reticulum and the Golgi apparatus. After the

arrival of PrA to a vacuole, the last step of processing occurs via

pH-dependent automaturation. Subsequently, PrA matures PrB

and other canonical vacuolar proteases. One example is

aminopeptidase Ape1, which is targeted to the vacuole

through the TOR-induced CvT pathway (Parzych and

Klionsky, 2019) (Figure 1B). Although vacuolar proteases PrA

and PrB were first described in S. cerevisiae, they have since been

found in phytopathogens and other fungal models and, they take

part in autophagic bodies and protein degradation, that increase

from 40% to 85% under conditions of starvation compared to

conditions of growth. This capacity is sharply reduced when

impaired V-ATPase function alters vacuolar acidification

(Kane, 2006).

Autophagy has been extensively studied in yeasts such as S.

cerevisiae and other ascomycetes, both pathogenic and non-

pathogenic. However, there is less information available on

filamentous fungi, and much less so regarding basidiomycete

plant-interacting fungi. The current review aims to summarize

the existing knowledge on autophagy, including its molecular

basis of regulation via the TOR, PKA, and Snf1 kinases and by
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means of vacuolar proteases and transporters during the

vacuolar efflux process. Furthermore, the biological function of

vacuolar proteases in autophagy-dependent process such as

morphogenesis and pathogenesis are explored. Regulation of

proteolytic activity at different levels is also discussed,

underlining endogenous protease inhibitors. These questions

are discussed in relation to three phytopathogenic fungi: the

hemibiotrophic M. oryzae and necrotrophic A. alternata of the

Ascomycota phylum as well as the more distant biotrophic

basidiomycete U. maydis (Figure 2). The conservation of

autophagy is suggested to be beneficial for mycorrhizal fungi-

plant symbiosis (Nehls and Plassard, 2018; Zhou et al., 2021),

however they scape to the scope of this review.
Autophagy in Ustilago maydis

Research on Ustilago maydis (the corn smut fungus) has

provided insights into the ATG genes, the vacuolar proteases

UmPrA and UmPrB, and the participation of such proteins in

autophagy (Nadal and Gold, 2010; Soberanes-Gutiérrez et al.,

2019), a well-conserved process in eukaryotes. To gain insights

into the process of autophagy in U. maydis, it is necessary to first

understand the context of the life cycle and pathogenesis of this

fungus. Unlike other phytopathogenic fungi that are capable of

infecting a wide variety of plants, U. maydis is a highly specific

dimorphic phytopathogenic fungus only able to infect corn (Zea

mays) and teosinte (Zea mays subsp. parviglumis). These two

plants are closely related phylogenetically, likely sharing a

common ancestor (Bruggeman et al., 2020).

U. maydis is a dimorphic fungus with a saprophytic and

biotrophic phase during its life cycle. Its cycle begins with the

germination of diploid teliospores followed by meiosis.

Afterwards, haploid basidiospores are formed and present

apical budding, allowing the sexually complementary yeasts to

merge and establish a dikaryon, a stage in which the fungus can

penetrate the maize plant tissue. The dikaryotic mycelium

proliferates in the biotrophic phase of the fungus, and the

fragmentation of the mycelium gives rise to dikaryotic

teliospores that subsequently undergo karyogamy to generate

mature melanized diploid teliospores. Damage to corn takes the

form of galls or tumors (with a charcoal appearance) on the cob

and other symptoms on the stem and leaves (chlorosis, increased

anthocyanins, etc.) (Matei and Doehlemann, 2016) (Figure 3A).
Orthologous genes of ATG1 and ATG8 in
U. maydis

Carbon stress conditions in U. maydis favor the

accumulation of autophagic bodies in the cell vacuoles as well

as the overexpression of the genes atg1 and atg8 (Nadal and
frontiersin.o
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Gold, 2010). The autophagy genes ATG1 and ATG8 play an

essential role in the induction of autophagy and the assembly of

autophagosomes, respectively, in the nonpathogenic S. cerevisiae

(Figure 1A). Strains of U. maydis lacking such genes have been

evaluated (Nadal and Gold, 2010). According to the findings, the

atg8 gene of U. maydis is related to the process of autophagy in a

manner similar to its orthologous gene ATG8 of S. cerevisiae.

The deletion of atg8 was observed in both the saprobic and

biotrophic phases. The Δatg8 mutants lacked the accumulation

of autophagosomes in the vacuole under conditions of carbon

starvation, leading to reduced survival. There was an alteration

of the characteristic apical budding and cell separation caused by

the deletion of atg8, as shown by the structure of “lateral buds” of

the yeasts in the exponential and stationary growth phase. The

infection of maize plants with sexually complementary atg8

mutant strains, versus wild-type (WT) strains, led to limited

colonization of plants by the fungus, a decline in the number of

plants that presented galls, and a diminished virulence index.

Additionally, a relatively low density of invading hyphae was

found in plant tissues as well as a decrease in the formation

of teliospores.

The Atg8 protein of S. cerevisiae undergoes post-

translational processing at the C-terminus by the cysteine

protease Atg4 to generate Atg8G116. The latter binds

covalently to phosphatidylethanolamine (PE) in a ubiquitin-

like reaction catalyzed by Atg3 and Atg7 (Ichimura et al., 2000;

Kirisako et al., 2000). The analysis of the amino acid sequence of

the protein deduced from the U. maydis atg8 gene and its

phylogenetic relationship with the sequences of other

organisms (Figure 4) supports its characterization as the ATG8
Frontiers in Fungal Biology 04
ortholog of S. cerevisiae, since the protein sequence of this

basidiomycete contains the G116 residue in a conserved amino

acid context (Nadal and Gold, 2010).

On the other hand, the deletion of the orthologous atg1 gene

of U. maydis resulted in phenotypes similar to the Δatg8mutants

during the saprobic phase. The Δatg1 mutants were slightly less

pathogenic for maize plants than the WT strains, although

teliospore production was not affected. However, the

phenotype of a double mutation at Δatg8 and Δatg1 was

additive, evidenced by the even greater decline in

pathogenicity as well as reduced teliospore production

compared to the single-mutant strains. The mating process

and the growth of filaments were not affected by the deletion

of the atg8 and atg1 genes.

The importance of nutrient stress in triggering autophagy

along with cellular adaptation and reprogramming in various

organisms has been recognized for about two decades (Levine

and Klionsky, 2004). For U. maydis and other fungi, carbon

stress conditions existing at distinct stages of the fungal life cycle

are able to cause cellular reprogramming, which can be provoked

by a number of conditions. For example, the mating process

involving the conjugation and fusion of two complementary

sporidia of U. maydis is preferably carried out under conditions

of starvation or a low nitrogen concentration (Wallen et al.,

2021). Apart from its participation in the fungal response to

stress conditions, autophagy might play a relevant role in the

uniparental inheritance of a2 mitochondria in U. maydis. This is

mediated by the small mitochondrial proteins Rga2 and Lga2,

the encoding genes of which are located exclusively in the a2

locus (Mendoza et al., 2020).
FIGURE 2

Maximum likelihood phylogenetic tree constructed with the sequences of the ITS regions of different fungi. Human pathogenic fungi are
portrayed by blue branches, phytopathogenic fungi by red branches, and mycorrhizal fungi by green branches. S. cerevisiae and C. elegans are
illustrated with black branches because the former is rarely isolated as a pathogen (its interest being purely biotechnological) and the latter
served as an outgroup. The tree was generated with the MEGA11 program based on sequence alignment by using the MUSCLE algorithm, the
substitution model HKY+G calculated by JModelTest, and 1,000 bootstrap replicates, as explained in the supplementary material. It was edited
with the FigTree program. The phyla: A = Ascomycota, B = Basidiomycota, M = Mucoromycota, and O = Oomycota. The types of
phytopathogen: Nec =necrotrophic, Bio = biotrophic, and Hem = hemibiotrophic. The host plant for each species is shown. The tree was
generated with the MEGA11 program based on sequence alignment by using the MUSCLE algorithm, the substitution model HKY+G calculated
by JModelTest, and 1,000 bootstrap replicates, as indicated in the supplementary material. It was edited with the FigTree program.
frontiersin.org

https://doi.org/10.3389/ffunb.2022.948477
https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org
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FIGURE 3

The role of autophagy and vacuolar proteases PrA and PrB in the pathosystem of U. maydis, M. oryzae, and A alternata. (A) In the course of an
infection by U. maydis, nitrogen scarcity promotes filamentation of haploid sporidia mediated by the bE and bW genes (in an independent and
nonredundant manner) and the Ump2 transporter, probably preparing the cells for mating (Wallen et al., 2021). After the mating of two
compatible basidiospores, Rbf1 and bE/bW induce cell cycle arrest and dikaryotic filaments extend apically over the host tissue. Vacuolated
areas separated from empty sections by septa are generated during filament extension. Subsequently, non-melanized appressoria develop and
penetrate the plant cells by means of CWDE’s (Nadal et al., 2010). During this early stage, autophagy-related genes and vacuolar proteases PRB1
and PEP4 are overexpressed. Then the cell cycle restarts, fungal effectors are produced, and plant tissue is colonized. At the time of tumor
formation, carbon, nitrogen and oligopeptide transporters, as well as autophagy-related proteins and proteases, all of them are overexpressed.
Furthermore, the transcription factors nit2 and snf1 are upregulated (Lanver et al., 2018). In this late stage, there is a metabolic change in plant
tissue that favors the growth of reproductive over vegetative tissue. Thus, carbon transporters Hxt1 and Suc1 are indispensable for fungal
virulence (Schmitz et al., 2018). During the biotrophic phase, U. maydis faces conditions of nutrient stress and deploys many strategies to
establish an effective infection system. (B) When three-celled conidia of M. oryzae arrive to the plant surface, the germ tube emerges, mitosis
takes place, and the nuclei travel. As the appressoria mature, the conidia undergo autophagic programmed cell death to sustain appressorium
function. The formation of appressoria is positively and negatively regulated by the Ras/cAMP and TOR pathways, respectively (Marroquin-
Guzman et al., 2017), which in turn are regulated by the Whis2-Psr1 complex. The latter maintains the appropriate levels of cAMP and perhaps
targets the Ras22 protein to the vacuole (Shi et al., 2021). (C) When the multicellular conidia of A alternata arrive to the plant tissue, they
germinate and enter the plant cells through stomates or breaches by using an appressorium-like structure and CWDE’s. The plant cell
membrane is immediately disrupted by ACT, which causes plant cell necrosis. Then the fungus proliferates and conidia are formed and released.
The generation of H2O2 by the plant cell as a defense mechanism gives rise to pexophagy. The good functioning of peroxisomes is vital for the
production of ACT toxin (Wu et al., 2021). Additionally, different aspects of autophagy are important for the pathogenicity of A alternata. The
Datg8 strain is unable of either to form aerial hyphae and provoke necrotic lesions, similarly to the Dprb and a pep4-silenced strain. Interestingly
PrB participating in the synthesis of secreted proteases (Fu et al., 2020). Nutrient scarcity leads to the expression of the entire autophagic
machinery as well as the induction of Snf1, an essential protein for carbon utilization, vegetative growth, conidiation, and cell wall functions
(Tang et al., 2020). Schemes were drawn whit BioRender.com (accessed in April 2022) and Corel Drawn v. 19.
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Vacuolar protease A and autophagy in
U. maydis

The pep4 gene of U. maydis encodes a vacuolar aspartyl

proteinase denominated UmPrA (also known as proteinase A or

UmPep4). Its proteolytic activity, detected in the soluble fraction

of cell extracts from U. maydis, is greater when the fungus is in

the mycelial versus yeast phase. The presence of pepstatin, a

specific inhibitor of aspartyl proteases, impedes the dimorphic

transition from yeast to mycelium (Mercado-Flores et al., 2003).

According to proteomics studies, the protein encoded by the

pep4 gene in U. maydis is overexpressed during the yeast-

mycelium transition, which is induced by the master regulator

bE/bW. In addition to UmPep4, proteins orthologous to S.

cerevisiae Gln1 and glutaminase A are overexpressed (Böhmer

et al., 2007). These three proteins, involved in the later steps of

autophagy in S. cerevisiae, carry out amino acid and glutamine

synthesis under conditions of nutrient depletion (Liu et al.,
Frontiers in Fungal Biology 06
2021). A similar strategy may exist for U. maydis to replenish

N pools (Figures 1A and 3A).

Mutants of U. maydis were generated in the pep4 gene,

creating a deficiency in protease A that diminished the

dimorphic transition triggered by acid pH or by the use of

fatty acids as the sole carbon source. As a consequence, the

pathogenicity of the fungus towards the corn plant was affected.

The Δpep4 mutants caused a lower number of plants to be

infected, a decrease in the signs of infection (e.g., chlorosis and

an increase in anthocyanins), and less galls on the ears of corn

(Soberanes-Guitiérrez et al., 2015). The construction of chimeric

PrA proteins with green and red fluorescent proteins (PrA-GPF

and PrA-RPF) confirmed the vacuolar location of the protease

(Soberanes-Guitiérrez et al., 2015).

According to ultrastructural analysis of fungal cells, mutants

of U. maydis deficient in PrA accumulate autophagosomes in the

vacuole when incubated under conditions of carbon starvation

stress (Soberanes-Gutiérrez et al., 2019). This is probably due to
frontiersin.o
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FIGURE 4

Atg8 proteins are conserved in pathogenic and nonpathogenic fungi. (A) Multiple alignments were performed with Clustal Omega. In the
alignment, the amino acids associated with alpha-helical (cyan) or beta-strand (fuchsia) secondary structures are highlighted with boxes.
Likewise, the important amino acid residues for the two deep hydrophobic pockets HP1 and HP2 function are highlighted in yellow and green,
respectively. An asterisk (*) denotes a completely conserved residue; a colon (:) represents the conservation of the properties of the residual side
chain; a dot (.) indicates residues with side chains of weakly similar properties; and a hyphen (-) designates a gap. (B) Consensus logos were
generated with WebLogo. Group 1 (S. cerevisiae, C albicans, A fumigatus, M. oryzae, and A alternata) and group 2 (C. amylolentus and U.
maydis). (C) 3D model of the Atg8 proteins. The overlap of S. cerevisiae (green) with the fungal phytopathogens is represented by utilizing the
best model of the Atg8 of each fungus: U. maydis (blue), M. oryzae (fuchsia), and A alternata (yellow). The model was generated by homology
modeler by using the Modeller 9.23 program, as explained in the supplementary material. (D) Phylogenetic analysis of the Atg8 of different
organisms, carried out in the MEGA6 program with the maximum likelihood method, the WAG+G model, and 100 bootstrap replicates. The
phylogenetic tree is drawn to scale, with the length of the branches depicting the corresponding evolutionary distances. Fungi that are grouped
together in the same clade are portrayed with red, blue, and yellow symbols.
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the inability of the yeasts to degrade autophagosomes. In the S.

cerevisiae model, a similar phenomenon of autophagosome

accumulation in vacuoles is observed in the absence of

protease B or protease A (Takeshige et al., 1992).

Carbon or nitrogen starvation produces stress during the

growth of S. cerevisiae, making a recycling system necessary.

Autophagy is the primary transport pathway for bulk protein

and organelle degradation (Teter and Klionsky, 2000), which

occurs in the vacuole. The structure of the vacuole varies

according to environmental conditions (Pratt et al., 2007).

Autophagosomes collect material and enter the vacuole, where

the enzymes of this organelle degrade their membrane, allowing

for the recycling of the cytoplasmic-derived content (Abeliovich

and Klionsky, 2001). In the mutants of U.maydis deficient in the

acid proteinase UmPep4p (the OR1 and OR2 strains), the

accumulation of autophagosomes was evident after nutrient

shortage. CMAC staining revealed that the size and number of

fusion events of vacuoles increased in complete medium for both

WT and mutant strains as time progressed (Soberanes-Gutiérrez

et al., 2019).

TheU. maydis pep4 gene has been cloned and heterologously

expressed in order to biochemically characterize the

recombinant protein. Based on its inhibition by pepstatin, the

protein was found to be an aspartyl protease. Additionally, the

tertiary structure of UmPrA turned out to be highly homologous

to human cathepsin D, indicating that Umpep4 could be the

ortholog of the gene encoding human cathepsin D (Juárez-

Montiel et al., 2018).

Interestingly, human cathepsin D, encoded by the CTSD

gene, is active in the lysosome (the compartment equivalent to

the fungal vacuole), and mutations in the gene result in protein

accumulation in the organelle as well as nerve cell death (CLN10

disease). Genetic variants of the CTSD gene have been linked to

neurodegenerative diseases such as Parkinson’s and Alzheimer’s

disease (Bunk et al., 2021). Apart from degrading proteins,

human cathepsin D can activate other proteins and regulate

apoptosis (Di et al., 2021). The reduction in cathepsin D activity

in human fibroblasts affects autophagic degradation, a change

associated with insufficient lysosomal function (Tatti

et al., 2012).

When detected in mammary secretions, human cathepsin D

has been proposed as a cancer marker because its overexpression

is related to tumor invasion. The overexpression of PEP4 in S.

cerevisiae has led to the presence of the enzyme in the nucleus of

the yeast. This aspartyl protease may contribute to the

degradation of nucleoporins during H2O2 stress (Kerstens and

Van Dijck, 2018).

Taking all the prior evidence into account, the Pep4 protein

from U. maydis is probably orthologous to human cathepsin D

and Pep4 from S. cerevisiae (Juárez-Montiel et al., 2018).

Furthermore, these vacuolar/lysosomal aspartyl proteases not

only show a conserved tertiary structure with those of

Magnaporthe and Alternaria but also a similar function
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(Supplementary Figure 1), reinforcing the idea of their

evolutive relationship.
Vacuolar protease B and autophagy in
U. maydis

The activity of U. maydis protease B (UmPrBp), a serine

protease, is inhibited by phenyl-methylsulfonyl fluoride (PMSF).

The latter enzyme was detected in U. maydis for the first time in

2003, using Hide–Remazol Brilliant Blue R (Hide powder azure)

substrate at pH 7 and in the presence of an endogenous inhibitor

activated and released at acidic pH (Mercado-Flores et al., 2003).

Considering that the inhibition of UmPrB with PMSF led to the

accumulation of autophagosomes, this serine protease (like

UmPrA) likely participates in the degradation of autophagic

bodies (Soberanes-Gutiérrez et al., 2019).

The absence of protease B during the process of autophagy

in S. cerevisiae causes an accumulation of autophagosomes in the

vacuoles (Takeshige et al., 1992). After autophagosome

formation and the transportation of the cellular cargoes to

vacuoles, autophagic membranes are degraded by vacuolar

enzymes, allowing the cellular components inside to meet the

nutritional requirements of S. cerevisiae under conditions of

starvat ion (Takeshige et al . , 1992; Abeliovich and

Klionsky, 2001).

In S. cerevisiae cells under conditions of carbon or nitrogen

starvation, and in mutants deficient in protease A and protease

B, ribosomes and mitochondria are observed inside of

autophagosomes. Hence, these vacuolar proteases and the

process of autophagy in general seem to degrade and recycle

intracellular components (Takeshige et al., 1992). In WT U.

maydis, autophagic bodies did not accumulate in the cell

vacuoles until the serine protease inhibitor PMSF was added.

In contrast, such accumulation occurred in sporidia with a

mutation in the acid proteinase Pep4p even in the absence of

PMSF. Overall, the findings provide evidence of a key role for

PrB in the degradation of autophagic bodies in U. maydis. In

addition, PMSF-treated WT FB2 cells were shown to accumulate

autophagic bodies, suggesting that vacuolar proteinase B is

involved in the degradation of the autophagic bodies in other

systems as well. In the same sense, autophagic bodies have been

reported to disappear if cells are transferred to a culture medium

without PMSF (Takeshige et al., 1992; Baba et al., 1994).

As already mentioned, the vacuolar proteases PrA and PrB

of S. cerevisiae undergo distinct proteolytic processes from the

beginning of their synthesis to their passage through the

secretion route via the endoplasmic reticulum-Golgi

apparatus-vacuole (Parzych and Klionsky, 2019). Whereas PrB

from S. cerevisiae needs 4 post-translational processing sites to

become a mature enzyme (Figures 1B, 5), the proteolytic

processing of the putative proteinase B of U. maydis, encoded

by the gene with access number Um4400, is herein proposed to
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encompass only three such sites (Figure 5). Given its carboxyl

terminal portion, UmPrB may not mature until it reaches the

vacuole. At this time, automaturation likely takes place rather

than a process directly involving UmPrA. Moreover, the

predicted protein presents the characteristic domain of a

subtilisin-like serine protease of the S8 family. Even though

Magnaporthe and Alternaria are ascomycete fungi, processing

sites similar to those of UmPrB are found in their respective PrB

proteins, as are similar domains and tertiary structures.

Furthermore, the phylogenetic relationship of UmPrB with the

PrB of other related fungi indicates the probable orthology

between them (Figure 5).

Both PrA and PrB propeptides inhibit their cognate

proteases until the latter are removed upon reaching the

vacuole. The endogenous cytoplasmic inhibitors for these

proteases are known, AI3 and PBI2 (I2B, YIB2) for PrA and

PrB, respectively (Dunaevsky et al., 2014). The inhibitory activity

of PrB propeptide and the PBI2 inhibitor depends on their C-

terminal region. It has been determined that the C-terminal

region of the propeptide of S. cerevisiae PrB and the inhibitor

PBI2 share conserved regions with the subtilisin BPN´

propeptide, which inhibits its cognate protein. All these

inhibitors belong to the I9 family, which lacks disulfide bonds,

an unusual characteristic of serine protease inhibitors (Kojima

et al., 1999). Apart from its inhibitory function, PBI2 participates

in vacuole inheritance (together with thioredoxin) by regulating

vacuole coalescence. Thus, inhibitor-protease binding may be a

regulating mechanism of the latter process (Slusarewicz

et al., 1997).

An AI3 homolog has not been identified in U. maydis,

though a probable PBI2 ortholog was detected (with access

number Um10059, JGI portal Um02129). Whereas the
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propeptides or PBI2, its C-terminal region is conserved

(Supplementary Figure 2). The docking of this peptide with

PrB of Saccharomyces, Ustilago, and Alternaria evidenced its

interaction with similar amino acid residues in each case,

including the ones that make up the catalytic triad (Asp, His,

and Ser) (Figure 6). The PBI2 of S. cerevisiae interacts with most

of the same catalytic residues of these PrBs (Supplementary

Figure 3). Similar interactions have been seen for the subtilisin of

B. amyloliquefaciens (Gallagher et al., 1995). The protein

Um10059 might be responsible for the inhibition of the

UmPrB activity reported by Mercado-Flores et al. (2003).

According to the docking analysis, there are distinct

characteristics of specificity of the propeptides, and such

differences are related to the phylum of the fungi. While the PrB

propeptide of S. cerevisiae was able to interact with the catalytic

residues of PrB of Saccharomyces,Magnaporthe, and Alternaria, the

PrB propeptide of Ustilago seems to be different because it could

only interact with PrB residues distinct from the catalytic ones

(Supplementary Figure 4 and Supplementary Table 2).

In addition to the biological implication of these inhibitors,

interesting biotechnological applications have been suggested in

medicine (e.g., to treat cancer and other diseases) and agriculture

(e.g., to target phytopathogens) (Dunaevsky et al., 2014.

Applications of inhibitors are discussed later in this review.
Atg8 and Atg1 proteins and autophagy in
Magnaporthe oryzae

Magnaporthe oryzae (anamorph: Pyricularia oryzae) is a

hemibiotrophic ascomycete and the causal agent of rice blast
B CA

FIGURE 5

Serine vacuolar endoproteases PrBs are conserved in pathogenic and nonpathogenic fungi. (A) The characteristic domains of vacuolar proteases
of the S8 family are illustrated, including the DHS catalytic triad of serine proteases, the probable maturation sites, and the I9 inhibitor domain of
the propeptide (predicted in the Expasy server). Proteases such as ScPrB are apparently synthesized as zymogens, which are inactive until
propeptides are removed in the vacuole. The cysteines in the protein are also shown. The circles in the S. cerevisiae protease designate the
regions where autocatalysis and PrA processing are conducted. In the rest of the proteases, the circles denote regions of theoretical maturation.
The alignment of sequences was performed with Clustal X and the drawing with BioRender.com (accessed in April 2022). (B) Tertiary structure
of fungal PrBs. The overlap is represented by utilizing the best model of PrB of S. cerevisiae (green) and of the three fungal phytopathogens
herein studied: U. maydis (blue), M. oryzae (fuchsia), and A alternata (yellow). (C) Phylogenetic analysis of the PrB of different organisms. Carried
out in the MEGA6 program with the maximum likelihood method, the WAG+G model, and 100 bootstrap replicates. The phylogenetic tree is
drawn to scale, with the length of the branches depicting the corresponding evolutionary distances. Fungi that are grouped together in the
same clade are portrayed with red, blue, and yellow symbols.
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disease. It develops a highly melanized dome-shape

appressorium from a three-celled conidium (spore) (Wilson

and Talbot, 2009). After germination of M. oryzae conidia,

mitosis and nuclear migration occur. Then the nuclei of the

conidia are degraded via autophagy to sustain the successful

formation of infectious hyphae (Figure 3B).

Under nutrient-poor conditions, Datg8 mutants did not

exhibit autophagic activity. The accumulation of autophagic

bodies was not seen inside vacuoles in mycelium cells (using

mono-dansyl cadaverine stain), even when PMSF (an inhibitor

of serine proteases) was added. The structure of the M. oryzae
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Atg8 protein is similar to the one existing in S. cerevisiae Atg8

(Figure 4), and there was no nuclear breakdown in the Datg8
mutant that was capable of affecting pathogenesis without

affecting its capacity to produce appressoria (Veneault-Fourrey

et al., 2006; Veneault-Fourrey and Talbot, 2007).

A mechanical force derived from the high osmotic pressure

inside the appressorium facilitates the disruption of the plant cuticle

(Figure 3B). Since this pressure is favored by glycerol accumulation

and melanization, it causes cytoskeleton reorientation and

polarization, leading to the formation of the penetration peg (Osés-

Ruiz and Talbot, 2017). In M. oryzae, deletion of the ATG14 genes
B

C

A

FIGURE 6

Intermolecular interactions of inhibitory peptide Um10059 (Um2129) (cyan) with PrBSc (A), PrBUm (B), and PrBAa (C). Dotted lines indicate the
type of interactions. For the purpose of clarity, the interactions between the amino acid residues of the PrB catalytic triad (Asp, His, and Ser) and
the inhibitory Um10059 are shown. The interactions with M. oryzae were not shown since none of the residues of the catalytic triad interact
with the inhibitor of U. maydis.
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altered autophagy, glycogen mobilization, the number of lipid

droplets, and turgor pressure, thus affecting infection and

conidiation (Liu et al., 2017). Bulk autophagy of the material of the

conidiumplays amajor role in the turgorpressure,melanization, and

repolarization of appressoria. However, glycogenmobilization is not

essential in the generationof turgorpressure. Rather, the degradation

of lipid droplets seems to be themain source of glycerol andmelanin

(Foster et al., 2017).
Vacuolar protease A and autophagy in
M. oryzae

During appressorium formation induced on a hydrophobic

GelBond surface, two aspartyl proteases genes, MGG_09351.5 and

MGG_00981.5, were overexpressed. Similar results were obtained

when the development of appressoria was triggered by the addition

of cAMP. In either case, the most upregulated genes were generally

related to protein and amino acid degradation as well as

carbohydrate and lipid metabolism, while genes linked to protein

synthesis tended to be downregulated (Oh et al., 2008). On the other

hand, the most probable vacuolar aspartyl protease shows a

conserved 3D structure in relation to the PrA from other yeasts

and filamentous fungi and to human cathepsin D (Supplementary

Figure 1). Hence, all of themmay be homologous and implicated in

the last step of autophagy. Overall, this information highlights the

crucial function of aspartyl proteases in eukaryotic organisms.
Vacuolar protease B and autophagy in
M. oryzae

SPM1 (MGG_03670.5) inM. oryzae encodes the endoprotease

Spm1, related toPrB inS. cerevisiae (Figure5),which is targeted to the

vacuole in the course of an infection. Spm1 is upregulated at the time

of appressorium formation. Although mutants produced melanized

appressoria in the presence of cAMP and under conditions of

nitrogen starvation in synthetic media, a decrease was found in

virulence, aerial hyphae, and conidiation (Oh et al., 2008). Spm1 is

involved in multiple aspects of the infection process such as conidia

germination, invasion, and endocytosis. As evidence of its role in

endocytosis, spm1 mutants were not capable of sustaining the

vacuolar accumulation of FM4-64. In agreement with the

canonical function of the vacuolar serin endoproteases, deletion of

the SPM1 gene leads to the accumulation of granular particles inside

the vacuoles of appressoria and conidia (Saitoh et al., 2009).
Atg8 and Atg1 proteins and autophagy in
Alternaria alternata

Alternaria alternata (an ascomycete) is able to cause disease in a

plethora of hosts bydiverse pathotypes, eachofwhich secretes a host-
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specific toxin (HST) crucial for successful infection. For instance, the

tangerinepathotypeproducesadenylate cyclase toxin (ACT),anHST

for Citrus reticulata, Citrus sinensis, and Citrus paradisi. ACT is

responsible for the necrotic lesions on the leaves and fruit, typical

symptoms of citrus brown spot (Kohmoto et al., 1993). Unlike

biotrophic and hemibiotrophic fungi, necrotrophic pathogens such

as the tangerine pathotype of A. alternata kill their host before

colonization. This is done by generatingACTand cell wall degrading

enzymes (CWDE’s) and occurs immediately after penetrating the

plant through stomata on the abaxial side of the leaves as well by a

small non-melanized appressorium on the adaxial side (Figure 3C).

As a defensive response to fungal infection, a plant is to produce

a great quantity of H2O2 (the hypersensitive response). However,

necrotrophic pathogens have developed mechanisms to cope with

H2O2 stress (Lin et al., 2011). For example, the tangerine pathotype

of A. alternata activates Yap1 and Tfb5 transcription factors,

regulator Skn7, HSK and Hog1 kinases, catalase, and superoxide

dismutase (SOD). Fe+, the SOD cofactor, is taken from the

environment through siderophores and stored in vacuoles.

Whereas the secretion of siderophores is indispensable for the

pathogenicity of A. alternata, it is dispensable for the

pathogenicity of U. maydis (Chung, 2012). On the other hand,

the regulation of Fe+ via vacuolar compartmentalization is

unknown in the latter biotrophic fungus.

Peroxisomes are usually involved in the elimination of H2O2.

Nevertheless, subsequent to H2O2 treatment of Alternaria, the

level of peroxisomes declines and they are found colocalized with

vacuoles, suggesting that pexophagy is taking place. The

alteration of the function of peroxisomes in Alternaria Dpex6
mutant affects pathogenicity and autophagy, partially restored

adding purified ACT toxin. In Dpex6mutants, there was reduced

expression of ATG8, a gene responsible for encoding the Atg8

protein, which accumulates in vacuoles and participates in

autophagosome formation when A. alternata grows in the

absence of nitrogen (Fu et al., 2020; Wu et al., 2021).

Moreover, this Atg8 has a highly conserved tertiary structure

in relation to the homologous proteins of the other fungi

described herein (Figure 4). Overall, the evidence supports the

notion that the function of Atg8 could be similar in fungi, as has

been proposed in previous reports (Ivory et al., 2021).

In A. alternata, as in diverse yeasts and filamentous fungi,

macroautophagy appears to be important for maintaining the

homeostasis of cells under conditions of stress. The pathway

might be similar, involving factors such as Atg proteins, TOR,

Snf1, PKA, and MAPK kinases.
Vacuolar protease A and autophagy in
Alternaria alternata

The crucial role of the aspartyl protease in the course of plant

infection by the A. alternata tangerine pathotype was demonstrated

in a pep4 gene silencing assay. The downregulation of pep4 gave rise
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to the incapacity of A. alternata to produce conidia in PDA

medium, and the resulting small necrotic plant lesions indicated

reduced virulence. In the silenced pep4 strain, autophagic bodies

accumulated inside the vacuole, revealing the essential participation

of the corresponding protein in autophagy (Fu et al., 2020). This

information together with the similarity between the predicted

structure of PrA of A. alternata with the structure of the same

protein in other fungi (Supplementary Figure 1) suggests

that all the vacuolar aspartyl proteases discussed herein are

orthologous proteins.
Vacuolar protease B and autophagy in
A. alternata

In addition to the canonical vacuolar aspartyl protease in A.

alternata, a subtilisin-like serine protease of the S8 family has

also been detected. Based on the domains identified and the

physical interaction with PrA, demonstrated by using a yeast

two-hybrid assay (Fu et al., 2020), as well as the similar

maturation and probable self-regulation (by the I9 domain of

the propeptide of PrB of S. cerevisiae) these two proteins are

probably orthologous. During incubation in minimal medium,

growth was slower for A. alternata Dprb1 strains than the WT

strain. Normal growth was restored by adding citrus leaves, yeast

extract, and urea as a nitrogen source, but the mutant was not

capable of normal conidiation even in PDA medium. Although

A. alternata Dprb exhibited decreased pathogenicity compared

to the WT strain (evidenced by the small necrotic lesions it

induced), its production of ACT was not affected. Similar to PrA

in A. alternata, its PrB is essential for breaking down vacuolar

autophagic bodies in conditions of nutrient scarcity (Fu et al.,

2020). It is similar in structure to other PrBs and is

phylogenetically related to them (Figure 5). Furthermore, it is

inhibited by the predicted U. maydis Um00159 protein and the

PBI2 inhibitor (Figure 6C and Supplementary Figure 3D).

Microbial virulence, a measure of the capacity of a given

microbe to cause damage in a susceptible host, can be enhanced,

lost, and restored. While the virulence of phytopathogenic fungi

depends on secreted proteins such as effectors and toxins,

cellular metabolism, morphogenesis, and sporulation are also

involved (Johns et al., 2021). The relationship between the

process of autophagy in phytopathogenic fungi and their

virulence has been established. The phytopathogenic fungi U.

maydis, M. oryzae, and A. alternata lacking the vacuolar

proteases PrA and PrB and the subtilisin-like protease Spm1

were deficient in terms of autophagy, morphological transitions

related to the infection processes, and probably the secretome

(Saitoh et al., 2009; Soberanes-Gutiérrez et al., 2015) (Figure 3).
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Possible applications derived from the
study of autophagy

As already mentioned, the process of autophagy has been

investigated in humans and other mammals, and its role in the

pathogenesis of neurodegenerative diseases and cancer has been

demonstrated. Inhibitors and activators of autophagy could

serve to better understand the regulation of this process in

human diseases. The testing of autophagy-targeted drugs has

also been proposed (Yang et al., 2013). Given that the process of

autophagy is highly regulated, a balance must exist between its

induction and inhibition (Meijer and Codogno, 2009).

According to several authors, activators of autophagy may

have therapeutic benefits for various diseases (Yang et al.,

2013). Among such activators are endoplasmic reticulum

stress inducers (Ciechomska et al., 2013), rapamycin and its

derivatives (Ravikumar et al., 2004), trehalose (Sarkar et al.,

2007), and inositol monophosphatase (IMPase) inhibitors (e.g.,

lithium chloride) (Sarkar et al., 2005). On the other hand,

autophagy can be suppressed at any of its stages. One of the

problems is the lack of specificity of many autophagy-inhibiting

compounds. The following compounds have been posed as

autophagy inhibitors: PI3K inhibitors (Castino et al., 2010);

cycloheximide (Oliva et al., 1992), vacuolar-type H(+) ATPase

inhibitors (Wu et al., 2009), lysosomal lumen alkalizers

(Harhaji-Trajkovic et al., 2012), and acid protease inhibitors

(e.g., leupeptin and pepstatin A) (Kominami et al., 1983; Tanida

et al., 2005). In addition to contemplating pharmacological

modulation of autophagy based on the type and stage of

certain diseases, gene-targeting approaches have been

postulated as a new therapeutic option for human diseases

associated with the deregulation of the process of autophagy

(Yang et al., 2013).

The inhibition of autophagy in human pathogenic fungi is

an approach worthy of investigation since it represents a

mechanism distinct from conventional antifungals and thus

could plausibly help to combat the multi-resistance problem of

yeasts of the genus Candida, which has become a public health

problem in recent years (Madrigal-Aguilar et al., 2022). The

participation of the ATG1 and ATG11 genes in virulence and

autophagy has been assessed in Candida glabrata and Candida

albicans (Cui et al., 2019; Shimamura et al., 2019), as has the role

of vacuolar proteases in conditions of nutritional stress and their

possible association with the process of autophagy (Sepúlveda-

González et al., 2016; Cortez-Sánchez et al., 2018). Future

research is needed into the application of inhibitors or

activators of autophagy in phytopathogens and fungi

pathogenic to humans in order to reduce or avoid the effects

on the corresponding hosts.
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Juárez-Montiel et al. 10.3389/ffunb.2022.948477
Conclusions

The current review focuses on the role of vacuolar proteases

PrA and PrB, the Atg8 and other molecular players in the process

of autophagy of three phytopathogenic fungi (belonging to two

phyla) with different plant-interaction lifestyles. The insights

provided may be useful for the regulation of the process of

autophagy in both the host and pathogenic fungi. Included in

the study were a biotrophic basidiomycete (U. maydis), a

hemibiotrophic ascomycete (M. oryzae), and a necrotrophic

ascomycete (A. alternata). The plausible orthology between the

vacuolar proteases PrA and PrB in such fungi and in S. cerevisiae

is suggested by both molecular phylogeny and their respective

functions, as they all participate in the degradation of autophagic

bodies in the vacuole during the process of autophagy. Moreover,

the catalytic domains are conserved in the primary and tertiary

structures of the proteins from the three species of

phytopathogenic fungi herein examined. According to the

molecular modeling analysis, the endogenous inhibitor of PrB,

denominated PBI2, exists not only in S. cerevisiae but probably

also in U. maydis. This inhibitor regulates the proteolytic activity

of PrB. PBI2 and Um10059 each bind to the catalytic residues of

their corresponding protease and those of the Alternaria protease.

Likewise, the Atg8 protein is conserved in these phytopathogenic

species. Based on the analyses of the amino acid sequences of the

corresponding proteins of U. maydis,M. oryzae, and A. alternata,

they are probably orthologs of S. cerevisiae Atg8. Overall, the

process of autophagy seems to be conserved in phytopathogenic

fungi, in non-pathogenic fungi such as mycorrhizae, and in other

eukaryotic organisms (e.g., mammals). The fact that, unlike the

propeptide of PrB, the putative PrB of U. maydis does not

recognize the catalytic residues of its respective serine protease

or those of the serine proteases of other fungi is likely due to

adaptation and the evolutive distance between the organisms

(ascomycetes and basidiomycetes). The function of vacuolar

proteases PrA and PrB and of autophagy in general is part of

the cell response to nutritional stress in order to replenish critical

constituents needed for survival. Under basal conditions,

autophagy removes long-lived, damaged, and redundant

proteins or organelles to allow for cellular longevity. It serves as

a type of programmed cell death in the course of cell development

and differentiation. In the process of infection, fungal

phytopathogens sense nutritional scarcity and other

environmental conditions through the cAMP/PKA and MAPK

signaling pathways. These pathways regulate the nutrient sensor

TOR as well as the Atg proteins that initiate autophagy and

participate in the distinct stages of fungal development of the three

phytopathogenic fungi presently examined. During the stages of

spore germination, mating, penetration of the host plant, and

sporogenesis, it is crucial for the fungus to maintain its virulence

and pathogenicity. Hence, autophagy plays a major role in cell

biology from the first to the last steps of the process.
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