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Aspergillus fumigatus is a potentially deadly opportunistic human pathogen. A. fumigatus has
evolved a variety of mechanisms to evade detection by the immune system. For example, the
conidium surface is covered in a layer of 1,8-dihydroxynaphthalene (DHN) melanin which
masks the antigen macrophages use for recognition. DHNmelanin also protects conidia from
ultraviolet radiation and gives A. fumigatus conidia their characteristic green-grayish color.
Here, we conducted genomic analysis of two closely related white-spore natural variants of A.
fumigatus in comparison to two closely related green-spore isolates to identify a genetic basis
of the white-spore phenotype. Illumina whole-genome resequencing data of the four isolates
was used to identify variants that were shared in the white-spore isolates and different from
both the green-spore isolates and the Af293 reference genome (which is also a green-spore
isolate). We identified 4,279 single nucleotide variants and 1,785 insertion/deletions fitting this
pattern. Among these, we identified 64 variants predicted to be high impact, loss-of-function
mutations. One of these variants is a single nucleotide deletion that results in a frameshift in
pksP (Afu2g17600), the core biosynthetic gene in the DHN melanin encoding gene cluster.
The frameshift mutation in the white-spore isolates leads to a truncated protein in which a
phosphopantetheine attachment site (PP-binding domain) is interrupted and an additional PP-
binding domain and a thioesterase domain are omitted. Growth rate analysis of white-spore
and green-spore isolates at 37°C and 48°C revealed that white-spore isolates are
thermosensitive. Growth rate of A. fumigatus Af293 and a pksP null mutant in the Af293
background suggests pksP is not directly involved in the thermosensitivity phenotype. Further,
our study identified a mutation in a gene (Afu4g04740) associated with thermal sensitivity in
yeasts which could also be responsible for the thermosensitivity of the white-spore mutants.
Overall, we used comparative genomics to identify the mutation and protein alterations
responsible for the white-spore phenotype of environmental isolates of A. fumigatus.
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INTRODUCTION

A. fumigatus is an opportunistic human pathogen responsible for
the highest number of deaths and for the second highest number
of infections of any fungal species (Latge, 1999; Brown et al.,
2012). A. fumigatus primarily causes infections in individuals
with compromised immune systems (Latge, 1999). Individuals
with blood, bone marrow, and lymph node cancers, patients who
have recently undergone solid organ transplantation surgery, and
recipients of hematopoietic stem cell transplantation are at
highest risk for invasive aspergillosis, the most serious and
systemic form of A. fumigatus infection (Steinbach et al., 2012).

A. fumigatus has evolved a collection of immune evasion and
immune adaptation strategies that occur at the conidial and
hyphal developmental stages (van de Veerdonk et al., 2017). For
instance, the conidium surface is covered in a hydrophobic protein
layer and a layer of 1,8-dihydroxynaphthalene (DHN) melanin.
These molecules mask the immunogenic carbohydrate b(1,3)-
glucan, which immune cells use for recognition (Couger et al.,
2018). In addition, DHN-melanin enables A. fumigatus conidia to
resist phagocytosis (Latge et al., 2017). Indeed, the conidia of
DHN-melanin mutants are phagocytosed at significantly higher
rates than wild-type conidia (Luther et al., 2007).

DHN-melanin accounts for the greenish-gray color of A.
fumigatus conidia and is synthesized by a six gene cluster on
chromosome 2 (abr2, abr1, ayg1, arp2, arp1 and pksP)
(Heinekamp et al., 2012). PksP produces naphthopyrone from
acetyl-CoA and malonyl-CoA. Naphthopyrone is next shortened
by Ayg1, reduced by Arp2 and Arp1, and finally oxidatively
polymerized by Abr2 to form DHN-melanin (Tsai et al., 1998;
Tsai et al., 2001; Fujii et al., 2004; Sugareva et al., 2006;
Heinekamp et al., 2012). Interestingly, single knockout mutants
of abr2, abr1, ayg1, arp2, arp1 and pksP produce slightly different
spore color phenotypes, with DpskP resulting in a complete loss
of pigmentation (white conidia) (Heinekamp et al., 2012).

White-spore variants of A. fumigatus are occasionally
clinically or environmentally isolated (Sarfati et al., 2002;
Balajee et al., 2004; Couger et al., 2018), and could lead to
misidentification, as green conidia color is a conserved
characteristic of A. fumigatus (Sugui et al., 2014). Here, we
aimed to understand the genetic basis of two natural A.
fumigatus isolates displaying the white-spore phenotype. We
sequenced the genomes of these isolates and compared them to
two closely related A. fumigatus isolates that produce the typical
greenish-gray spores.
MATERIALS AND METHODS

A. fumigatus Isolates, Culturing,
DNA Extraction
A. fumigatus IP_23 (originally known as CBS 386.75) and IP_24
(originally known as CBS 110.46) were obtained from the
Westerdijk Fungal Biodiversity Institute (KNAW) of the
Netherlands (Sarfati et al., 2002). IFM47072 and IFM59985 are
clinical isolates originally isolated from Japan (Zhao et al., 2021).
Isolates were grown on potato dextrose agar (PDA) plates at
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37°C for 72 hours. DNA was isolated directly from spores using
the MasterPure yeast DNA purification kit following the
manufacturer’s instructions, with several minor modifications,
as previously described (Zhao et al., 2019), and as follows. Spores
were collected with wash-store solution (49.9% glycerol, 50%
potato dextrose broth and 0.1% Tween-20), centrifuged at 14,000
RPM for 5 minutes, and the supernatant was discarded. Next,
300 ml of yeast cell lysis solution was added to the spores along
with 0.4 ml of 1.0 mm diameter silica beads. Cell lysis was carried
out on a Biospec Mini-BeadBeater-8 at medium intensity for 8
minutes. One ml of RNase was added to the cell lysis solution and
incubated at 65°C for 30 minutes. DNA purification was
conducted according to the manufacturer’s instructions for the
remainder of the protocol.

Whole-Genome Sequencing and Assembly
IFM47072 and IFM59985 were previously sequenced and whole-
genome Illumina data is available through the NCBI Sequence Read
Archive under run accession numbers SRR11977809 and
SRR11977822, respectively (Zhao et al., 2021). 150-bp paired-end
libraries were constructed and sequenced for IP_23 and IP_24 by
Novogene on an Illumina NovaSeq 6000 sequencer. Trim_Galore
v0.4.2 was used to remove residual adaptor sequences and trim
reads at low-quality sites using the parameters “–paired”, “–
stringency 1”, “–quality 30” and “–length 50” (Martin, 2011).
Read sets were then error corrected and assembled using SPAdes
v3.13.1 with the “–careful” parameter and K-mer sizes of 55, 77, and
99 (Bankevich et al., 2012). Genome assemblies for IP_23 and IP_24
are available through NCBI accession numbers JALLAH000000000
and JALLAI000000000, respectively. Assembly quality, using the
genome assembly as input, was assessed with BUSCO v5 using the
“eurotiomycetes_odb10” ortholog set through the gVolante v2.0.0
server (Simao et al., 2015; Nishimura et al., 2017). Gene prediction
was performed with Augustus v3.3.2 (Stanke and Waack, 2003)
using the following parameters “–strand=both” , “–
genemodel=complete”, “–gff3=on”, “–codingseq=1”, “–protein=1”,
“–uniqueGeneId=true”, and “–species=aspergillus_fumigatus”.

Phylogenetic Relationship of Isolates
We previously sequenced the genomes of IFM47072 and
IFM59985 and inferred their evolutionary relationship with 74
additional isolates (Zhao et al., 2021). This analysis revealed four
major A. fumigatus populations. We selected a minimum of four
individuals from each population and included IFM47072,
IFM59985, IP_23 (386.75) and IP_24 (110.46) to infer the
phylogenetic relationship between samples. Briefly, GATK
v4.0.6.0 was used to call SNVs across all samples relative to the
Af293 reference genome using the best practice pipeline for
“Germline short variant discovery” (Van der Auwera et al.,
2013). Next, hard filtering was carried out to reduce false
positives using the “VariantFiltration” function with the
following parameters: “QD < 25.0 || FS > 5.0 || MQ < 55.0 ||
MQRankSum < −0.5 || ReadPosRankSum < −2.0 || SOR > 2.5”.
Hard filtering parameters were determined following the “Hard-
filtering germline short variants” protocol (https://gatk.
broadinstitute.org/hc/en-us/articles/360035890471-Hard-
filtering-germline-short-variants). To reduce linkage between
June 2022 | Volume 3 | Article 897954
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SNVs, we used VCFtools v0.1.14 to space SNV markers by a
minimum of 3.5 Kb using the following option “–thin 3500”.
Phylogenetic analysis of an alignment of 7,386 SNVs was
conducted in MEGAX v10.0.5 (Kumar et al., 2018). We used
model test in MEGAX to predict the best fit nucleotide
substitution model, which was determined as the model with
the lowest Bayesian Information Criterion (BIC) value. The
general time reversible (GTR) gamma substitution model, with
100 bootstrap replicates, was used to construct the maximum
likelihood phylogenetic tree.

Read Mapping, Variant Detection and
Variant Annotation
Quality and adapter trimmed read sets from A. fumigatus IP_23,
IP_24, IFM47072 and IFM59985 were mapped against the A.
fumigatus Af293 reference genome (Genbank Assembly
Accession number: GCA_000002655.1) (Nierman et al., 2005)
using BWA-MEM v0.7.15 (Li and Durbin, 2009). Joint variant
calling (SNVs and indels) was conducted using freebayes v1.3.1
with the default settings with the exception of setting ploidy to
haploid (–ploidy = 1) (Garrison andMarth, 2012). While the vast
majority of indels consisted of 1 or 2 bps (68%), indels as large as
49 bp were identified.

We implemented several filtering steps to prioritize the
identification of variants putatively associated with the white-
spore phenotype (depicted in Figure 2). We identified 51,551
SNVs and 15,183 indels that differed in at least one sample
relative to the Af293 reference genome. Next, we narrowed our
candidate list by identifying variants that were (i) identical in
IP_23 and IP_24, (ii) different from the Af293 genotype, and (iii)
different from the IFM47072 and IFM59985 genotypes (4,279
SNVs and 1,785 indels) (Data Sheet S1). Finally, we further
filtered our candidate variant list by prioritizing variants
annotated as “high impact” using SnpEff v4.3t with the A.
fumigatus Af293 reference genome annotation (Cingolani
et al., 2012) (19 SNVs and 45 indels). Saccharomyces cerevisae
and Schizosaccharomyces pombe orthologs of the A. fumigatus
candidate genes were identified using FungiDB (Stajich et al.,
2012; Basenko et al., 2018).

Analysis of DHN-Melanin Gene Cluster
Because DHN melanin is the molecule responsible for the
greenish pigment in wild-type A. fumigatus spores, we focused
on variants in the DHN melanin encoding gene cluster
(Heinekamp et al., 2012). This gene cluster contains 6 genes
(Afu2g17530, Afu2g17540, Afu2g17550, Afu2g17560, Afu2g17580
and Afu2g17600). We used the “intersect” function in bedtools
v2.29.2 (Quinlan and Hall, 2010) to identify SNVs and indels for
which genotypes were identical in the white-spore isolates,
different from Af293, and different from the green-spore
isolates. We focused on pksP (Afu2g17600) because it
contained 3 candidate SNVs (all synonymous variants in the
pksP gene on chromosome 2: 4687866, 4688908 and 4691782)
and 2 candidate indels (one intron variant chromosome 2:
4692683 and one frameshift variant chromosome 2: 4692995)
(Data Sheet 1).
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The pksP gene was extracted from the IP_23, IP_24,
IFM47072, IFM59985 and Af293 genomes using the samtools
“faidx” function (Li et al., 2009). pksP sequences were aligned
with MAFFT using the default settings (Katoh and Standley,
2013). Alignments were visualized in BioEdit (Hall et al., 2011),
variants were visually inspected, and the coding region was
extracted and translated. PksP protein domains were predicted
in white-spore and green-spore isolates using the PFAM
webserver (http://pfam.xfam.org/search/sequence) (El-Gebali
et al., 2019).

Protein Modeling of White-Spore PksP
The Alphafold2 model (Jumper et al., 2021) for A. fumigatus
PksP was downloaded from EMBL-EBI (https://alphafold.ebi.ac.
uk/entry/Q4WZA8) along with the corresponding predicted
aligned error (PAE) file. The model was pruned of low
confidence residues (pLDDT< 50). The PAE of the deleted
domains were then evaluated for inter-residue confidence.
Within the truncated region, each of the three terminal
domains (two phosphopantetheine attachment site (PP-
binding) and one thioesterase) are well supported in their
internal residue placement (pLDDT > 70) and structural
arrangement (PAE < 5 Å).

Crystal structure of the thioesterase domain of Aspergillus
parasiticus PksA was downloaded from PDB (3ILS) (Korman
et al., 2010). Structural superposition between the crystal
structure and the AlphaFold2 predicted thioesterase domain of
A. fumigatus PksP was performed using Chimera Matchmaker
(Meng et al., 2006). Hydrogen bond identification was done in
UCSC Chimera (version 1.15, FindHBond), using the rotamer
orientation predicted by AlphaFold2. Hydrogen bonds
were predicted only between residues having both high
absolute confidence (pLDDT > 70) and precise relative
placement (PAE < 5 Å).

Measurement of Growth Rate
at 37°C and 48°C
We compared growth rate on minimal media (MM) at 37°C
and 48°C, to examine whether our natural albino variants
displayed thermotolerance phenotypes, as previously described
for albino strains isolated from the Brazilian rainforest (Couger
et al., 2018). Aspergillus MM was prepared as previously
described (Cove, 1966). For each isolate, ~105 spores were
inoculated onto the center of MM agar plates and incubated at
37°C for 2 days and 48°C for 3 days in darkness. Experiments
were conducted in triplicate and at the conclusion of the
experiment colony diameter was measured with digital
calipers. Because colony shape is often slightly irregular, we
took two random measurements of diameter per plate and
averaged these values. Additionally, to assess whether the
putative non-functionality of IP_23 and IP_24 PksP
contributes to growth patterns at optimal or thermal stress
conditions, we performed the same experiment described
above, with A. fumigatus Af293 and the Af293 DpksP null
mutant (which produces white conidia) generated as
previously described (Al Abdallah et al., 2017).
June 2022 | Volume 3 | Article 897954
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RESULTS

Genome Assembly of White-Spore and
Green-Spore Isolates
Genome assemblies for IP_23 (386.75), IP_24 (110.46),
IFM47072 and IFM59985 were generated with SPAdes
(Bankevich et al., 2012). Genome size, as indicated by the
cumulative length of the genome assemblies, was highly similar
across the four isolates and ranged from 28.36 Mb – 28.80 Mb
(Table S1). We used Augustus to predict gene models in each
assembly, and similarly, found highly comparable gene numbers
(8,855 – 8,908) (Table S1). We used BUSCO to assess genome
completeness for each assembly and found that >97% of genes
were completely recovered using the eurotiomycetes_odb10
dataset (Simao et al., 2015). These results reflect high quality
genome assemblies.

Phylogenetic Relationship of White
Spore Isolates
We previously performed population genomic analysis of 76
clinical A. fumigatus isolates from Japan and identified 4 major
populations (Zhao et al., 2021). To examine the relationship of
IP_23 and IP_24 to these isolates, we conducted phylogenetic
analysis with at least 4 individuals from each population. Our
analysis again confirmed the presence of 4 populations
(Figure 1). IP_23 and IP_24 clustered within population 1 and
were closely related to IFM47072 and IFM59985 (Figure 1).
Frontiers in Fungal Biology | www.frontiersin.org 4
Thus, we focused our comparative genomic analysis on the
white-spore isolates IP_23 and IP_24, and the closely related
green-spore isolates IFM47072 and IFM59985 (Figure 1). We
identified 10,950 SNV sites in which IFM47072 and IFM59985
differed in genotype and 2,129 SNV sites in which IP_23 and
IP_24 differed in genotype, suggesting IFM47072 and IFM59985
and IP_23 and IP_24 are closely related but not clones.

Identification of Candidate Variants
Associated With White-Spore Phenotype
We used FreeBayes to perform joint genotyping of IP_23, IP_24,
IFM47072 and IFM59985 relative to the Af293 genome. We
identified 51,551 SNVs and 15,183 indels that differed in at least
one sample relative to the Af293 reference genome. Next, we
narrowed our candidate list by identifying variants that were (i)
identical in IP_23 and IP_24, (ii) different from the Af293
genotype, and (iii) different from the IFM47072 and IFM59985
genotypes. This approach yielded 4,279 SNVs and 1,785 indels
(Data Sheet S1). Next, we predicted the putative functional
effects of these candidate variants using SnpEff (Cingolani
et al., 2012). We hypothesized that the white-spore phenotype
was the result of a loss-of-function mutation and further
prioritized candidate variants that were annotated as “High
Impact” by SnpEff (i.e., loss of stop codon, gain of stop codon,
loss of start codon, splice donor variant, and splice acceptor
variant). We identified 19 SNVs and 45 indels annotated as
putative high impact mutations (Figure 2, Data Sheet S2).
FIGURE 1 | Phylogenetic relationship of white-spore isolates IP_23 and IP_24. Maximum likelihood phylogenetic tree of 7,386 SNVs. The tree is rooted at the
midpoint and bootstrap values are provided at each node. Colored clades represent population structure assignments as previously described (Zhao et al., 2021).
IP_23 and IP_24, which produce white spores, and IFM4702 and IFM59985, which produce green spores, are members of population 1. Isolates were grown on
potato dextrose agar for 7 days at 37°C for imaging.
June 2022 | Volume 3 | Article 897954
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One of the 64 candidate high impact variants was present in the
biosynthetic gene in the DHN-melanin gene cluster (pksP,
Afu2g17600), and was annotated as a frameshift variant (Data
Sheet S2). This variant, which is only present in IP_23 and
IP_24, is a single nucleotide deletion in the fifth exon of pksP and
results in a premature stop codon yielding a predicted protein
length of 1,686 amino acids in the white-spore isolates compared
to 2,148 amino acids in the green-spore isolates (Figure 3). To
confirm this variant, which was identified through a mapping-
based approach, we extracted the pksP gene from each genome
assembly and aligned the sequences. Again, we observed the
single nucleotide deletion at position 5,035.

To gain insight into the functional consequences of the PksP
protein truncation, we predicted PFAM protein domains in the
green-spore and white-spore PksP proteins. The green-spore
PksP contains 8 protein domains (Figure 3D). However, the last
two-and-a-half PksP protein domains are absent in the white-
spore protein. These domains include two consecutive PP-
binding domains (PF00550) and a thioesterase domain
(PF00975) (Figure 3D).

Structural modeling of the PksP protein using AlphaFold2
(Cramer, 2021) confirms that the truncation removes several
highly structured, C-terminal motifs (Figure 4A). The largest of
the structural motifs predicted by AlphaFold2 superimposes over
Frontiers in Fungal Biology | www.frontiersin.org 5
the crystal structure of the thioesterase domain of Aspergillus
parasiticus PksA (Korman et al., 2010) to sub-angstrom RMSD
(RMSD=0.987Å; Figure 4B). The truncation also removes six
residues (Lysine 1711, Isoleucine 1710, Threonine 1709, Proline
1708, Tyrosine 1691, Arginine 1690) predicted to participate in
hydrogen bonding with residues within the remaining portion of
the protein (Figure 4C). Thus, the AlphaFold2 model not only
corroborates the thioesterase predictions, it also suggests that the
truncation may affect conformational stability within the
remaining protein through the removal of hydrogen
bond partners.

White-Spore Isolates Are Thermosensitive
Couger et al. (2018) isolated an albino strain of A. fumigatus from
Brazilian rainforest soil that was thermotolerant (Couger et al.,
2018). To assess whether IP_23 and IP_24 were also
thermotolerant, we compared growth rate on minimal media
(MM) at 37°C and 48°C. A one-way ANOVA was performed to
compare the effect of temperature on growth rate across green-spore
and white-spore isolates, which revealed a significant difference at
both temperatures (37°C: F-ratio = 86.8, d.f. = 3, p-value = 6.7e-6
and 48°C: F-ratio = 899.9, d.f. = 3, p-value = 1.9e-10). A post-hoc
Tukey’s HSD test revealed significant growth rate differences
between all green-spore and white-spore comparisons (all p-
FIGURE 2 | Methodological pipeline to identify candidate variants associated with white-spore phenotype. Reads from IP_23, IP_24, IFM4702 and IFM59985 were
independently mapped against the Af293 reference genome and joint genotyping was performed with FreeBayes, resulting in 51,551 SNVs and 15,183 indels.
Variants were retained if (i) the variant was identical in IP_23 and IP_24, (ii) the IP_23 and IP_24 variant was different from the Af293 genotype, and (iii) the IP_23 and
IP_24 variant was different from the IFM4702 and IFM59985 genotypes (resulting in 4,279 SNVs and 1,785 indels). Lastly, variants were retained if they were
annotated as “high impact” by SnpEff. This process resulted in 19 and 45 candidate SNVs and indels, respectively. The right panel provides an example of our
filtering scheme. Gray text signifies variants that did not pass the filtering step.
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values ≤ 0.0001) but not between green-spore isolates or white-
spore isolates (all p-values ≥ 0.09). The white-spore isolates grew
significantly slower at 37°C and 48°C (Figures 5A, B). White-spore
isolates did not grow at 48°C.

To assess whether PksP functionality directly contributes to
the thermosensitivity phenotype in IP_23 and IP_24, we assessed
growth rate patterns of A. fumigatus Af293 and Af293 DpksP (Al
Abdallah et al., 2017), at 37°C and 48°C (Figures 5C, D). We did
not observe significant growth rate differences between Af293
and DpksP for either temperature (Figures 5C, D), suggesting
that pksP is not directly involved in the thermosensitivity
phenotype observed in IP_23 and IP_24.

To provide additional insight into variants and/or genes that
may contribute to the thermosensitivity phenotype, we identified
S. cerevisiae orthologs for the 57 candidate genes containing the
64 high impact mutations described earlier (Figure 2). We
observed a 1 bp insertion resulting in a frameshift in
Afu4g04740 in IP_23 and IP_24 (Chr4: 1,336,071) (Datasheet
2). The S. cerevisiae ortholog of Afu4g04740 is SRM1, and
mutants of SRM1 (also known as prp20) are temperature
sensitive (Vijayraghavan et al., 1989; Fleischmann et al., 1991;
Clement et al., 2006). In addition, null mutants of pim1, the
Schizosaccharomyces pombe ortholog of Afu4g04740, are also
thermosensitive (Matsuo et al., 2011).
Frontiers in Fungal Biology | www.frontiersin.org 6
DISCUSSION

Here, we investigated the genetic underpinnings of a white-spore
phenotype in two natural isolates of A. fumigatus by comparing
their genomes to two closely related isolates with the wild-type
green-spore phenotype (Figure 1). We identified 64 candidate
variants that were identical in the white-spore genomes and
different in the Af293 reference genome and the closely related
genomes of the green-spore isolates (Figure 2, Data Sheet S2).
One of these candidate variants was a single nucleotide deletion
in the pksP gene which results in a frameshift mutation and a
truncated PksP protein (Figures 3, 4). We also observed that
white-spore isolates were thermosensitive, and provide insight
into a variant in a candidate gene that may influence this
phenotype (Figure 5).

Contrary to a previous study, which observed increased
thermotolerance in a natural white-spore isolate of A.
fumigatus (Couger et al., 2018), IP_23 and IP_24 were
thermosensitive compared to green-spore isolates (Figures 5A,
B). First, we explored whether the putatively non-functional
copy of PksP in IP_23 and IP_24 was driving this phenotype. We
performed growth rate analysis of A. fumigatus Af293 and a null
pksP mutant in the Af293 background. We did not observe a
difference in growth rate between Af293 and DpksP at 37°C or
A

B

C

D

FIGURE 3 | Single nucleotide deletion in pksP results in a truncated protein in IP_23 and IP_24. (A) Schematic of the pksP gene. The arrow represents the direction
of transcription, and grey boxes represent exons. (B) Alignment of the region containing the single nucleotide deletion in IP_23 and IP_24 isolates. The yellow region
highlights the mutation. (C) Translated region containing the single nucleotide deletion. The yellow region shows the single nucleotide deletion, resulting frameshift
and premature stop codon (*). (D) Protein schematic of PksP in the green-spore and white-spore isolates. Colored ellipses represent PFAM domains. The white-
spore PksP is truncated and missing 1 and a half PP-binding domains and the thioesterase domain.
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48°C (Figures 5C, D), which suggests PksP is not involved in the
thermosensitivity phenotype. Next, we examined the high impact
candidate variants that are shared in IP_23 and IP_24 and
different from Af293, IFM4702 and IFM59985. We identified
one gene, Afu4g04740, that contained a frameshift variant for
which deletion mutants in the S. cerevisave and S. pombe
orthologs displayed temperature sensitivity phenotypes
(Vijayraghavan et al., 1989; Fleischmann et al., 1991; Clement
et al., 2006; Matsuo et al., 2011). SRM1, the S. cerevisae ortholog
of Afu4g04740, enables guanyl-nucleotide exchange factor
activity. SRM1 null mutants in S. cerevisae and S. pombe,
display reduced growth at high temperatures (Clement et al.,
2006; Matsuo et al., 2011). While it is clear that SRM1 interacts at
specific chromatin regions allowing nuclear pore complexes to
modify chromatin organization (Dilworth et al., 2005), the
mechanism between SRM1 and temperature sensitivity is less
apparent. In light of these results, Afu4g04740 represents an
interesting future candidate gene to target in A. fumigatus to
assess its role in thermosensitivity.

The frameshift mutation in pksP results in the loss the one
and a half phosphopantetheine attachment site (PP-binding)
domains and a thioesterase domain (Figure 3). The PP-binding
domains are involved in transporting the secondary metabolite
Frontiers in Fungal Biology | www.frontiersin.org 7
substrate and chain intermediates to the catalytic centers during
the biosynthesis of polyketides (Pihet et al., 2009). Interestingly, a
portion of the pksP PP-binding domain in Aspergillus luchuensis
was also deleted in industrial and artificially mutated albino
strains compared to strains with wild-type spore color, which
suggests a critical functional role for this domain in PksP
function (Yamamoto et al., 2021). Additionally, previous
studies have established the essentiality of the thioesterase
domain in PksP for naphthopyrone synthesis (Vagstad et al.,
2012). Specifically, the thioesterase domain catalyzes bond
formation between C2 and C7 during the biosynthesis of
1,3,6,8-tetrahydroxynaphthalene (THN) (Vagstad et al., 2012).
In agreement with our findings, a previous study identified a
nonsense mutation and independent frameshift mutations in
white-spore isolates of A. fumigatus that led to protein
truncations and losses of the (i) PP-binding domains and the
thioesterase domain, and (ii) the thioesterase domain (Pihet
et al., 2009).

Recent genomic analysis of an albino A. fumigatus strain
isolated from the Brazillian rainforest was conducted (Couger
et al., 2018). Analysis of the DHN-melanin gene cluster revealed
interruption of the cluster by a ~28 Kb region of fungal and
unknown origin. PCR amplification of conserved regions in
A B

C

FIGURE 4 | Structural model of A. fumigatus PksP protein. (A) The conserved region between the green-spore and white-spore isolates (blue) and the region affected by the
frameshift variant observed in the white-spore isolates (yellow and red). The yellow region represents the 6 amino acids altered by the frameshift mutation. The red region
represents the portion of PksP deleted in the white-spore isolates; the terminal red-orange region corresponds to the predicted thioesterase domain. (B) Structural
superposition (0.987Å RMSD) between the crystal structure of the thioesterase domain of Aspergillus parasiticus PksA (gray) and the predicted A. fumigatus PksP thioesterase
domain (red-orange). (C) Hydrogen bonding (dashed lines) within the first PP domain of PksP that aren’t in the truncated protein.
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wild-type A. fumigatus isolates suggested additional structural
variation in the pksP region. All genes in the pskP gene cluster
were either lowly expressed or not expressed (Couger et al.,
2018). Thus, convergent mutations in pksP can lead to the loss of
conidia pigmentation.

Our results, and the work of others (Sarfati et al., 2002; Balajee
et al., 2004; Couger et al., 2018), suggest that the loss of spore
pigmentation is naturally variable in A. fumigatus .
Understanding the ecology driving these patterns of variation
is an important step in determining why albinism may be
maintained in natural populations. For instance, DHN-melanin
is involved in protecting the cell from ultra-violet (UV) radiation,
and it is conceivable to hypothesize that selective pressure
maintaining DHN-melanin production may be relaxed in
environments where UV exposure is reduced. An ecological
survey of UV-B radiation revealed that levels were significantly
lower near the forest floor compared to the outer canopy (Brown
et al., 1994). Thus, it would be interesting to investigate whether
rates of albinism in A. fumigatus are elevated in environments
where UV radiation is relatively low. Relaxed selection for loss of
protective pigmentation in low UV environments has occurred
Frontiers in Fungal Biology | www.frontiersin.org 8
in a variety of organisms including humans (Jablonski, 2004),
coconut crabs (Caro, 2021), and many cave animals (Protas et al.,
2006; Protas et al., 2011; Bilandzija et al., 2012). Interestingly,
DHN-melanin deficient mutants of two clinical isolates of A.
fumigatus were more sensitive to UV-C radiation (Blachowicz
et al., 2020). However, the DHN-melanin deficient mutant of a
strain collected from the International Space Station, where UV-
C radiation is elevated, was not more sensitive to UV-C. This
observation suggests mechanisms independent from DHN-
melanin can contribute to UV-C tolerance.

Our study demonstrates the utility of using comparative
genomic analysis on closely related but phenotypically distinct
isolates. This approach could be further applied to identify genes
governing stress resistance or virulence, phenotypes which have
been repeatedly demonstrated to be variable among isolates of A.
fumigatus (Mondon et al., 1996; Ben-Ami et al., 2010; Alshareef
and Robson, 2014; Kowalski et al., 2016; Keizer et al., 2021). Our
comparative genomics approach (Figure 2) could also be applied
to chemical mutagenesis screens in which the genomes of
phenotypically distinct mutants are directly compared to their
parental strains (Bok et al., 2014; Li et al., 2016), and evolve and
A B

DC

FIGURE 5 | Growth patterns of green-spore and white-spore isolates. Colony diameter of green-spore (green boxplot) and white spore (gray boxplot) isolates after
growth at 37°C for 2 days (A) and 48°C for 3 days (B). ~105 spores were inoculated in the center of minimal media plates, and colony diameter was measured at
the end of the growth period. Each experiment was performed in triplicate. Green-spore isolates grew significantly faster than white-spore isolates at 37°C. White-
spore isolates did not grow at 48°C. All statistical tests between green-spore and white-spore isolates (IP_23 vs. IFM47072, IP_23 vs. IFM59985 IP_24 vs.
IFM47072 and IP_24 vs. IFM59985) were significant (all p-values ≤ 0.0001). Statistical tests between IP_23 vs. IP_24 and IFM47072 vs. IFM59985 were not
significant (p-values > 0.09). Colony diameter of Af293 (green boxplot) and DpksP (null mutant) (white boxplot) at 37°C for 2 days (C) and 48°C for 3 days (D). DpksP
growth rate was not significantly different than Af293 at 37°C (p-value = 0.15) or 48°C (p-value = 0.50).
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resequence experiments in which an isolate is continuously
cultured in a controlled environment and the genome
sequence of the adapted lineage is directly compared to the
parental strain (Long et al., 2015; Zhang et al., 2017).
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