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Symbiotic and toxinogenic
Rhizopus spp. isolated from
soils of different papaya
producing regions in Mexico

José Francisco Cabrera-Rangel1†,
Judit Valeria Mendoza-Servı́n1†, Gonzalo Córdova-López1,
Raúl Alcalde-Vázquez1,2, Raymundo Saúl Garcı́a-Estrada3,
Robert Winkler2 and Laila P. Partida-Martı́nez1*

1Departamento de Ingenierı́a Genética, Centro de Investigación y de Estudios Avanzados,
Irapuato, Mexico, 2Unidad de Genómica Avanzada, Centro de Investigación y de Estudios
Avanzados, Irapuato, Mexico, 3Centro de Investigación en Alimentación y Desarrollo,
Culiacán, Mexico
Mucoralean fungi from the genus Rhizopus are common inhabitants of

terrestrial ecosystems, being some pathogens of animals and plants. In this

study, we analyzed the symbiotic and toxinogenic potential of Rhizopus

species derived from agricultural soils dedicated to the production of papaya

(Carica papaya L.) in Mexico. Four representative strains of soil-derived

Rhizopus spp. were analyzed employing molecular, microscopic, and

metabolic methods. The ITS phylogenies identified the fungi as Rhizopus

microsporus HP499, Rhizopus delemar HP475 and HP479, and Rhizopus

homothallicus HP487. We discovered that R. microsporus HP499 and R.

delemar HP475 harbor similar endofungal bacterial symbionts that belong to

the genus Mycetohabitans (Burkholderia sensu lato) and that none of the four

fungi were associated with Narnavirus RmNV-20S and RmNV-23S. Intriguingly,

the interaction between R. delemar - Mycetohabitans showed different

phenotypes from known R. microsporus - Mycetohabitans symbioses.

Elimination of bacteria in R. delemar HP475 did not cause a detrimental

effect on fungal growth or asexual reproduction. Moreover, metabolic and

molecular analyses confirmed that, unlike symbiotic R. microsporus HP499, R.

delemar HP475 does not produce rhizoxin, one of the best-characterized

toxins produced by Mycetohabitans spp. The rhizoxin (rhi) biosynthetic gene

cluster seems absent in this symbiotic bacterium. Our study highlights that the

symbioses between Rhizopus and Mycetohabitans are more diverse than

anticipated. Our findings contribute to expanding our understanding of the

role bacterial symbionts have in the pathogenicity, biology and evolution

of Mucorales.

KEYWORDS

endobacteria, endohyphal bacteria, Rhizopus, Mycetohabitans, rhizoxin, fungal-
bacterial Interactions, Mucorales
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Introduction

Mexico is the major exporter of papaya, producing on

average 1,117,437.20 metric tons of this tropical fruit per year,

harvesting 18,982.79 hectares (SIAP, 2020). Recent studies have

shown that Rhizopus and other Mucorales are prevalent in

papaya producing soils, and some of these fungi, including

Rhizopus delemar, are also involved in the soft rot of the fruits

(Cruz-Lachica et al., 2017; Cruz-Lachica et al., 2018).

Strains of Rhizopus microsporus have been reported as the

causal agents of rice seedling blight (Furuya et al., 1974), a disease

caused by the secreted toxin rhizoxin (Gho et al., 1978; Iwasaki

et al., 1984). However, this toxin is not directly synthesized by R.

microsporus, but by its intracellular bacterial symbionts (Partida-

Martinez and Hertweck, 2005). To date, all investigated rhizoxin-

producing strains of Rhizopus microsporus live in close association

with endosymbiotic bacteria from the genus Mycetohabitans

(Burkholderia sensu lato) (Lackner et al., 2009; Partida-

Martinez, 2013; Dolatabadi et al., 2016). This novel genus

currently recognizes two type species: M. rhizoxinica and M.

endofungorum (Partida-Martinez et al., 2007a; Estrada-de Los

Santos et al., 2018). These bacterial symbionts possess the well

characterized hybrid PKS-NRPS biosynthetic gene cluster rhi for

the production of the potent toxin rhizoxin (Partida-Martinez and

Hertweck, 2007). This toxin inhibits mitosis in most eukaryotic

cells, including plants, fungi, animals and even human cancer cells

(Iwasaki et al., 1984; Jordan et al., 1998; Schmitt et al., 2008). The

rhi biosynthetic gene cluster has been only found and

characterized in Mycetohabitans spp. and in the plant

commensal Pseudomonas fluorescens Pf-5 (Brendel et al., 2007).

Besides the production of rhizoxin for their fungal host,

Mycetohabitants symbionts are in full control of the asexual

reproduction of R. microsporus (Partida-Martinez et al., 2007b)

and also influence their sexuality (Mondo et al., 2017).

Interestingly, some of these fungi, although apparently less

frequently, live also in symbioses with two ssRNA viruses from

the genus Narnavirus (RmNV-20S and RmNV-23S) (Espino-

Vázquez et al., 2020). These narnaviruses, together with

Mycetohabitans, have been shown to be important for the

sexual success in this species (Mondo et al., 2017; Espino-

Vázquez et al., 2020). These bacterial and viral symbionts are

vertically inherited through the asexual sporangiospores and

sexual zygospores produced by R. microsporus (Partida-

Martinez et al., 2007b; Mondo et al., 2017; Espino-Vázquez

et al., 2020).

Here we characterized four representative strains of

Rhizopus species recovered from papaya producing soils from

the states of Colima, Veracruz and Oaxaca in Mexico (Cruz-

Lachica et al., 2018). By using molecular, microscopic and

metabolic analyses, we identified that two of these strains

harbor Mycetohabitans, but none of them narnaviruses.

Remarkably, we found a novel association between R. delemar
Frontiers in Fungal Biology 02
and Mycetohabitans that does not follow the phenotypes known

from well-studied and globally distributed R. microsporus –

Mycetohabitans pairs (Lackner et al., 2009; Partida-Martinez,

2013; Dolatabadi et al., 2016). This finding highlights the

diversity of the symbioses within these fungal and bacterial

genera and expands our possibilities to deepen our

understanding of the ecological and evolutionary role of

endosymbionts for fungal biology.
Materials and methods

Fungal strains and culturing conditions

Wild-type strain Rhizopus microsporus HP499, R. delemar

HP475, R. delemar HP479 and R. homothallicus HP487 were

isolated from soils of papaya producing regions in Colima,

Veracruz and Oaxaca in Mexico and provided by Garcıá-

Estrada in 2019 (Cruz-Lachica et al., 2018). Fungal strains R.

microsporus ATCC 52813, ATCC 52814 and ATCC 11559 were

obtained from the American Type Culture Collection and used

as controls for symbiotic/rhizoxin-producing (ATCC 52813 and

ATCC 52814) and asymbiotic/non-rhizoxin producing Rhizopus

species (ATCC 11559). All strains were grown at 30°C in PDA (4

g/L potato extract, 10 g/L dextrose, and 15 g/L agar).
Isolation and microscopy of
bacterial symbionts

Endosymbionts were isolated from their hosts as previously

described (Partida-Martinez and Hertweck, 2005; Scherlach

et al., 2006; Espino-Vázquez et al., 2020). Briefly, fungal

mycelia was submerged on 0.5 mL 0.85% NaCl, mechanically

damaged using a pipette tip and then centrifuged for 30 min at

13,200 rpm. Supernatant was plated on TSA petri dishes and

incubated at 30°C until the appearance of bacterial colonies.

Visualizations of endofungal bacteria were performed using 2-3

days-old grown mycelia (3 cm2) on 0.5 mL NaCl 0.85%. An

aliquot of 10 µL fungal cell suspension was placed onto a

microscope slide then 10 µL of 0.01 mM SYTO™ 9 were

added, and the mix was incubated in the dark for 20 min.

Fungal tissues were analyzed using a Leica DM600B and the

GFP filter.
DNA isolation and molecular
identification of Rhizopus spp.
and their endosymbionts

Total DNA from wild-type fungal strains were isolated as

described (Nicholson et al., 2001). For fungal molecular
frontiersin.org
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identification, the ITS region (Internal Transcribed Spacer) was

amplified using ITS-1F (5´- CTTGGTCATTTAGAGGAAGTAA-

3´) and ITS-4R (5´- TCCTCCGCTTATTGATATGC-3´) primers.

For bacterial molecular identification, the 16S rRNA gene was

amplified using 16S-F27 (5´- AGAGTTTGATCMTGGCTCAG-

3´) and 16S-R1494 (5´- CTACGGRTACCTTGTTACGAC -3´)

primers.Narnavirus RmNV-20S and RmNV-23S identification was

done as before (Espino-Vázquez et al., 2020). All products were

confirmed by Sanger Sequencing at the Genomic Services

Laboratory from UGA-Langebio Cinvestav Irapuato, Mexico.

Fungal and bacterial sequences have been deposited in Genbank

under the following accessions OM677455-458 and OM634667-

668, respectively.
Phylogenetic analyses

The fungal ITS and bacterial 16S rDNA gene sequences were

aligned using the MUSCLE algorithm in the MEGA 11 software

package (Table S1). These alignments were used for tree

construction using the Maximum Likelihood method with

1000 bootstrap replicates and the Tamura-Nei model. Also,

the same sequences were used to infer their evolutionary

history using MrBayes. For this, two independent chains were

used along with 100M Monte Carlo Markov chain generations.
Generation of cured (b-) and re-infected
(b*) symbiotic Rhizopus strains

In order to generate cured, symbiont-free fungal strains

(b-), the wild-type strains R. microsporus HP499 and R.

delemar HP475 (b+) were constantly cultivated in the

presence of ciprofloxacin (50-100 mg/ml) on PDB medium

(Partida-Martinez and Hertweck, 2005) until the successful

elimination of bacterial symbionts was confirmed by the

absence of vegetative sporulation (Partida-Martinez et al.,

2007b) and/or the lack of 16S rDNA gene amplification in

the antibiotic treated fungi (Figure S7). Once cured fungal

strains were confirmed and Mycetohabitans sp. HP499 and

HP475 isolated and validated in axenic culture, co-infections

experiments were performed. For this, a mycelial plug of cured

fungal strains (b-) was placed on a PDA plate that contained

several plugs of 2-days-old cultures of Mycetohabitans in TSA

medium. Incubation at 30°C took place for ca. 72 hours until

the appearance of sporangia was observed.
Rhizopus’ growth kinetics

All four wild-type (b+ or asymbiotic), bacteria-free (b-) and

bacteria-reinfected (b*) Mexican Rhizopus strains were cultured
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on PDA, 30°C in quadruplicate. Radial growth was measured

every 24 h. After 96 h, total fungal biomass was dried at 60°C and

weighted. Data were analyzed by One-way ANOVA followed by

the Tukey’s post-hoc test, P <0.05.
Fermentation, extraction, bioassays and
HPLC-MS analyses for the identification
of the toxin rhizoxin

To investigate the production of rhizoxin, liquid

fermentations of Rhizopus and Mycetohabitans species were

performed in 100 ml VK medium under agitation at 30°C for

4 days as previously described (Partida-Martinez and Hertweck,

2005). Raw extracts were obtained using 1:1 v/v ethyl acetate.

The organic phase was filtered, dried and later dissolved in

methanol. Raw extracts were first bioassayed using Trichoderma

atroviridae, a rhizoxin-susceptible fungus (Schmitt et al., 2008).

For this, 2x105 spores of T. atroviridae were mixed in 60 ml of

PDA in a petri dish. Afterwards, raw extracts of Rhizopus spp.

(50 µL, 8 mg/mL) and Mycetohabitans spp. (50 µL, 2 mg/mL)

were poured in the plate. Plates were incubated at 28°C for 3

days and inhibition halos measured (Figure S8).

Rhizoxin detection by HPLC-MS was carried out as before

(Partida-Martinez and Hertweck, 2005). HPLC analyses were

done with the AZXDB-9 Zorbax Eclipse XDB-C18 4.6 x

150 mm column with 5 mm particle size. UV detection was

done at 310 nm. HPLC fractions were analyzed by DIESI-MS

into a 3D ion trap mass spectrometer LCQ Fleet (Thermo

Fisher Scientific). Mass spectra were obtained in ESI positive

mode with 4.5 kV, 105 V tube lens voltage, and 30 V capillary

voltage at 280°C. The flow injection rate was 10 µL/min. For

the MS/MS analysis, main peaks were fragmented with 28 eV

collision energy.
Detection of the rhizoxin biosynthetic
cluster (rhi) by PCR

Fragments of five ORFs of the rhizoxin gene cluster (rhi)

were amplified by PCR using primers designed for M.

rhizoxinica HKI 454 GenBank: FR687359.1 (Table S2). Four of

them amplified fragments of the ORFs that build the PKS-NRPS

thiotemplate system (rhiA, rhiB, rhiC and rhiD) and one the

ORF that codes for the tandem trans-AT (rhiG, Table S2)

(Partida-Martinez and Hertweck, 2007). The PCR reaction

consisted of denaturation for 3 min at 94°C; 30 cycles of 94°C

for 30 s, 64°C for 45 s, 72°C for 10 s; and a final extension at 72°C

for 30 s. The PCR amplicons were cloned in vector pJET 1.2

(Thermo Fisher Scientific) and sequenced to confirm

their identity.
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Results

Morphological description and
taxonomic determination
of Rhizopus strains

Morphological observations during the vegetative

development of the Rhizopus strains showed the characteristic

rhizoids, grayish branched aerial mycelium, and elliptic shape

spores (Figure 1A) (Schipper and Stalpers, 1984). According to

the ITS phylogenetic analyses (Figures 1C, S3), the identities of

the four Mexican fungal strains are R. microsporus HP499, R.
Frontiers in Fungal Biology 04
delemar HP475, R. delemar HP479, and R. homothallicus HP487

for which sexual reproductive structures were observed as this

fungus in not heterothallic (Figure 1Ad´, d´´) (Gryganskyi

et al., 2018).
Identification of bacterial and
viral endosymbionts

We detected positive 16S rRNA gene amplification in R.

microsporus HP499 and R. delemarHP475 (Figure S1). Thus, we

searched and confirmed the presence of bacteria inside the
A B

DC

FIGURE 1

Identification of Rhizopus spp. and their bacterial symbionts. (A) Morphological structures of Rhizopus spp. (a-d) Colonies grown on PDA at 30°
C for 72 h. (a´-c´) Sporangium and sporangiophore. (d´) and (d´´) Zygospores. (a´´) Sporangiospores. (b´´) Columella. (c´´) Rhizoids. Scale
bars = 20 mm. (B) Bacterial endosymbionts thriving in the cytoplasm of the fungal strains HP499 and HP475. DNA from bacterial symbionts was

stained with SYTO™ 9. (a-b) Micrographs taken under white light, and (a´-b´) under fluorescence. Arrows point out individual bacterial cells.
Scale bars = 20 mm. (C) Fungal phylogeny based on the ITS marker. (D) Bacterial phylogeny based on the 16S rRNA gene. The evolutionary
history was inferred for (C, D) by using the Maximum Likelihood method with 1000 bootstrap replicates and Tamura-Nei model.
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fungal cytosol by SYTO™ 9 staining (Figures 1B and S2).

Phylogenetic analyses grouped these bacteria closer to M.

rhizoxinica ATCC 62417 and into the Pacific branch

(Figures 1D, S4). Accordingly, we named these bacteria as

Mycetohabitans sp. HP499 and Mycetohabitans sp. HP475. We

also succeeded in isolating and cultivating both bacterial

symbionts that showed to be gram-negative small bacilli

(Figure S5). Additionally, we investigated the presence of the

Narnavirus RmNV-20S and RmNV-23S by RT-PCR. However,

none of the four fungal Mexican strains harbored these viruses

(Figure S6).
The absence of Mycetohabitans alters R.
microsporus HP499 phenotype, but not
that of R. delemar HP475

To address the importance of the endofungal bacteria in R.

microsporus HP499 and R. delemar HP475, we generated

symbiont-free (b-) and re-infected fungi (b*) (Figure S7). R.

microsporus HP499 significantly decreased its growth in the

absence of its Mycetohabitans endobacteria, being the wild-type

(wt) phenotype recovered when the fungus was re-infected.

Remarkably, none of the manipulated strains of R. delemar

HP475 (b-, b*) changed its growth rate with respect to the

wild-type (wt) fungus throughout 96h (Figures 2A, B). The

asymbiotic R. delemar HP479 and R. homothallicus HP487

showed similar growth rates as the symbiotic R. delemar

HP475 and R. microsporus HP499, respectively (Figure 2A).

Encouraged by the strong effect ofMycetohabitans sp. HP499 on

the growth of its host, we searched for changes in the asexual

reproduction of the fungus (Partida-Martinez et al., 2007b). As

expected, absence of the endofungal bacteria nullifies the

production of sporangiospores in R. microsporus HP499,

however, in R. delemar HP475 no changes in the number of

sporangiospores produced were quantified in the absence of the

bacterial symbionts (Figure 2C).
Mycetohabitans sp. HP475 does not
produce the potent toxin rhizoxin

We evaluated the capacity to produce rhizoxin and its

derivatives by the four Mexican Rhizopus strains, as well as by the

two new isolated bacterial symbionts Mycetohabitans sp. HP499

and HP475. First, we evaluated the antifungal capacity of raw

extracts vs. Trichoderma atroviridae, a rhizoxin-susceptible fungus

(Schmitt et al., 2008). This bioassay showed that only the raw

extracts of R. microsporus HP499 and its symbiotic bacterium

Mycetohabitans sp. HP499 inhibited the growth of T. atroviridae

(Figure S8). Our HPLC-MS analyses confirmed that R. microsporus

HP499 andMycetohabitans sp. HP499 did produce rhizoxin and its

derivatives (Figures 3A, B). These rhizoxin-like peaks were MS/MS
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analyzed and compared to those produced by the well characterized

rhizoxin-producing strain R. microsporus ATCC 52814 wt (Figure

S9), confirming the same chemical nature. However, symbiotic R.

delemar HP475 nor its Mycetohabitans bacteria inhibited the

growth of T. atroviridae nor produced rhizoxin (Figures 3A, S8),

while asymbiotic R. delemar HP479 and R. homothallicus HP487

did not inhibit growth of T. atroviridae and did not produce

rhizoxins, as expected.

Finally, we investigated if the lack of rhizoxin and its derivatives

in symbiotic R. delemarHP475 and its endobacteria was due to the

absence of the rhi cluster. As depicted in Figure 3C, fragments of the

rhiG, rhiA, rhiB, rhiC and rhiD ORFs were readily amplified from

the genomic DNA from R. microsporus HP499 and the rhizoxin-

positive R. microsporus ATCC 52813 and 52814, but not from R.

delemar HP475.
Discussion

Papaya is a highly valued agricultural product of Mexico. In

this study, we investigated the symbiotic and toxinogenic

potential of four Rhizopus strains that were recovered from

soils from the states of Colima, Veracruz and Oaxaca in which

papaya is produced (Cruz-Lachica et al., 2018). Our results

revealed that two of these strains harbor bacterial symbionts

from the genus Mycetohabitans, but none of them the

narnaviruses RmNV-20S and RmNV-23S. These symbiotic

fungal strains were identified as R. microsporus HP499 and R.

delemar HP475 (Figure 1C). Microscopic observations and

molecular identification of these bacterial symbionts showed

that they thrive in the fungal cytoplasm (Figure 1B), are most

similar to each other, and close to the type strainMycetohabitans

rhizoxinica ATCC 62417 that belongs to the Pacific clade

(Figure 1D). Significantly, in this Pacific clade are now strains

from Japan, USA and Mexico (Figures 1C, D; S3 and S4; Table

S1). These results support the biogeographical distribution of

symbiotic fungi and their endobacteria (Lackner et al., 2009).

Notably, our report that R. delemar HP475 harbor

Mycetohabitans symbionts is, as far as we are aware, unique.

Other recent studies searching for endofungal bacteria in the

phylum Mucoromycota, or specifically in the genus Rhizopus,

have revealed that Mycetohabitans is the most common

symbiont of Rhizopus microsporus (Okrasińska et al., 2021). In

fact, only until recently, all Mycetohabitans strains known were

associated with several strains of this fungal species (Lackner

et al., 2009; Partida-Martinez, 2013; Dolatabadi et al., 2016), as

the origin of Mycetohabitans species obtained from clinical

specimens could not be clearly tracked (Gee et al., 2011).

Recently, novel Mycetohabitans symbionts living in four

different strains of Mortierella verticillata have been

discovered, although their capacity to produce rhizoxin has

not been reported nor their effects on the biology of

Mortierella fungi (Büttner et al., 2021). Lastly, a clinical isolate
frontiersin.org
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of R. microsporus stably associates with Ralstonia pickettii. This

bacterial symbiont helps its fungal host to evade amoeba and

cause opportunistic infections in animals (Itabangi et al., 2022).

All these reports and our evidence support the notion that

interactions of Rhizopus species with endofungal bacteria are

more diverse and plastic than initially thought.

Moreover, our findings that the Mycetohabitans symbiont of

R. delemar HP475 does not influence fungal growth nor is in

control of its asexual sporulation (Figure 2) suggest that this

symbiont might be of more recent acquisition. Horizontal transfer

of Mycetohabitans symbionts in R. microsporus has been

postu la ted as poss ib le for the fo l lowing reasons :
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a) Mycetohabitans spp. can readily colonize cured R.

microsporus hosts (Partida-Martinez and Hertweck, 2005), as

they possess a functional type 2 secretion system that enables

the release of chitinolytic enzymes, specially chitinase, that allow

bacterial entry into the fungal hyphae (Moebius et al., 2014); b)

Mucoralean fungi tend to be rhizoxin-resistant, as their amino

acid in the 100 position of their b-tubulin is not arginine (N), but

serine (S) or alanine (A) (Schmitt et al., 2008). These changes in

this amino acid prevent b-tubulin binding with rhizoxin, and

further allows microtubule polymerization during mitosis; and c)

Phylogenies of symbiotic Rhizopus microsporus and their

Mycetohabitans symbionts revealed a high degree of co-
A

B C

FIGURE 2

Development of symbiotic and asymbiotic Rhizopus strains. (A) Development (up to 96 h) of colonies of Rhizopus microsporus HP499, R.
delemar HP475 and HP479, and R. homothallicus HP487 grown on PDA at 30°C. b+ natural symbiotic strain. b- cured strain. b* re-infected
strain with their natural bacteria. (B) Growth kinetics of wild-type, cured, and re-infected fungal hosts for 96 h on PDA plates. Error bars
represent the standard error. One-way ANOVA followed by Tukey’s post-hoc test, P <0.05, n = 4 in each group. Letters indicate statistical
significance. (C) Sporangiospores produced per mg of dry weight after 96h of growth. One-way ANOVA followed by Tukey’s post-hoc test, P
<0.05, n = 4. Error bars represent the standard error.
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speciation, but also suggested the possibility of occasional

horizontal transfers (Lackner et al., 2009). All these make us

hypothesize that R. delemar HP475 might have acquired its

Mycetohabitans symbionts by contact with symbiotic R.

microsporus in the papaya producing soils sampled. It is also

likely that the horizontal transfer ofMycetohabitans symbionts to

a different species of Rhizopus could have imposed genomic re-

arrangements in the endobacteria to adapt to the new host. One
Frontiers in Fungal Biology 07
such adaptation could possibly be the full or partial loss of the rhi

cluster. This hypothesis warrants further and deeper investigation.

In addition, our experiments and evidence to date have not

revealed yet any further contribution of Mycetohabitans to the

fitness/adaptation of R. delemar HP475. However, we cannot

discard that Mycetohabitans sp. HP475 could confer other

ecological advantages to its fungal host in its natural

environment, as members from this genus have the highest
A B

C

FIGURE 3

Metabolic and molecular identification of the production of rhizoxin. (A) HPLC chromatograms of raw extracts obtained from the liquid
fermentation of Rhizopus and Mycetohabitans species. R. delemar HP479, R. homathallicus HP487 and R. microsporus ATCC 11559 are
asymbiotic fungal strains. R. microsporus HP499, R. delemar HP475 and R. microsporus ATCC 52814 are symbiotic fungal strains, and
Mycetohabitans sp. HP499 [B. HP499], Mycetohabitans sp. HP475 [B. HP475]) and Mycetohabitans sp. ATCC 52814 [B. ATCC 52814] are their
respective endofungal bacteria. Strains ATCC 52814 and ATCC 52814 [B. ATCC 52814] were used as positive, and ATCC 11559 as negative
controls, respectively. Peaks labeled with a, a’, and * represent rhizoxin derivatives. (B) Characteristic spectra of rhizoxin (Maximum at 310 nm)
and its MS/MS (626 m/z) fragmentation pattern in HP499 (a) and ATCC 52814 (a’) strains. Collision energy was 28 eV. (C) PCR amplification of
the rhi cluster (rhzoxin). R. microsporus HP499 does have gene fragments from the rhizoxin cluster, while R. delemar HP475 does not show
any. Reference fungal strains ATCC 52813 and ATCC 52814 harboring Mycetohabitans were used as positive controls (positives for rhizoxin
production), while asymbiotic strain ATCC 11559 served as negative control. Highlighted circles represent the amplified motifs within the rhi
BGC. GNAT N-acetyltransferase, ACP acyl carrier protein, KS ketosynthase, HC condensation/heterocyclization, A adenylation, PCP peptidyl
carrier protein, OXY oxygenase, DH dehydratase, KR ketoreductase, MT C-methyltransferase, B unknown domain possibly involved in b-
branching, TE thioesterase, RhiA-F thiotemplate, RhiI O-methyltransferase, RhiG acyltransferase, RhiH cytochrome P450 monooxygenase, and
T1, T2 transposase genes.
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metabolic potential in the genus Burkholderia sensu lato, despite

their relatively reduced genomes (Mullins and Mahenthiralingam,

2021). This has been shown for Mycetohabitans sp. CBS 308.87

(Figure 1D; Figure S4 and Table S1), a symbiotic bacterium of R.

microsporus that produces low amounts of rhizoxin and its

derivatives, but which has the biosynthetic gene cluster nec to

produce cytotoxic benzolactones called necroximes A, B, C and D

(Niehs et al., 2020). Remarkably, the nec BGC was also found in

the endofungal bacterial symbiont Candidatus Mycoavidus

necroximicus that thrives inside M. verticillata NRRL 6337 and

produces necroximes C and D. These metabolites protect its

fungal host from nematode attacks, increasing fungal survival in

the soil (Büttner et al., 2021).

From the agricultural perspective, our study points out to the

necessity of studying the prevalence of symbiotic and

toxinogenic Rhizopus species and other Mucorales in Mexico

to prevent agricultural losses, and also the consumption of toxic

fruits that could promote disease in humans and animals.

In sum, the two novel symbiotic relationships identified here

will help expand our understanding of the distribution, ecology

and evolution of fungal-bacterial-viral symbioses in early-

diverging fungi.
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