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In this review, we supply a framework for the importance of nematophagous fungi

(nematophagous fungi [NF]) and their role in agricultural ecosystems. We characterize the

taxonomy, diversity, ecology, and type of NF, depending on their interaction with plant-

parasitic nematodes (PPNs). We described potential mechanisms of NF in the control of

PPNs, the efficiency and methods of utilization, and the use of nematicides in sustainable

agriculture. We explain the utilization of NF in nanotechnology as a new approach. NF are

significant in the soil for having the effective potential for use in sustainable agriculture.

These types of fungi belong to wide taxa groups, such as Ascomycota, Basidiomycota,

and other groups. Diverse NF are available in different kinds of soil, especially in soils that

contain high densities of nematodes. There is a relationship between the environment of

nematodes and NF. NF can be divided into two types according to the mechanisms that

affect nematodes. These types are divided into direct or indirect effects. The direct effects

include the following: ectoparasites, endoparasites, cyst, or egg parasites producing

toxins, and attack tools as special devices. However, the indirect effect comprises two

groups: paralyzing toxins and the effect on the life cycle of nematodes. We explained the

molecular mechanisms for determining the suitable conditions in brief and clarified the

potential for increasing the efficacy of NF to highly impact sustainable agriculture in two

ways: directly and indirectly.
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INTRODUCTION

Plant–parasitic nematodes (PPNs) in soil can be prey for several
pathogens, such as viruses, -bacteria, and fungi. Many groups
of these pathogens can be utilized in the biological control of
nematodes (Rilrron, 1977).

However, using new control methods instead of synthetic
chemicals is necessary to improve sustainable agriculture
(Aguilar-Marcelino et al., 2020a,b, 2021; Al-Ani et al., 2020a,
2021a,b; Sharma et al., 2020; Singh et al., 2021). Many plant
pathogens, such as Alternaria spp. (Garganese et al., 2018),
Aspergillus spp. (Attitalla et al., 2010a,b), and Fusarium spp.
(Mohammed and Al-Ani, 2021), caused a high reduction in
plant growth and yield. The utilization of natural factors showed
high efficacy in conferring protection for plants from plant
pathogens and pests. Plant growth promoting rhizobacteria
(PGPR) biocontrol agents showed the ability to control several
plant pathogens (Al-Ani, 2006, 2017a, 2018a,b; Al-Ani and
Al-Ani, 2011; Mohammed et al., 2011, 2014; Al-Ani et al.,
2020b; Soumare et al., 2021). Trichoderma is a more interesting
genus used in biological control that has shown efficacy in
the management of several plant diseases (Al-Ani et al., 2013a,
2018; Al-Ani and Albaayit, 2018a,b; Al-Ani, 2019a,b; Al-Ani and
Mohammed, 2020) and has been detected as act endophyte in
plants (Al-Ani, 2019c,d,e).

Non-pathogenic fungi and entomopathogenic fungi
controlling plant disease and pests (Al-Ani et al., 2018; Al-
Ani, 2019c,f; Gupta et al., 2022), have the ability to manage
some plant diseases and play a role in sustainable agriculture
by enhancing plant vigor (Al-Ani and Salleh, 2010; Al-Ani
et al., 2013b; Al-Ani, 2017b, 2019d,e; Al-Ani and Furtado, 2020;
Kisaakye et al., 2022). In addition, many natural compounds and
plant extracts are helpful in controlling plant diseases and pests
(Al-Ani et al., 2012; Mohammed et al., 2012, 2013; Adetunji
et al., 2019; Garganese et al., 2019; Jatoi et al., 2020). NF are
used in the control of parasitic nematodes as bionematicides
by parasitism, and produce toxins to kill nematodes, as well
as induce defense and resistance mechanisms in plants against
parasite nematodes (Abd-Elgawad and Askary, 2018; Sarker
et al., 2020; Comans-Pérez et al., 2021; Girardi et al., 2022).
NF as biological control factors are the best method to use in
sustainable agriculture. NF belong to most groups of fungal
taxa, such as Oomycota, Zygomycota, Ascomycota, Pleurotaceae
(Basidiomycota), and Chytridiomycetes (Gams and Zare, 2003;
Wijayawardene et al., 2020).

Many NF have not yet been discovered, and around 6,000–
8,000 species are waiting for identification (Li et al., 2000;
McInnes, 2003; Yang et al., 2012). NF inhabit the soil and
rhizosphere (Liu et al., 2009) and have been detected in several
soils but not in soil from extreme environments, such as
high salt concentrations and high temperatures (Yang et al.,
2020). NF are divided into five types: (A) nematode-trapping
fungi, (B) endoparasitic fungi, (C) fungi that secrete toxins
affecting nematodes, (D) egg-parasitic fungi, and fungi that
induce resistance and defenses in plants, which then influence the
activity of or kill PPNs (Swe et al., 2011; Maia Filho et al., 2013).

The secondary metabolites of some NF shown high efficacy
in controlling parasitic nematodes (Castañeda-Ramírez et al.,
2020; Seong et al., 2021). In the present review, we discuss the
strategy of NF in the control of plant-parasitic nematodes and
their activity in sustainable agriculture.

MECHANISM OF NEMATOPHAGOUS
FUNGI TO CONTROL PPNS

Soil NF are a heterologous group that acts as a natural
enemy of parasitic nematodes. These fungi use nematode
biomass as a source of carbon, nitrogen, and other important
elements (Siddiqui and Mahmood, 1996); some of them are
obligate parasites of nematodes, but the majority are facultative
saprophytes (Lopez-Llorca et al., 2007).

These NF have been studied for their use as a biological
control against PPNs. Biological control of phytonematodes can
be defined as the decrease in nematode populations by the action
of living organisms other than those naturally found in the
host plant by the manipulation of the environment or by the
introduction of antagonist organisms (Kim, 2015). To this day,
more than 200 species of taxonomically diverse fungi have shown
the ability to attack living nematodes in their different stages:
juvenile, adults, and eggs (Nordbring-Hertz et al., 2006).

The morphology of nematodes presents two different barriers
against fungal infection. The first is the eggshell, which in
root-knot and cyst nematodes consists of three layers: the
outer vitelline composed mainly of proteins, the chitin layer,
and the inner lipoprotein layer; and the second barrier,
the cuticle (Figure 1). The thickness of these barriers varies
considerably depending on the nematode genus (Morton
et al., 2004). The types of mechanisms used by NF to infect
nematodes can be divided into parasitism, toxic compounds, and
enzymes (Figure 2).

FIGURE 1 | The structure of eggshell layers.
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FIGURE 2 | The types of mechanisms used by NF to infect nematodes.

FIGURE 3 | Types of nematode parasitic fungi.

Parasitism
Nematode parasitic fungi are those who live on or in their host
organism and benefit from it by obtaining food. In this group,
fungi can be divided into nematode-trapping, endoparasitic, and
egg- and female-parasitising fungi (Figure 3; Abd-Elgawad and
Askary, 2018).

Nematode-trapping fungi enter their parasitic stage by
producing specialized structures for the capture of nematodes in
their mycelium. These sessile structures depend on the species
and strain of the fungus, and the environmental conditions in
which it is found, such as biotic and abiotic conditions, living
nematodes being the most important biotic factor, since they
induce the formation of trapping structures by contact with the
mycelium (Nordbring-Hertz et al., 2006). These structures act
as two-dimensional or three-dimensional adhesive nets, adhesive
knobs, or constrictor rings, so the fungi can invade the nematode

and employ them as an additional source of food (Lopez-Llorca
et al., 2007).

The traps formed by fungal mycelium act as a piercing
mechanism, damaging the cuticle of the nematode. A penetration
peg is formed, and the hyphae infect and grow throughout
the interior of the nematode body. Finally, the hyphae project
themselves through the exterior of the colonized nematode
(Soares et al., 2018). The fungus Arthrobotrys oligospora is a
nematode-trapping fungus that forms a specialized penetration
tube to pierce the cuticle of the nematode and has been shown
to have a significant impact on the control of the nematode
Meloidogyne javanica in tomato cultivars under greenhouse
conditions (Mostafanezhad et al., 2014).

Another group of NF is endoparasitic and does not form
specialized structures to infect nematodes but rather produces
spores (conidia or zoospores) to fulfill this function. Most of this
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group are obligate parasites of nematodes and carry out their
complete vegetative stages within the nematode (Lopez-Llorca
et al., 2007). The spores of these fungi infect the nematode when
ingested, such as those produced by Harposporium spp., or by
the adhesion of these spores to the host’s cuticle, to later inject
their content into the nematode, as in the case of Drechmeria
coniospora and Verticillium spp. (Morton et al., 2004).

In the case of zoospore-producing fungi, such as Pythium
caudatum, its spores are attracted to the nematode’s secretions,
causing them to swim toward it and encyst around the nematode’s
natural orifices, such as the mouth, anus, or vulva. Zoospores
become immobile, germinate, and begin to form a hyphal
penetration tube that enters through the body orifice into the
nematode (Kim, 2015).

Endoparasitic fungi can also specialize in infecting eggs and
female parasites when targeting the non-motile stage of the
nematode, which is the egg; their hyphae grow toward nematode
eggs and form appressoria, specialized flattened and enlarged
hyphal tips that adhere to surfaces and facilitate penetration of
the eggshell (Nordbring-Hertz et al., 2006). The infected eggs
swell and buckle as penetration continues, and the fungi can
digest their content, obtaining nutrients and energy to continue
their growth (Kim, 2015). An example of this category for its
use as a natural plant–parasitic nematode control is the fungus
Trichoderma harzianum, which showed a significant reduction
in the population and egg masses of the root-knot nematode M.
incognita in tomato plants (Feyisa and Lencho, 2015).

Toxic Compounds
Some species of NF produce certain chemical compounds that
are toxic to nematodes. These compounds lead to nematode
paralysis, and subsequently, the fungus consumes them. In some
cases, nematode head shrinkage is seen as a side effect of the
action of toxins (Satou et al., 2008). These NF are classified
as toxin-producing fungi. However, most studies regarding
NF have focused on the predatory and endoparasitic fungi
(Soares et al., 2018).

Most toxin-producing fungi are basidiomycetes. In this
context, several species of edible mushrooms from the Pleurotus
genus produce toxins with nematotoxic activity (Kwok et al.,
1992; Nordbring-Hertz et al., 1995; Satou et al., 2008).
For example, P. ostreatus produces trans-2-decenoic acid, a
compound derived from linoleic acid that is toxic to nematodes,
insects, and other fungi (Kwok et al., 1992). However, it should
be noted that basidiomycetes do not only produce these types of
toxins, but also there are some fungi that produce compounds
which are toxic to nematodes but are not nematophagous, i.e., do
not consume the nematode (Soares et al., 2018).

The chemical characteristics of these compounds are also
quite diverse, including simple fatty acids and other organic
acids, such as pyrones, lactones, benzoquinones, anthraquinones,
furans, alkaloids, cyclodepsipeptides, and peptaibiotics, and
hybrid structures, such as lactam-bearing macrolactones
(Degenkolb and Vilcinskas, 2016a). Toxin-producing fungi and
their metabolites have been brilliantly reviewed in the works of
Degenkolb and Vilcinskas, 2016a,b.

Enzymes
All five groups of NF (nematode-trapping/predators,
opportunistic or ovicidal, endoparasites, toxin-producing
fungi, and producers of special attack devices) share necessary
weapons for the infection and digestion of nematodes, namely
enzymes (Braga and de Araújo, 2014; Soares et al., 2018).
These macromolecules have the biological activity of catalyzing
reactions. Thus, the reactions are accelerated through the action
of enzymes.

Nematodes have physical barriers in their constitution that
protect them from the actions of natural predators. The cuticle
of juvenile PPNs is one of these barriers (Lee, 1967; Ekino
et al., 2017). In its composition, there is an abundance of
proteins. To overcome this barrier, NF have mechanical and
enzymatic approaches. Regarding enzymes, proteases (EC 3.4)
such as lkaline serine protease, and neutral serine protease are
the main macromolecules involved in cuticle digestion. The
poteases enzymes catalyze the hydrolysis of the peptide bonds
of cuticular proteins (Liang et al., 2010). lkaline serine protease
produced by Lecanicillium psalliotae (syn.Verticillium psalliotae)
caused degradation of cuticles within hours and immobilized
the nematode P. redivivus (Yang et al., 2005). Arthrobotrys
oligospora produced neutral serine protease playing a role in
pathogenicity against nematode (Zhao et al., 2004). Arthrobotrys
oligospora is a useful in controlling Haemonchus contortus and
Caenorhabditis elegans in vitro by producing serine proteases
(Junwei et al., 2013; Yang et al., 2022). Therefore, their role
is crucial in the fungus infection process. However, the eggs
of PPNs have shells rich in chitin and protein. Chitinases (EC
3.2.1.14) such as Endochitinase, and exochitinase (Tikhonov
et al., 2002), are enzymes that catalyze the hydrolysis of glycosidic
bonds between the N-acetylglucosamine groups of chitins.
Therefore, the fundamental fungal enzymes in the process of
infection and digestion of this shell are chitinases (Khan et al.,
2004). NF Monacrosporium thaumasium produced chitinases
(Extracellular) that showed nematicidal action against nematode
Panagrellus redivivus (Soares et al., 2014).

In addition to acting in harmony with the mechanical
mechanisms of infection and digestion of NF, enzymes have
proven nematicidal action when used alone, without the presence
of fungi (Soares et al., 2012; Braga et al., 2015). Thus, this opens
up the possibility of new approaches for the control of PPNs.

Special Attack Devices
Some types of nematophagous produce a special device using in
attacking against nematodes (Soares et al., 2018). The device is
similar to tools used by nematophagous fungi to cause harm to
the cuticles of nematodes and then complete the attack on the
nematode. The shape of devices? is differing such as sword, racket
with thorns, and spear (Soares et al., 2018).We can write the steps
of using these devices in attacking into four points (Luo et al.,
2004, 2006, 2007), as follows:

(A) The growth of hyphae is being toward of nematode, then
press it.

(B) Formation the penetration peg is using to penetrates
the nematodecuticle.
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(C) Then, the infect with nematophagous fungi will complete for
body of nematode by hyphae.

EFFICACY OF NF IN SUSTAINABLE
AGRICULTURE

Nematophagous fungi are more helpful for the biological control
of PPNs compared to other organisms, such as bacteria and
viruses. These NF are available in the environment of prey
nematodes. The importance of NF can be divided into two types:
direct and indirect effects. Direct effects indicate the capability of
NF to directly affect nematodes by parasitising adults, juveniles,
and eggs, as well as producing toxins or secondary metabolites
causing nematode immobility. Many NF use the mechanisms
mentioned previously. For indirect effects, this mechanism can
happen by inducing both plant defenses (Lopez-Llorca et al.,
2010), and plant resistance in monocotyledon and dicotyledon
(Bordallo et al., 2002), that affect the activity of PPNs, such
as laying eggs, hatching eggs, completing the life cycle from
juveniles to adults, and immobilization. Two nematophagous
fungi Arthrobotrys oligospora and Verticillium chlamydosporium
colonized the plants both of barley and tomato (Bordallo et al.,
2002). Endophytic Fusarium oxysporum showed the capability to
reduce the population of PPNs Meloidogyne sp. after it was used
to treat bananas (Waweru et al., 2014). Some biocontrol fungi,
such as Trichoderma, can be useful in reducing the pathogenicity
activity of nematodes by affecting juveniles (an important stage
for causing plant disease) and eggs. Trichoderma asperellum T-
16 reduced the densities of juveniles (second-stage J2s) in roots
by about 80%, but T. brevicompactum T-3 could suppress the
production of eggs by around 86% (Affokpon et al., 2011).

METHODS UTILIZING NEMATOPHAGOUS
FUNGI IN SUSTAINABLE AGRICULTURE

Plant–parasitic nematodes are a major cause of losses in world
agriculture, resulting in yield and monetary losses. Nematodes
can grow undetected by the farmer due to their microscopic size,
underground habitat, and non-specific plant infection symptoms
(Kim, 2015). Much damage to crops goes unreported or is often
classified with other causes, such as fungal attacks, hydric stress,
nutritional deficiencies, or other soil factors (Abd-Elgawad and
Askary, 2018).

Chemical nematocides are the most traditional option for
the management of PPNs, but their application is increasingly
being re-evaluated because of their multiple environmental
and health hazards, in addition to their low availability and
high cost (Degenkolb and Vilcinskas, 2016a,b). Another major
disadvantage of the frequent use of these chemicals is that they
can result in the generation of resistant nematode races, which
can make their control even more difficult (Abd-Elgawad and
Askary, 2018).

Because NF can actively feed on and are the natural antagonist
of PPNs. This trend includes the study of these fungi in
their application form, shelf life, culture, mass production,
effectiveness with other biotic and abiotic factors, and crop
management techniques (Kim, 2015).

Bioproducts with these NF in their formulation present
several benefits for more sustainable agriculture against
chemical nematicides, such as easy application, environment
safety, do not affect the soil biota, and do not leave residues
in harvested products. However, as a living system, there
are several considerations to note when developing a
commercial bionematicidal product. To accomplish effective and

FIGURE 4 | Thi figure showed biotic and abiotic factors that affect the biocontrol agent nematophagous fungi.
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reproducible biological control, this study is important for the
determination of both the biotic and abiotic factors that affect
the biocontrol agent and the target parasite (Figure 4). The fungi
to be used must be able to grow well in the field to be treated,
considering the influence of chemical, physical, and other
biological factors in the soil that act like fungistatic compounds,
in addition to the fact that these factors can be difficult to predict
due to crop rotations (Yang et al., 2007).

Therefore, the use of new technology has been incorporated
into biopesticide production. One example is the use of real-time
quantitative PCR technology to quantify and track the biocontrol
agent after it has been applied to the soil. Similarly, genetic
modification of biocontrol agents can improve their efficacy by
achieving overexpression of genes involved in pathogenicity or
nematocidal activity (Zhang et al., 2020a,b). Genetic modification
approaches are utilized for enhancing the virulence, aggression
against nematodes, UV protectants, expression of heat shock
factors, immune modulators, and cuticle degrading enzymes.

There are two general techniques for using NF as a
biological control agent. One technique is the addition of
large amounts of fungi to the soil or as an endophytic
organism of the plant by coating seeds to favor the colonization
of its rhizosphere. The fungus can establish itself before
the nematodes are attracted to the plant roots (Nordbring-
Hertz et al., 2006). The second technique is to improve
the bionematicide formulation with the complementary use
of biocontrol agents nematophagous fungus the improve the
growth, adaptability, and efficiency of NF as an integrated pest
management technique (Yang et al., 2007). In this situation,
the integrated use of a fungus as a biocontrol agent in
addition to a lower dose of chemical pesticide or plant product
can give effective results if the components are compatible
(Kim, 2015).

There have been various formulations to maximize the action
of the biopesticide. A study of the fungus T. viride in combined
application with the chemical nematicide carbofuran has shown
an increase in plant height, root length, and decreased nematode
M. graminicola population in rice crops (Pankaj et al., 2015).

Similarly, a formulation of the ovicidal fungus P. lilacinus
added to the plant product neem cake shows egg parasitism
of the nematode N. incognita and plant growth in tomatoes
(Zaki and Maqbool, 1992). Other formulations include the use
of the phytohormone abscisic acid (ABA), which enhances plant
defense and increases the nematode-trapping capability of D.
stenobrocha, a constricting ring-forming fungus (Xu et al., 2011).
Different studies have also demonstrated an effective integrated
pest management technique for the PPNs with bacteria P.

fluorescens or a combination of several species of fungi (Abd-
Elgawad and Askary, 2018).

CONCLUSIONS

The interaction between fungi and nematodes is interesting,
especially the use of NF as an alternative to synthetic chemicals
that are used in the manufacture of nematocides. In recent
years, techniques have been developed for genome sequencing
and transcriptome analysis, as well as for analysis techniques
for detecting chemicals at the nano level. We have a lot of
information about the relationship between NF and nematodes
that comprises enzymes and secondary metabolites as toxins.
This antagonistic relationship depends on creating a special
structure to capture the host and produce a toxin. Information
on the interactions can be supplied through “-omics” data.
The enhancement in the manufacture of bionematicides is
depending on selecting aggressive isolates of NF by determining
the virulence factors to a molecular level for isolates of NF.
Efficiently obtaining bionematicides is a target and requirement
for all researchers in the field of agriculture sustainability.
Some information is still lacking, depending on the factor
of pathogenicity.

Some enzymes, such as serine proteases, chitinases, and toxins,
of NF are more interesting in the process of infection against
parasitic nematodes through their role as virulence factors. The
production of different enzymes in the process of infection of
parasitic nematodes requires their penetration of diverse layers of
cuticle and eggshell. The success of some strains of NF indicates
differences in host preference. Some NF, such as the genus
Trichoderma, play an important role in sustainable agriculture.
Finally, we consider the high utilization of NF in the control
of PPNs as an alternative to synthetic chemicals, and they may
be more useful in sustainable agriculture, reducing harmful
chemical residues in the ecosystem.
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